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a b s t r a c t

In this paper we prove asymptotic formulas for the Lp norms of Pn(θ) =
n

k=1(1 − eikθ )

and Qn(θ) =
n

k=1(1 + eikθ ). These products can be expressed using
n

k=1 sin


kθ
2


andn

k=1 cos


kθ
2


respectively.Weprove an estimate for Pn at a point nearwhere itsmaximum

occurs. Finally, we give an asymptotic formula for the maximum of the Fourier coefficients
of Qn.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Euler’s pentagonal number theorem is the expansion
∞
k=1

(1 − zk) =

∞
k=−∞

(−1)kzk(3k−1)/2,

for |z| < 1. Euler’s discovery and proof of it are explained in detail in [1]. The coefficients in the power series expansion
of


∞

k=1(1 − zk) have a combinatorial interpretation that can be used to prove the pentagonal number theorem
[10, pp. 286–287, Section 19.11]. One can see that

∞
k=1

(1 + zk) =

∞
k=0

q(k)zk,

where q(k) is the number of ways to write k as a sum of distinct positive integers.
In this paper we are concerned with the behavior on the unit circle of the partial products of the above infinite products.

(The distribution of the zeros of the partial sums of the above infinite series is studied in [4].) Let T = R/2πZ. We define
Pn : T → C by

Pn(θ) =

n
k=1

(1 − eikθ ),

and we define Qn : T → C by

Qn(θ) =

n
k=1

(1 + eikθ ).
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Fig. 1.
10

k=1 2| sin(kθ)| for 0 ≤ θ ≤
π
2 .

One can check that

Pn(θ) = (−2i)ne
iNθ
2

n
k=1

sin


kθ
2


, N =

n(n + 1)
2

, (1)

and that

Qn(θ) = 2ne
iNθ
2

n
k=1

cos


kθ
2


, N =

n(n + 1)
2

. (2)

For f : T → C, we define the Fourier coefficients of f by

f̂ (n) =
1
2π

 2π

0
f (θ)e−inθdθ.

For 1 ≤ p < ∞, we define the Lp norm of f by

∥f ∥p =


1
2π

 2π

0
|f (θ)|pdθ

1/p

,

and we define the ℓp norm of f̂ by

∥f̂ ∥p =


∞

k=−∞

|f̂ (k)|p
1/p

.

We deal with Pn in Section 2 and we deal with Qn in Section 3. We give combinatorial interpretations of their Fourier
coefficients, prove asymptotic formulas for their Lp norms, present some other approaches for bounding their norms, and
give an asymptotic formula for the ℓ∞ norm of the Fourier coefficients of Qn. We also prove an estimate for Pn at a point
near where its maximum occurs. In Section 4 we discuss what remains to be shown about these products.

2. Norms of the trigonometric polynomials Pn

The Fourier coefficients of Pn have a combinatorial interpretation. One can see thatPn(k) = en,k − on,k,

where en,k is the number of ways in which k can be written as a sum of an even number of positive integers that are distinct
and each ≤ n, and on,k is the number of ways in which k can be written as a sum of an odd number of positive integers that
are distinct and each ≤ n. For example, one can check that 6 + 5 + 2 + 1, 6 + 4 + 3 + 1, 5 + 4 + 3 + 2 are the only ways
to write 14 as a sum of an even number of positive integers that are distinct and each ≤ 6, so e6,14 = 3, and that 6 + 5 + 3
is the only way to write 14 as a sum of an odd number of positive integers that are distinct and each ≤ 6, so o6,14 = 1. ThusP6(14) = 2.

We see from (1) that |Pn(θ)| =
n

k=1 2| sin( kθ
2 )|. In Fig. 1 we plot

10
k=1 2| sin(kθ)| for 0 ≤ θ ≤

π
2 .
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Of course, Pn(0) = 0. Aside from θ = 0 we can explicitly evaluate Pn(θ) for certain other θ . If gcd(n + 1, h) = 1, then
zn+1

− 1 =
n+1

k=1(z − e
2π ihk
n+1 ). Since zn+1

− 1 = (z − 1)(zn + · · · + z + 1) we get zn + · · · + z + 1 =
n

k=1(z − e
2π ihk
n+1 ) and

setting z = 1 gives

Pn


2πh
n + 1


= n + 1

for each h such that gcd(n + 1, h) = 1. In particular this gives us ∥Pn∥∞ ≥ n + 1.
Wright [22], using work of Sudler [18], proves the following theorem giving an asymptotic formula for ∥Pn∥∞.

Theorem 1 (Wright).We have

∥Pn∥∞ ∼
BeKn

n
,

where B and K are defined by

K = log 2 + max
0<w<1


1
w

 w

0
log sin(π t)dt


and

B = 2eK

1 −

1
4
e2K
−1/4

.

The constant K in Theorem 1 is defined using the integral
 w

0 log sin(π t)dt , and in the proof of Theorem 3 we deal with 3π
4n

0 log sin xdx. Milnor in the appendix to [15] shows how to use the integrals −
 θ

0 log |2 sin u|du to compute hyperbolic
volumes.

