Zygmund's Fourier restriction theorem and Bernstein's inequality

Jordan Bell

February 13, 2015

1 Zygmund's restriction theorem

Write $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$. Write λ_{d} for the Haar measure on \mathbb{T}^{d} for which $\lambda_{d}\left(\mathbb{T}^{d}\right)=1$. For $\xi \in \mathbb{Z}^{d}$, we define $e_{\xi}: \mathbb{T}^{d} \rightarrow S^{1}$ by

$$
e_{\xi}(x)=e^{2 \pi i \xi \cdot x}, \quad x \in \mathbb{T}^{d}
$$

For $f \in L^{1}\left(\mathbb{T}^{d}\right)$, we define its Fourier transform $\hat{f}: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ by

$$
\hat{f}(\xi)=\int_{\mathbb{T}^{d}} f \overline{\bar{\xi}_{\xi}} d \lambda_{d}=\int_{\mathbb{T}^{d}} f(x) e^{-2 \pi i \xi \cdot x} d x, \quad \xi \in \mathbb{Z}^{d}
$$

For $x \in \mathbb{R}^{d}$, we write $|x|=|x|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}},|x|_{1}=\left|x_{1}\right|+\cdots+\left|x_{d}\right|$, and $|x|_{\infty}=\max \left\{\left|x_{j}\right|: 1 \leq j \leq d\right\}$.

For $1 \leq p<\infty$, we write

$$
\|f\|_{p}=\left(\int_{\mathbb{T}^{d}}|f(x)|^{p} d x\right)^{1 / p} .
$$

For $1 \leq p \leq q \leq \infty,\|f\|_{p} \leq\|f\|_{q}$.
Parseval's identity tells us that for $f \in L^{2}\left(\mathbb{T}^{d}\right)$,

$$
\|\hat{f}\|_{\ell^{2}}=\left(\sum_{\xi \in \mathbb{Z}^{d}}|\hat{f}(\xi)|^{2}\right)^{1 / 2}=\|f\|_{2}
$$

and the Hausdorff-Young inequality tells us that for $1 \leq p \leq 2$ and $f \in L^{p}\left(\mathbb{T}^{d}\right)$,

$$
\|\hat{f}\|_{\ell^{q}}=\left(\sum_{\xi \in \mathbb{Z}^{d}}|\hat{f}(\xi)|^{q}\right)^{1 / q} \leq\|f\|_{p}
$$

where $\frac{1}{p}+\frac{1}{q}=1 ;\|\hat{f}\|_{\ell^{\infty}}=\sup _{\xi \in \mathbb{Z}^{d}}|\hat{f}(\xi)|$.

Zygmund's theorem is the following. ${ }^{1}$

[^0]Theorem 1 (Zygmund's theorem). For $f \in L^{4 / 3}\left(\mathbb{T}^{2}\right)$ and $r>0$,

$$
\begin{equation*}
\left(\sum_{|\xi|=r}|\hat{f}(\xi)|^{2}\right)^{1 / 2} \leq 5^{1 / 4}\|f\|_{4 / 3} \tag{1}
\end{equation*}
$$

Proof. Suppose that

$$
S=\left(\sum_{|\xi|=r}|\hat{f}(\xi)|^{2}\right)^{1 / 2}>0
$$

For $\xi \in \mathbb{Z}^{2}$, we define

$$
c_{\xi}=\frac{\overline{\hat{f}(\xi)}}{S} \chi_{|\zeta|=r} .
$$

Then

$$
\begin{equation*}
\sum_{|\xi|=r}\left|c_{\xi}\right|^{2}=\sum_{|\xi|=r} \frac{|\hat{f}(\xi)|^{2}}{|S|^{2}}=1 \tag{2}
\end{equation*}
$$

We have

$$
\begin{aligned}
S^{2} & =\sum_{|\xi|=r}|\hat{f}(\xi)|^{2} \\
& =\sum_{|\xi|=r} \hat{f}(\xi) \overline{\hat{f}(\xi)} \\
& =\left(\sum_{|\xi|=r} \hat{f}(\xi) c_{\xi}\right) S,
\end{aligned}
$$

hence, defining $c: \mathbb{T}^{2} \rightarrow \mathbb{C}$ by

$$
c(x)=\sum_{\xi \in \mathbb{Z}^{d}} c_{\xi} e^{2 \pi i \xi \cdot x}=\sum_{|\xi|=r} c_{\xi} e^{2 \pi i \xi \cdot x}, \quad x \in \mathbb{T}^{2}
$$

we have, applying Parseval's identity,

$$
S=\sum_{|\xi|=r} \hat{f}(\xi) c_{\xi}=\int_{\mathbb{T}^{2}} f(x) \overline{c(x)} d x
$$