Using the fact that
∥Pn∥∞ ≤ ∥Pn∥1 ≤ ∥Pn∥∞ ≤ ∥Pn∥1 ≤ (N + 1)∥Pn∥∞,

we obtain from Theorem 1 that limn→∞ ∥Pn∥
1/n
∞ = eK . Freiman and Halberstam [8] give a different proof of this.

In fact, the method of Wright’s proof [22] can be used to estimate the Lp norms of Pn for 1 ≤ p ≤ ∞, and we do this in
the following.

Theorem 2. Let g(w) = log 2 +
1
w

 w

0 log sin(π t)dt, let w0 be the (unique) w ∈ (0, 1) at which the maximum of g occurs, let

K = g(w0), let B = 2eK

1 −

1
4 e

2K
−1/4

, and let C =


−

1
2g

′′(w0). For each 1 ≤ p < ∞ we have

∥Pn∥p ∼ C1C
1
p
2 n

1
2 n−

3
2p exp(nK),

where C1 =
BC

2
√

π
and C2 =

2
√

π

C
√
p , and for p = ∞ we have

∥Pn∥∞ ∼ C1n
1
2 exp(nK).

Proof. For θ ∈ [0, 1
2 ], we define Πn(θ) =

n
k=1 2| sin(πkθ)|. Let γ = n−

17
12 (the exponent is the arithmetic mean of −

4
3

and −
3
2 ; we will just use that it is strictly between these two numbers), and let J = [

w0
n − γ ,

w0
n + γ ]. We first estimate

[0, 12 ]\J Πn(θ)pdθ and then estimate

J Πn(θ)pdθ .

We shall separately estimate Πn(θ) for θ ∈ [0, 1
n+1 ] \ J and for θ ∈ [

1
n+1 ,

1
2 ]. Since Πn is a product of functions that

are each increasing on [0, 1
2n ], an upper bound for Πn(θ) on [

1
2n ,

1
n+1 ] \ J is an upper bound for Πn(θ) on [0, 1

n+1 ] \ J . Let
θ ∈ [

1
2n ,

1
n+1 ]. We have

logΠn(θ) = log
n

k=1

2 sin(πkθ) = n log 2 +

n
k=1

G(k),

where G(y) = log sin(πθy). The Euler–Maclaurin summation formula [7, p. 99, Eq. (3)] gives us
n

k=1

G(k) =

 n

0
G(y)dy −

 1

0
G(y)dy +

1
2
G(n) +

1
2
G(1) + Rn,

where |Rn| ≤
1
2

 n
1 |G′(y)|dy.
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If 0 ≤ y ≤ 1 then, as 1
2n ≤ θ ≤

1
n+1 ,

G(y) = log(πθy) + log
sin(πθy)

πθy
= log(πθy) + log(1 + O(θ2y2)) = log(πθy) + O(θ2),

and it follows that 1

0
G(y)dy = log(πθ) − 1 + O(θ2) = O(log n).

Because 1
2n ≤ θ ≤

1
n+1 , we get

G(n) = O(log n) and G(1) = O(log n).

Set y0 =
1
2θ . If 1 ≤ y ≤ y0 then 0 < πθy ≤

π
2 and hence G′(y) ≥ 0, and if y0 ≤ y ≤ n then π

2 ≤ y < π and hence G′(y) ≤ 0.
Thus, as G(y0) = 0, n

1
|G′(y)|dy =

 y0

1
G′(y)dy −

 n

y0
G′(y)dy

= −G(n) − G(1)
= O(log n).

Therefore for θ ∈ [
1
2n ,

1
n+1 ] we have

logΠn(θ) = n log 2 +
1
θ

 nθ

0
log sin(πy)dy + O(log n)

= ng(nθ) + O(log n).

Let n ≥ 4. Then w0 ∈ ( 1
2 ,

n
n+1 ), and by Taylor’s theorem there is some ξ ∈ ( 1

2 ,
n

n+1 ) such that if 1
2 ≤ w ≤

n
n+1 then

g(w) = g(w0) + g ′(w0)(w − w0) +
g ′′(ξ)

2
(w − w0)

2
= K +

g ′′(ξ)

2
(w − w0)

2.

One can show that if 1
2 ≤ w < 1 then g ′′(w) ≤ −4 (we just use that there is some A < 0 such that if 1

2 ≤ w < 1 then
g ′′(w) ≤ A). Hence if 1

2n ≤ θ ≤
1

n+1 then

g(nθ) ≤ K − 2(nθ − w0)
2

= K − 2n2

θ −

w0

n

2
.

Now let θ ∈ [
1
2n ,

1
n+1 ] \ J . Thus

ng(nθ) ≤ nK − 2n3γ 2
= nK − 2n

1
6 .

Therefore, if θ ∈ [
1
2n ,

1
n+1 ] \ J then

Πn(θ) = o

enK

n


.

On the other hand, Sudler [18, p. 4, Theorem III] proves that if θ ∈ [
1

n+1 ,
1
2 ] then

Πn(θ) < 2n3
· 2

n
4 = o


enK

n


.

Altogether, we have for θ ∈ [0, 1
2 ] \ J that

Πn(θ) = o

enK

n


.

We now estimate

J Πn(θ)pdθ . Let θ ∈ [0, 1+w0

2n ]. We have

logΠn(θ) = log
n

k=1

2 sin(πkθ)

= n log 2 + logΓ (n + 1) +

n
k=1

F(k),
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where

F(y) = log sin(πθy) − log y.

The Euler–Maclaurin summation formula [6, p. 303, Eq. (7.2.4)] gives us
n

k=1

F(k) =

 n

0
F(y)dy +

1
2
F(n) +

1
2
F(1) +

1
12

F ′(n) −
1
12

F ′(1) −

 1

0
F(y)dy  

Mn

+Rn

where |Rn| ≤
2

(2π)2

 n
1 |F ′′′(y)|dy. We have

F ′(y) = πθ cot(πθy) −
1
y

and F ′′′(y) = 2(πθ)3 csc3(πθy) cos(πθy) −
2
y3

.

We estimate the terms inMn as follows. As θ = O(n−1) we have

F(1) = log sin(πθ) = log(πθ) + O(n−2).

Next, set a =
π
2 (1 + w0). Since a < π , for x ∈ [0, a] we have x cot(x) − 1 = O(x2). It follows that

nF ′(n) = πθn cot(πθn) − 1 = O(n2θ2).

We also have

F ′(1) = πθ cot(πθ) − 1 = O(θ2).

Finally, for 0 ≤ y ≤ 1 we have

F(y) = log(πθ) + log
sin(πθy)

πθy
= log(πθ) + log(1 + O(θ2)) = log(πθ) + O(θ2).

Putting these estimates together we obtain

Mn =
1
2
log sin(nπθ) −

1
2
log n +

1
2
log(πθ) + O(n−2) + O(nθ2) + O(θ2) − log(πθ) + O(θ2)

=
1
2
log sin(nπθ) −

1
2
log n −

1
2
log(πθ) + O(n−1).

We now bound the Rn term. Take a =
π
2 (1 + w0), and as a < π we have for x ∈ [0, a] that x csc(x) − 1 = O(x2). Hence

for 1 ≤ y ≤ nwe have

F ′′′(y) =
2
y3

cos(πθy)

1 + O(θ2y2)


−

2
y3

= O(θ2y−1),

and so

|Rn| = O
 n

1
θ2y−1dy


= O(θ2 log n) = O(n−2 log n).

From the asymptotic expansion for logΓ (n+ 1) [6, p. 306, Eq. (7.6.5)] we get logΓ (n+ 1) = n log n− n+
1
2 log(2πn)+

O(n−1). Therefore, for θ ∈ [0, 1+w0
2n ] we have

logΠn(θ) = n log 2 + n log n − n +
1
2
log(2πn) + O(n−1) +

1
θ

 nθ

0
log sin(πy)dy − n log n + n

+
1
2
log sin(nπθ) −

1
2
log n −

1
2
log(πθ) + O(n−1) + O(n−2 log n)

= ng(nθ) +
1
2
log(2 sin(nπθ)) −

1
2
log θ + O(n−1).

As g ′(w0) = 0, we have

g(w) = g(w0) + g ′(w0)(w − w0) +
1
2
g ′′(w0)(w − w0)

2
+ O((w − w0)

3)

= K − C2(w − w0)
2
+ O((w − w0)

3).
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Thus if θ ∈ J then, as n4γ 3
= n−

1
4 (this is where we use that the exponent of γ is strictly less than −

4
3 ), we have

ng(nθ) = nK − n3C2

θ −

w0

n

2
+ O(n4γ 3) = nK − n3C2


θ −

w0

n

2
+ o(1).

Also,

sin(πw)

w
=

sin(πw0)

w0
+ O(w − w0),

and so if θ ∈ J then

log(2 sin(nπθ)) = log(2n) + log θ + log

sin(nπθ)

nθ


= log(2n) + log θ + log


sin(πw0)

w0
+ O(nθ − w0)


= log


2n

sin(πw0)

w0


+ log(θ) + O(nγ ).

Because eK = 2 sin(πw0) (which follows from g ′(w0) = 0), it follows that sin(πw0)
w0

=
B2C2

8π .
We put together the above to get for θ ∈ J that

logΠn(θ) = nK − n3C2

θ −

w0

n

2
+

1
2
log


n
B2C2

4π


+ o(1).

Using this estimate for logΠn(θ) for θ ∈ J we obtain
J
Πn(θ)pdθ =


J
exp(p logΠn(θ))dθ

= exp(pnK)


n
B2C2

4π

p/2

(1 + o(1))
 w0

n +γ

w0
n −γ

exp


−pn3C2

θ −

w0

n

2
dθ.

Doing the change of variable v =
√
pCn

3
2

θ −

w0
n


and setting V =

√
pn

3
2 Cγ =

√
pCn

1
12 we get

J
Πn(θ)pdθ = exp(pnK)


n
B2C2

4π

p/2

(1 + o(1))
 V

−V
exp(−v2)

dv

C
√
pn

3
2

= exp(pnK)


n
B2C2

4π

p/2 1

C
√
pn

3
2

(1 + o(1))
 V

−V
exp(−v2)dv.