For $p=\frac{4}{3}$, let $\frac{1}{p}+\frac{1}{q}=1$, i.e. $q=4$. Hölder's inequality tells us

$$
\int_{\mathbb{T}^{2}}|f(x) \overline{c(x)}| d x \leq\|f\|_{4 / 3}\|c\|_{4} .
$$

For $\rho \in \mathbb{Z}^{2}$, we define

$$
\gamma_{\rho}=\sum_{\mu-\nu=\rho} c_{\mu} \overline{c_{\nu}}
$$

Then define $\Gamma(x)=|c(x)|^{2}$, which satisfies

$$
\Gamma(x)=c(x) \overline{c(x)}=\sum_{\xi \in \mathbb{Z}^{2}} \sum_{\zeta \in \mathbb{Z}^{2}} c_{\xi} \overline{c_{\zeta}} e^{2 \pi i(\xi-\zeta) \cdot x}=\sum_{\rho \in \mathbb{Z}^{2}} \gamma_{\rho} e^{2 \pi i \rho \cdot x} .
$$

Parseval's identity tells us

$$
\|c\|_{4}^{4}=\|\Gamma\|_{2}^{2}=\sum_{\rho \in \mathbb{Z}^{2}}\left|\gamma_{\rho}\right|^{2}
$$

First,

$$
\gamma_{0}=\sum_{\mu \in \mathbb{Z}^{2}} c_{\mu} \overline{c_{\mu}}=\sum_{\mu \in \mathbb{Z}^{2}}\left|c_{\mu}\right|^{2}=1
$$

Second, suppose that $\rho \in \mathbb{Z}^{2},|\rho|=2 r$. If $\rho / 2 \in \mathbb{Z}^{2}$, then $\gamma_{\rho}=c_{\rho / 2} \overline{c_{-\rho / 2}}$, and if $\rho / 2 \notin \mathbb{Z}^{2}$ then $\gamma_{\rho}=0$. It follows that

$$
\begin{equation*}
\sum_{|\rho|=2 r}\left|\gamma_{\rho}\right|^{2}=\sum_{|\mu|=r}\left|\gamma_{2 \mu}\right|^{2}=\sum_{|\mu|=r}\left|c_{\mu}\right|^{2}\left|c_{-\mu}\right|^{2} \tag{3}
\end{equation*}
$$

Third, suppose that $\rho \in \mathbb{Z}^{2}, 0<|\rho|<2 r$. Then, for

$$
C_{\rho}=\left\{\mu \in \mathbb{Z}^{2}:|\mu|=r,|\mu-\rho|=|\rho|\right\}
$$

we have $\left|C_{\rho}\right| \leq 2$. If $\left|C_{\rho}\right|=0$ then $\gamma_{\rho}=0$. If $\left|C_{\rho}\right|=1$ and $C_{\rho}=\{\mu\}$, then $\gamma_{\rho}=c_{\mu} \overline{c_{\mu-\rho}}$ and so $\left|\gamma_{\rho}\right|^{2}=\left|c_{\mu}\right|^{2}\left|c_{\mu-\rho}\right|^{2}$. If $\left|C_{\rho}\right|=2$ and $C_{\rho}=\{\mu, m\}$, then $\gamma_{\rho}=c_{\mu} \overline{c_{\mu-\rho}}+c_{m} \overline{c_{m-\rho}}$ and so

$$
\left|\gamma_{\rho}\right|^{2} \leq 2\left|c_{\mu}\right|^{2}\left|c_{\mu-\rho}\right|^{2}+2\left|c_{m}\right|^{2}\left|c_{m-\rho}\right|^{2} .
$$

It follows that

$$
\sum_{0<|\rho|<2 r}\left|\gamma_{\rho}\right|^{2} \leq 4 \sum_{|\mu|=r,|\nu|=r, 0<|\mu-\nu|<2 r}\left|c_{\mu}\right|^{2}\left|c_{\nu}\right|^{2} .
$$