As [6, p. 97, Eq. (10.8.4)] V

−V
exp(−v2)dv =

√
π + O


exp(−V 2)

V


=

√
π (1 + o(1)) ,

we get (this is where we use that the exponent of γ is strictly greater than −
3
2 )

J
Πn(θ)pdθ = exp(pnK)


n
B2C2

4π

p/2 √
π

C
√
pn

3
2

(1 + o(1)) .

We have obtained estimates for

[0, 12 ]\J Πn(θ)pdθ and for


J Πn(θ)pdθ , which we now use to estimate ∥Pn∥p. Put φ =

exp(nK)

n . For 1 ≤ p < ∞ we have

∥Pn∥p
p = 2



0, 12

 Πn(θ)pdθ

= 2


0, 12


\J

Πn(θ)pdθ + 2

J
Πn(θ)pdθ

= o(φp) + 2φpn
3p
2 BpCp2−pπ−

p
2 π

1
2 C−1n−

3
2 p−

1
2 (1 + o(1))

= 2φpn
3p
2 BpCp2−pπ−

p
2 π

1
2 C−1n−

3
2 p−

1
2 (1 + o(1)),
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Fig. 2. ∥Pn∥1
enK n−1 , for n = 1, . . . , 400.

Fig. 3. ∥Pn∥2
enK n−1/4 , for n = 1, . . . , 400.

and hence

∥Pn∥p = 2
1
p exp(nK)n

1
2 BC2−1π−

1
2 π

1
2p C−

1
p n−

3
2p p−

1
2p (1 + o(1)).

Taking p → ∞ gives

∥Pn∥∞ = exp(nK)n
1
2 BC2−1π−

1
2 (1 + o(1)). �

Doing integration by parts one can show that w0 is the unique zero w ∈ (0, 1) of
 w

0 t cot(π t)dt . We compute that
w0 = 0.7912265710 . . . , from which we get K = 0.1986176152 . . . , so eK = 1.219715476 . . . and B = 2.740222990 . . . .
We also compute that C = 1.606193491 . . . .

We show in Fig. 2 a plot of ∥Pn∥1
eKnn−1 for n = 1, . . . , 400 and in Fig. 3 a plot of ∥Pn∥2

eKnn−1/4 for n = 1, . . . , 400. We have from
Theorem 2 that

∥Pn∥1 ∼ Bn−1enK = 2.740222990 . . . · n−1enK

and

∥Pn∥2 ∼ BC
1
2 2−

3
4 π−

1
4 n−

1
4 enK = 1.551046691 . . . · n−

1
4 enK .

Using the pentagonal number theorem we can deduce that ∥Pn∥1 → ∞ as n → ∞ from a general result on exponential
sums. Littlewood’s conjecture, proved in [14], is that there is a constantH such that if the firstM nonzero Fourier coefficients
of an L1 function f each has absolute value≥ 1, then ∥f ∥1 ≥ H logM . The case of the Dirichlet kernel shows us that H ≤

4
π2 ,

since ∥Dn∥1 =
4

π2 log n + O(1). Of course all the nonzero Fourier coefficients of Pn have absolute value ≥ 1 (namely, they
are integers), and one can show using the pentagonal number theorem that Pn has≥

3
2

√
n nonzero Fourier coefficients with

absolute value ≥ 1, hence

∥Pn∥1 ≥ H log


3
2

√
n


.
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The L∞ norm of
n

k=1 sin(kθ) is discussed by Carley and Li [3]. They observe that the maximum of
n

k=1 sin(kθ) occurs
around θ =

3π
4n . Using the Euler–Maclaurin summation formula, they show that

n
k=1

sin


3πk
4n


≥ C

√
n exp


−

5
6
n log 2


,

for some C > 0. ThusPn

3π
2n

 ≥ C
√
n exp


1
6
n log 2


. (3)

We shall improve on the lower bound given in (3). Let A =
2G
3π , where

G =

∞
n=0

1
(2n + 1)2

(−1)n = 0.9159655942 . . .

is Catalan’s constant.

Theorem 3. For some C0 > 0,Pn

3π
2n

 ≤ nC0eAn

and Pn

3π
2n

 ≥ n−C0eAn.

Proof. Let f (x) = log | sin x|. Let l = ⌊
2n
3 ⌋. We have n

k=1

f


3πk
4n


·
3π
4n

−

 3π
4

0
f (x)dx

 ≤

n
k=1

f

3πk
4n


·
3π
4n

−

 k 3π
4n

(k−1) 3π
4n

f (x)dx


≤ f


3π
4n


3π
4n

−

 3π
4n

0
f (x)dx +

l
k=2


f


k
3π
4n


− f


(k − 1)

3π
4n


3π
4n

+


f


π

2


− f


l
3π
4n


3π
4n

+


f


π

2


− f


(l + 1)

3π
4n


3π
4n

+

n
k=l+2


f


(k − 1)

3π
4n


− f


k
3π
4n


3π
4n

.

We will estimate these lines separately. For the first line, because sin x ≤ x for all x ≥ 0 and because sin x ≥
2
π
x for

x ∈ [0, π
2 ], we have

3π
4n

log sin
3π
4n

−

 3π
4n

0
log sin xdx ≤

3π
4n

log
3π
4n

−

 3π
4n

0
log

2
π
xdx

=
3π
4n

log
3π
4n

−
3π
4n

log
2
π

−
3π
4n

log
3π
4n

+
3π
4n

=
3π
4n


1 − log

2
π



= O


1
n


.
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For the second line, because f ′(x) = cot xwe have
l

k=2


f


k
3π
4n


− f


(k − 1)

3π
4n


3π
4n

=


f


l
3π
4n


− f


3π
4n


3π
4n

=
3π
4n

 l 3π4n

3π
4n

cot xdx

≤
3π
4n

 π
2

3π
4n

cot xdx

=
3π
4n


f


π

2


− f


3π
4n



= −
3π
4n

log sin
3π
4n

= O


log n
n


.

For the third line, |f

(l + 1) 3π

4n


| ≤ |f


l 3π4n

|. Moreover, ⌊ 2n

3 ⌋ ≥
n
2 for n ≥ 2, so |f


l 3π4n

| ≤ | log sin 3π

8 |. Therefore the

third line is O( 1
n ).

For the fourth line, because f ′(x) = cot xwe have
n

k=l+2


f


(k − 1)

3π
4n


− f


k
3π
4n


3π
4n

= −
3π
4n


f


3π
4


− f


(l + 1)

3π
4n



= −
3π
4n

 3π
4

(l+1) 3π
4n

cot xdx

≤ −
3π
4n

 3π
4

π
2

cot xdx

= O


1
n


.

The sum of the four lines is O


log n
n


, and thus there is some C0 > 0 such that n

k=1

log sin


3πk
4n


−

4n
3π

 3π
4

0
log sin xdx

 ≤ C0 log n.

One can check that log | sin x| has the Fourier series

− log 2 −

∞
n=1

1
n
(1 + (−1)n) cos(nx).

If f ∈ L1(T) has the Fourier series


akeikx, then
 b
a f (x)dx =


ak
 b
a eikxdx [20, Section 13.5]. For f (x) = log | sin x|, a = 0,

and b =
3π
4 , we have 3π
4

0
log sin xdx = −

3π log 2
4

−

∞
n=1

1
n2

(1 + (−1)n) sin
3πn
4

= −
3π log 2

4
−

∞
n=1

1
(2n)2

· 2 sin
3π · 2n

4

= −
3π log 2

4
−

1
2

∞
n=1

1
n2

sin
3πn
2

= −
3π log 2

4
−

1
2

∞
n=1

1
(2n + 1)2

sin
3π · (2n + 1)

2
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= −
3π log 2

4
−

1
2

∞
n=1

1
(2n + 1)2

(−1)n+1

= −
3π log 2

4
+

G
2
.

Therefore n
k=1

log sin


3πk
4n


− (A − log 2)n

 ≤ C0 log n

for A =
2G
3π . Taking exponentials, it follows that

n
k=1

sin


3πk
4n


≤ nC0e(A−log 2)n

and
n

k=1

sin


3πk
4n


≥ n−C0e(A−log 2)n.

Thus by (1) we get |Pn


3π
2n


| ≤ nC0eAn and |Pn


3π
2n


| ≥ n−C0eAn. �

This shows that ∥Pn∥∞ ≥ n−C0eAn. We compute that eA = 1.214550362 . . . .
Lubinsky [13, Theorem 1.1] proves that if ϵ > 0, then for almost all θ we have

| log |Pn(θ)|| = O((log n)(log log n)1+ϵ),

but that this is false if ϵ = 0. If θ has boundedpartial quotients, Lubinsky shows that log |Pn(θ)| = O(log n) [13, Theorem1.3].
However, almost all θ do not have a continued fraction expansionwith bounded partial quotients [10, p. 166, Theorem 196].

3. Norms of the trigonometric polynomials Qn

One can see that the Fourier coefficient Qn(j) is equal to the number ofways towrite j as a sumof distinct positive integers
each≤ n. For example, the partitions of 9 into distinct parts each≤ 6 are 1+2+6, 1+3+5, 2+3+4, 2+7, 3+6, 4+5,
and thusQ7(9) = 6.

Various results have been proved about the number of partitions of j as a sum of integers each ≥ n and the number of
partitions of j as a sum of distinct integers each ≥ n for n small relative to j; see for example Szekeres [19], Freiman and
Pitman [9], and Mosaki [16].

By (2), we can express Qn(θ) using
n

k=1 cos


kθ
2


. The product

n
k=1 cos(kθ) has the following probabilistic interpreta-

tion. Let Xk be independent Bernoulli ±1 random variables. One can check that the characteristic function of
n

k=1 kXk isn
k=1 cos(kθ). Unfortunately, to use the central limit theorem we would first have to normalize the sum by dividing it by

n3/2, and the characteristic function of
n

k=1
k

n3/2
Xk is

n
k=1 cos

kθ
n3/2

, not
n

k=1 cos(kθ).