Using (3) and then (2),

$$
\begin{aligned}
\sum_{0<|\rho| \leq 2 r}\left|\gamma_{\rho}\right|^{2} & \leq 4 \sum_{|\mu|=r,|\nu|=r, 0<|\mu-\nu|<2 r}\left|c_{\mu}\right|^{2}\left|c_{\nu}\right|^{2}+\sum_{|\mu|=r}\left|c_{\mu}\right|^{2}\left|c_{-\mu}\right|^{2} \\
& \leq 4 \sum_{|\mu|=r,|\nu|=r, 0<|\mu-\nu|<2 r}\left|c_{\mu}\right|^{2}\left|c_{\nu}\right|^{2}+4 \sum_{|\mu|=r}\left|c_{\mu}\right|^{2}\left|c_{-\mu}\right|^{2} \\
& \leq 4 \sum_{|\mu|=r,|\nu|=r}\left|c_{\mu}\right|^{2}\left|c_{\nu}\right|^{2} \\
& =4\left(\sum_{|\mu|=r}\left|c_{\mu}\right|^{2}\right)^{2} \\
& =4
\end{aligned}
$$

Fourth, if $\rho \in \mathbb{Z}^{2},|\rho|>2 r$ then $\gamma_{\rho}=0$. Putting the above together, we have

$$
\sum_{\rho \in \mathbb{Z}^{2}}\left|\gamma_{\rho}\right|^{2} \leq 1+4=5 .
$$

Hence $\|c\|_{4}^{4} \leq 5$, and therefore

$$
|S|=\left|\int_{\mathbb{T}^{2}} f(x) \overline{c(x)} d x\right| \leq \int_{\mathbb{T}^{2}}|f(x) \overline{c(x)}| d x \leq\|f\|_{4 / 3}\|c\|_{4} \leq\|f\|_{4 / 3} 5^{1 / 4}
$$

proving the claim.

2 Tensor products of functions

For $f_{1}: X_{1} \rightarrow \mathbb{C}$ and $f_{2}: X_{2} \rightarrow \mathbb{C}$, we define $f_{1} \otimes f_{2}: X_{1} \times X_{2} \rightarrow \mathbb{C}$ by

$$
f_{1} \otimes f_{2}\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right), \quad\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}
$$

For $f_{1} \in L^{1}\left(\mathbb{T}^{d_{1}}\right)$ and $f_{2} \in L^{1}\left(\mathbb{T}^{d_{2}}\right)$, it follows from Fubini's theorem that $f_{1} \otimes f_{2} \in L^{1}\left(\mathbb{T}^{d_{1}+d_{2}}\right)$.

For $\xi_{1} \in \mathbb{Z}^{d_{1}}$ and $\xi_{2} \in \mathbb{Z}^{d_{2}}$, Fubini's theorem gives us

$$
\begin{aligned}
\widehat{f_{1} \otimes f_{2}}\left(\xi_{1}, \xi_{2}\right) & =\int_{\mathbb{T}^{d_{1}+d_{2}}} f_{1} \otimes f_{2}\left(x_{1}, x_{2}\right) e^{-2 \pi i\left(\xi_{1}, \xi_{2}\right) \cdot\left(x_{1}, x_{2}\right)} d \lambda_{d_{1}+d_{2}}\left(x_{1}, x_{2}\right) \\
& =\int_{\mathbb{T}^{d_{1}}}\left(\int_{\mathbb{T}^{d_{2}}} f_{1} \otimes f_{2}\left(x_{1}, x_{2}\right) e^{-2 \pi i\left(\xi_{1}, \xi_{2}\right) \cdot\left(x_{1}, x_{2}\right)} d \lambda_{d_{2}}\left(x_{2}\right)\right) d \lambda_{d_{1}}\left(x_{1}\right) \\
& =\int_{\mathbb{T}^{d_{1}}} f_{1}\left(x_{1}\right) e^{-2 \pi i \xi_{1} \cdot x_{1}}\left(\int_{\mathbb{T}^{d_{2}}} f_{2}\left(x_{2}\right) e^{-2 \pi i \xi_{2} \cdot x_{2}} d \lambda_{d_{2}}\left(x_{2}\right)\right) d \lambda_{d_{1}}\left(x_{1}\right) \\
& =\hat{f}_{1}\left(\xi_{1}\right) \hat{f}_{2}\left(\xi_{2}\right) \\
& =\hat{f}_{1} \otimes \hat{f}_{2}\left(\xi_{1}, \xi_{2}\right),
\end{aligned}
$$

showing that the Fourier transform of a tensor product is the tensor product of the Fourier transforms.