We see from (2) that |Qn(θ)| =
n

k=1 2| cos


kθ
2


|. In Fig. 4 we plot

10
k=1 2| cos(kθ)| for 0 ≤ θ ≤

π
2 (here the ordinate of

0 is 1024).
Of course Qn(0) = 2n, so ∥Qn∥∞ = 2n. Aside from θ = 0 we can explicitly evaluate Qn(θ) for certain other θ . If gcd

(n + 1, h) = 1, then zn+1
− 1 =

n+1
k=1(z − e

2π ihk
n+1 ). Since zn+1

− 1 = (z − 1)(zn + · · · + z + 1), we get zn + · · · + z + 1 =n
k=1(z − e

2π ihk
n+1 ), and setting z = −1 yields

Qn


2πh
n + 1


=

1 + (−1)n

2

for each h such that gcd(n + 1, h) = 1.
For all 1 ≤ p ≤ ∞ we have ∥Qn∥p ≤ ∥Qn∥∞ = 2n. On the other hand, let 1 ≤ p ≤ q ≤ ∞. One can show that there is

some C > 0 such that if f satisfies f̂ (j) = 0 for |j| > N then ∥f ∥q ≤ CN
1
p −

1
q ∥f ∥p [12, p. 123, Exercise 1.8]. (In fact one can

take C = 5.) Since ∥Qn∥∞ = 2n, we get for 1 ≤ p ≤ ∞ that ∥Qn∥p ≥
1
C 2

nN−1/p.
We can do better than this. FollowingWright’s method of proving Theorem 1, which we used in our proof of Theorem 2,

we get in the following theorem an asymptotic formula for ∥Qn∥p.
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Fig. 4.
10

k=1 2| cos(kθ)| for 0 ≤ θ ≤
π
2 .

Theorem 4. For 1 ≤ p < ∞ we have

∥Qn∥p ∼


6
pπ

 1
2p

2nn−
3
2p .

Proof. Let Ψn(θ) =
n

k=1 2| cos(πkθ)|. We can check that

∥Qn∥p =


2
 1/2

0
Ψn(θ)pdθ

1/p

.

Let γ = n−4/3. We shall estimate Ψn(θ) separately for 0 ≤ θ ≤ γ and for γ ≤ θ ≤
1
2 .

Let 0 ≤ θ ≤ γ . We define F(y), depending on θ , by F(y) = log cos(πθy). Then

logΨn(θ) = n log 2 +

n
k=1

log cos(πkθ) = n log 2 +

n
k=1

F(k).

By the Euler–Maclaurin summation formula [6, p. 303, Eq. (7.2.4)] we have
n

k=1

F(k) =

 n

0
F(y)dy +

1
2
F(n) +

1
2
F(1) +

1
12

F ′(n) −
1
12

F ′(1) −

 1

0
F(y)dy  

Mn

+Rn

where |Rn| ≤
2

(2π)2

 n
1 |F ′′′(y)|dy. First, doing a change of variables, because θ ≤ γ = n−4/3 and because log cos x =

−
x2
2 + O(x4), we have n

0
F(y)dy =

1
θ

 nθ

0
log cos(πz)dz

=
1
θ

 nθ

0


−

π2z2

2
+ O(z4)


dz

= −
π2

6
n3θ2

+ O(n5θ4)

= −
π2

6
n3θ2

+ O(n−1/3).

Second, using θ ≤ γ = n−4/3, log cos x = −
x2
2 + O(x4), and tan x = O(x), we have

Mn =
1
2
log cos(πθn) +

1
2
log cos(πθ) −

πθ

12
tan(πθn) +

πθ

12
tan(πθ) −

 1

0
log cos(πθy)dy

= O(n−2/3) + O(n−8/3) + O(n−5/3) + O(n−8/3) + O(n−8/3)

= O(n−2/3).
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Third, F ′′′(y) = −2π3θ3 sec2(πθy) tan(πθy), which yields |Rn| = O(n−10/3). Putting these three pieces together gives

logΨn(θ) = n log 2 −
π2

6
n3θ2

+ O(n−1/3)

and thus

Ψn(θ) = 2n exp


−

π2

6
n3θ2


exp(O(n−1/3)) = 2n exp


−

π2

6
n3θ2


(1 + O(n−1/3)).

Therefore, making the change of variables φ =


p
6πn3/2θ and because

 V
0 e−φ2

dφ ∼

√
π

2 −
exp(−V2)

2V as V → ∞ [6, p. 97,
Eq. (10.8.4)], we have γ

0
Ψn(θ)pdθ = 2pn

 γ

0
exp


−p

π2

6
n3θ2


dθ · (1 + O(n−1/3))

= 2pn


6
p
π−1n−3/2

 n1/6
√ p

6 π

0
e−φ2

dφ · (1 + O(n−1/3))

= 2pn


3

2pπ
n−3/2

· (1 + O(n−1/3))(1 + O(n−1/6))

= 2pn


3

2pπ
n−3/2

· (1 + O(n−1/6)).

Now we bound Ψn(θ) for γ ≤ θ ≤
1
2 . We have, for Ψn(θ) ≠ 0,

Ψn(θ) = exp(logΨn(θ)) = 2n exp


n

k=1

log | cos(πkθ)|


.

Using the inequality log x ≤ x − 1 for x > 0 and the identity cos(2x) = 2 cos2 x − 1, we get for all xwith cos x ≠ 0 that

log | cos x| =
1
2
log(cos2 x) ≤

1
2
(cos2 x − 1) =

1
4
(−1 + cos(2x)).

Hence, for Ψn(θ) ≠ 0,

Ψn(θ) ≤ 2n exp


1
4

n
k=1

(−1 + cos(2πkθ))


;

but of course this inequality is true when Ψn(θ) = 0, hence the inequality is true for all θ . Let

Hn(θ) =

n
k=1

(−1 + cos(2πkθ)).

We first deal with the interval γ ≤ θ ≤
1

2πn . For 0 ≤ x ≤ 1 one has cos x ≤ 1 −
x2
2 (using the Taylor series for cos x,

which is an alternating series), so for γ ≤ θ ≤
1

2πn we have

Hn(θ) ≤

n
k=1

−
(2πkθ)2

2
= −2π2θ2

n
k=1

k2 = −2π2θ2 2n
3
+ 3n2

+ n
6

≤ −
2π2θ2n3

3
,

so Hn(θ) ≤ −
2π2n1/3

3 .
We now deal with the interval 1

2πn ≤ θ ≤
1
2n . Since −1 + cos x = −2 sin2  x

2


, we have

Hn(θ) = −2
n

k=1

sin2(πkθ).
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Using that sin2 x is nondecreasing for 0 ≤ x ≤
π
2 we have n

k=1

πθ sin2(πkθ) −

 πnθ

0
sin2 xdx

 =

 n
k=1


πθ sin2(πkθ) −

 kπθ

(k−1)πθ

sin2 xdx


≤

n
k=1

πθ sin2(πkθ) −

 kπθ

(k−1)πθ

sin2 xdx


≤

n
k=1

πθ sin2(πkθ) − πθ sin2((k − 1)πθ)


= πθ

n
k=1

sin(πθ) sin((2k − 1)πθ)


≤ πθ

n
k=1

πθ

≤
π2

4n
.

Therefore
n

k=1

πθ sin2(πkθ) ≥

 πnθ

0
sin2 xdx −

π2

4n
.

But
 πnθ
0 sin2 xdx ≥

 1/2
0 sin2 xdx =

1
4 (1 − sin(1)), because θ ≥

1
2πn , so

n
k=1

sin2(πkθ) ≥
1

4πθ
(1 − sin(1)) −

π

4nθ
≥

n
2π

(1 − sin(1)) −
π2

2
.

So for 1
2πn ≤ θ ≤

1
2n we have

Hn(θ) ≤ −
n
π

(1 − sin(1)) + π2.

Finally we deal with the interval 1
2n ≤ θ ≤

1
2 . Using cos x =

eix+e−ix

2 , the formula for a finite geometric series, and then

sin x =
eix−e−ix

2i , one can check that

Hn(θ) = −n −
1
2

+
1
2
sin((2n + 1)πθ)

sin(πθ)
.

For 0 ≤ x ≤
π
2 we have sin x ≥

2
π
x, so for 1

2n ≤ θ ≤
1
2 we have

Hn(θ) ≤ −n −
1
2

+
1
4θ

≤ −
n
2

−
1
2
.

Putting together the bounds we have for γ ≤ θ ≤
1

2πn ,
1

2πn ≤ θ ≤
1
2n , and

1
2n ≤ θ ≤

1
2 , we get

Ψn(θ) = O


2n exp


−

π2n1/3

6


.

In summary, we have shown that

2
 1/2

0
Ψn(θ)pdθ = 2pn


6
pπ

n−3/2
· (1 + O(n−1/6)) + O


2pn exp


−p

π2n1/3

6



= 2pn


6
pπ

n−3/2
· (1 + O(n−1/6)). �
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Following Pribitkin’s [5], which gives an upper bound on the number of partitions of j with at most n parts, Bidar [2]
gives an upper bound on Qn(j) involving the dilogarithm function Li2. However, take n to be even, and let j = ⌊

n(n+1)
4 ⌋. We

compute that the exponential term in Bidar’s upper bound for Qn(j) is eLn, with

L ≥
π

2
√
3

−

√
3

2π
Li2


exp


−

π
√
3


= 0.8599790113 . . . .

But log 2 = 0.6931471805 . . . . Thus here Bidar’s bound is worse than the bound Qn(j) ≤ ∥Qn∥1 ≤ ∥Qn∥∞ = 2n.

In the following theoremwe show that for j sufficiently close to n(n+1)
4 the Fourier coefficient Qn(j) is close to 2n


6
π
n−3/2

and use this to get ∥Qn∥∞ ∼ 2n


6
π
n−3/2. We use the bounds on Ψn(θ) =

n
k=1 2| cos(πkθ)| that we established in our

proof of Theorem 4.

Theorem 5. We have

∥Qn∥∞ ∼ 2n


6
π
n−3/2.