3 Approximate identities and Bernstein's inequality for \mathbb{T}

An approximate identity is a sequence k_{N} in $L^{\infty}\left(\mathbb{T}^{d}\right)$ such that (i) $\sup _{N}\left\|k_{N}\right\|_{1}<$ ∞, (ii) for each N,

$$
\int_{\mathbb{T}^{d}} k_{N}(x) d \lambda_{d}(x)=1
$$

and (iii) for each $0<\delta<\frac{1}{2}$,

$$
\lim _{n \rightarrow \infty} \int_{\delta \leq x \leq 1-\delta}\left|k_{N}(x)\right| d \lambda_{d}(x)=0
$$

Suppose that k_{N} is an approximate identity. It is a fact that if $f \in C\left(\mathbb{T}^{d}\right)$ then $k_{N} * f \rightarrow f$ in $C\left(\mathbb{T}^{d}\right)$, if $1 \leq p<\infty$ and $f \in L^{p}\left(\mathbb{T}^{d}\right)$ then $k_{N} * f \rightarrow f$ in $L^{p}\left(\mathbb{T}^{d}\right)$, and if μ is a complex Borel measure on \mathbb{T}^{d} then $k_{N} * \mu$ weak-* converges to $\mu .^{2}$ (The Riesz representation theorem tells us that the Banach space $\mathcal{M}\left(\mathbb{T}^{d}\right)=$ $r c a\left(\mathbb{T}^{d}\right)$ of complex Borel measures on \mathbb{T}^{d}, with the total variation norm, is the dual space of the Banach space $C\left(\mathbb{T}^{d}\right)$.)

A trigonometric polynomial is a function $P: \mathbb{T}^{d} \rightarrow \mathbb{C}$ of the form

$$
P(x)=\sum_{\xi \in \mathbb{Z}^{d}} a_{\xi} e^{2 \pi i \xi \cdot x}, \quad x \in \mathbb{T}^{d}
$$

for which there is some $N \geq 0$ such that $a_{\xi}=0$ whenever $|\xi|_{\infty}>N$. We say that P has degree N; thus, if P is a trigonometric polynomial of degree N then P is a trigonometric polynomial of degree M for each $M \geq N$.

For $f \in L^{1}(\mathbb{T})$, we define $S_{N} f \in C(\mathbb{T})$ by

$$
\left(S_{N} f\right)(x)=\sum_{|j| \leq N} \hat{f}(j) e^{2 \pi i j x}, \quad x \in \mathbb{T}
$$

We define the Dirichlet kernel $D_{N}: \mathbb{T} \rightarrow \mathbb{C}$ by

$$
D_{N}(x)=\sum_{|j| \leq N} e^{2 \pi i j x}, \quad x \in \mathbb{T}
$$

which satisfies, for $f \in L^{1}(\mathbb{T})$,

$$
D_{N} * f=S_{N} f
$$

We define the Fejér kernel $F_{N} \in C(\mathbb{T})$ by

$$
F_{N}=\frac{1}{N+1} \sum_{n=0}^{N} D_{n}
$$

We can write the Fejér kernel as

$$
F_{N}(x)=\sum_{|j| \leq N}\left(1-\frac{|j|}{N+1}\right) e^{2 \pi i j x}=\sum_{j \in \mathbb{Z}} \chi_{[-N, N]}(j)\left(1-\frac{|j|}{N+1}\right) e^{2 \pi i j x}
$$

where χ_{A} is the indicator function of the set A. It is straightforward to prove that F_{N} is an approximate identity.

We define the d-dimensional Fejér kernel $F_{N, d} \in C\left(\mathbb{T}^{d}\right)$ by

$$
F_{N, d}=\underbrace{F_{N} \otimes \cdots \otimes F_{N}}_{d} .
$$

[^1]We can write $F_{N, d}$ as

$$
F_{N, d}(x)=\sum_{|\xi|_{\infty} \leq N}\left(1-\frac{\left|\xi_{1}\right|}{N+1}\right) \cdots\left(1-\frac{\left|\xi_{d}\right|}{N+1}\right) e^{2 \pi i \xi \cdot x}, \quad x \in \mathbb{T}^{d}
$$

Using the fact that F_{N} is an approximate identity on \mathbb{T}, one proves that $F_{N, d}$ is an approximate identity on \mathbb{T}^{d}.