Proof. We can check that

Qn(j) = 2
 1/2

0
cos(π(N − 2j)θ)

n
k=1

2 cos(πkθ)dθ, N =
n(n + 1)

2
.

Following the proof of Theorem 4, with Ψn(θ) =
n

k=1 2| cos(πkθ)| and γ = n−4/3, we get

Qn(j) = 2
 γ

0
cos(π(N − 2j)θ)Ψn(θ)dθ + O


2n exp


−

π2n1/3

6


.

We have from our proof of Theorem 4 that γ

0
Ψn(θ)dθ = 2n


3
2π

n−3/2
· (1 + O(n−1/6)).

Using this and the inequality cos(x) ≥ 1 −
x2
2 for 0 ≤ x ≤ 1 we have for |N − 2j| = o(n4/3) that

Qn(j) = 2
 γ

0
Ψn(θ)dθ + o

 γ

0
Ψn(θ)dθ


+ O


2n exp


−

π2n1/3

6



= 2n


6
π
n−3/2(1 + o(1)).

But by Theorem 4 we have ∥Qn∥∞ ≤ ∥Qn∥1 ∼ 2n


6
π
n−3/2. It follows that ∥Qn∥∞ ∼ 2n


6
π
n−3/2. �

In the above proof we showed that Qn(j) is 2n


6
π
n−3/2(1+o(1)) for |N −2j| = o(n4/3) and that for other j, Qn(j) is upper

bounded by 2n


6
π
n−3/2(1+o(1)), but we did not establishwhether Qn(j) is close to 2n


6
π
n−3/2 for other j or is substantially

smaller. Generally, a sequence a0, . . . , aN is said to be symmetric if ak = aN−k for all 0 ≤ k ≤ N , and is said to be unimodal
if there is some m such that a0 ≤ a1 ≤ · · · ≤ am and aN ≤ aN−1 ≤ · · · ≤ am. If a0, . . . , aN is symmetric and unimodal then
for m = ⌊

N
2 ⌋ the term am is equal to the maximum of the sequence. For N =

n(n+1)
2 , there is a bijection between the set of

partitions of j into distinct parts each ≤ n and the set of partitions of N − j into distinct parts each ≤ n: for each partition
we take the positive integers ≤ n not in this partition. Thus Qn(j) = Qn(N − j), i.e. the sequence Qn(j) is symmetric. Hughes
and Van der Jeugt [11] show using the representation theory of Lie algebras that the sequence Qn(j) is unimodal, and survey
how to use thesemethods to prove the unimodality of other sequences. The unimodality of Qn(j) can also be provedwithout
using Lie algebraic methods [17].

4. Conclusions

It remains to determine the asymptotic behavior of the ℓp norms of Pn and Qn for 1 ≤ p < ∞. Let N =
n(n+1)

2 and let
L =

(2N−k)w0
n −

1
4n, with w0 as defined in Theorem 2. Wright’s proof [22] of our Theorem 1 shows that if k =

N
2 + o(n3/2)



544 J. Bell / J. Math. Anal. Appl. 405 (2013) 530–545

Fig. 5. ∥Pn∥1
eKnn1/2

, for n = 1, . . . , 500.

Fig. 6. ∥Qn∥3
2nn−1 , for n = 1, . . . , 400.

then

Pn(k) =
BeKn

n
cos(2πL) + o


eKn

n


,

with K and B as defined in Theorem 1. Furthermore, Wright [21] proves a result that specializes to the following. Take C as
defined in Theorem 2. Ifm = k −

N
2 = o(n5/3) then

Pn(k) =
B
n
exp


Kn −

π2m2

C2n2


cos


nπ
2

+ 2πmn−1w0


+ o(1)


.

If n3/2 of the Fourier coefficients of Pn have magnitude on the order of eKn
n and the other Fourier coefficients of Pn are

relatively negligible, then ∥Pn∥p would have order of magnitude

eKnn
3
2p −1

. (4)
For p = 2 we have from Parseval’s theorem that ∥Pn∥2 = ∥Pn∥2, and by Theorem 2 that ∥Pn∥2 ∼ 2−3/4π−1/4BC1/2eKnn−1/4,
which is consistent with ∥Pn∥p having order of magnitude (4). In Fig. 5 we plot ∥Pn∥1

eKnn1/2
for n = 1, . . . , 500.

Since Qn has nonnegative Fourier coefficients, Qn(0) = ∥Qn∥1, and so ∥Qn∥1 = 2n. If nα of the Fourier coefficients of
Qn have magnitude on the order of 2nn−3/2 (which from Theorem 5 is the order of magnitude of ∥Qn∥∞), then the identity
∥Qn∥1 = 2n implies that α =

3
2 . Then ∥Qn∥p would have order of magnitude

2nn
3
2p −

3
2 . (5)

By Theorem 4, we have ∥Qn∥2 ∼


3
π

 1
4
2nn−3/4, and so by Parseval’s theorem, ∥Qn∥2 ∼


3
π

 1
4
2nn−3/4, which is consistent

with ∥Qn∥p having order of magnitude (5). In Fig. 6 we plot ∥Qn∥3
2nn−1 for n = 1, . . . , 400.
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