The following is Bernstein's inequality for \mathbb{T}.
Theorem 2 (Bernstein's inequality). If P is a trigonometric polynomial of degree N, then

$$
\left\|P^{\prime}\right\|_{\infty} \leq 4 \pi N\|P\|_{\infty}
$$

Proof. Define

$$
Q=\left(\left(e_{-N} P\right) * F_{N-1}\right) e_{N}-\left(\left(e_{N} P\right) * F_{N-1}\right) e_{-N}
$$

The Fourier transform of the first term on the right-hand side is, for $j \in \mathbb{Z}$,

$$
\begin{aligned}
\left(e_{-N} \widehat{P * F_{N-1}}\right) * \widehat{e_{N}}(j) & =\sum_{k \in \mathbb{Z}} \widehat{e_{-N} P}(j-k) \widehat{F_{N-1}}(j-k) \widehat{e_{N}}(k) \\
& =\widehat{e_{-N} P}(j-N) \widehat{F_{N-1}}(j-N) \\
& =\widehat{P}(j) \widehat{F_{N-1}}(j-N),
\end{aligned}
$$

and the Fourier transform of the second term is

$$
\widehat{P}(j) \widehat{F_{N-1}}(j+N)
$$

Therefore, for $j \in \mathbb{Z}$, using $\widehat{P}=\chi_{[-N, N]} \widehat{P}$,

$$
\begin{aligned}
\widehat{Q}(j) & =\widehat{P}(j)\left(\widehat{F_{N-1}}(j-N)-\widehat{F_{N-1}}(j+N)\right) \\
& =\widehat{P}(j)\left(\chi_{[-N+1, N-1]}(j-N)\left(1-\frac{|j-N|}{N}\right)-\chi_{[-N+1, N-1]}\left(1-\frac{|j+N|}{N}\right)\right) \\
& =\widehat{P}(j)\left(\chi_{[1, N]}(j)\left(1+\frac{j-N}{N}\right)+\chi_{[N, 2 N-1]}(j)\left(1-\frac{j-N}{N}\right)\right. \\
& \left.-\chi_{[-2 N+1,-N]}(j)\left(1+\frac{j+N}{N}\right)-\chi_{[-N,-1]}(j)\left(1-\frac{j+N}{N}\right)\right) \\
& =\widehat{P}(j)\left(\chi_{[1, N]}(j)\left(1+\frac{j-N}{N}\right)-\chi_{[-N,-1]}(j)\left(1-\frac{j+N}{N}\right)\right) \\
& =\widehat{P}(j)\left(\frac{j}{N} \chi_{[1, N]}(j)+\frac{j}{N} \chi_{[-N,-1]}(j)\right) \\
& =\frac{j}{N} \widehat{P}(j) .
\end{aligned}
$$

On the other hand,

$$
\widehat{P^{\prime}}(j)=2 \pi i j \widehat{P}(j),
$$

so that

$$
P^{\prime}=2 \pi i N Q,
$$

i.e.

$$
P^{\prime}=2 \pi i N\left(\left(\left(e_{-N} P\right) * F_{N-1}\right) e_{N}-\left(\left(e_{N} P\right) * F_{N-1}\right) e_{-N}\right)
$$

Then, by Young's inequality,

$$
\begin{aligned}
\left\|P^{\prime}\right\|_{\infty} & =2 \pi N\left\|\left(\left(e_{-N} P\right) * F_{N-1}\right) e_{N}-\left(\left(e_{N} P\right) * F_{N-1}\right) e_{-N}\right\|_{\infty} \\
& \leq 2 \pi N\left\|\left(\left(e_{-N} P\right) * F_{N-1}\right) e_{N}\right\|_{\infty}+2 \pi N\left\|\left(\left(e_{N} P\right) * F_{N-1}\right) e_{-N}\right\|_{\infty} \\
& =2 \pi N\left\|\left(e_{-N} P\right) * F_{N-1}\right\|_{\infty}+2 \pi N\left\|\left(e_{N} P\right) * F_{N-1}\right\|_{\infty} \\
& \leq 2 \pi N\left\|e_{-N} P\right\|_{\infty}\left\|F_{N-1}\right\|_{1}+2 \pi N\left\|e_{N} P\right\|_{\infty}\left\|F_{N-1}\right\|_{1} \\
& =4 \pi N\|P\|_{\infty} .
\end{aligned}
$$

[^0]: ${ }^{1}$ Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 236, Theorem 4.3.11.

[^1]: ${ }^{2}$ Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume I, p. 10, Proposition 1.5.

