The Wiener algebra and Wiener’s lemma

Jordan Bell
January 17, 2015

1 Introduction

Let T =R/27Z. For f € L'(T) we define

1
s = 55 [ 17
For f,g € L*(T), we define
(f*g)( / f(r)g(t —7)d teT.
f *g € LY(T), and satisfies Young’s inequality

I *9||L1(1r) < HfHLl(T) ”gHLl(T)'

With convolution as the operation, L!(T) is a commutative Banach algebra.
For f € LY(T), we define f : Z — C by

1 —ikt
- e~k at keZ.
27T/Tf( )e ; €

We define ¢y(Z) to be the collection of those F' : Z — C such that |F(k)| — 0 as
|k| — co. For f € L'(T), the Riemann-Lebesgue lemma tells us that f € co(Z).
We define ¢1(Z) to be the set of functions F : Z — C such that

1E gy = D IF (k)

kEZ

For F,G € (*(Z), we define

(FxG)(k)=>_ F(j)G

JEZL
F + G € (*(Z), and satisfies Young’s inequality

[F # Gllorizy < N1F oz Gllorz) -



(Y(Z) is a commutative Banach algebra, with unity

R

For f € LY(T) and n > 0 we define S,,(f) € C(T) by
Sa(H)(t)= > f(k)e*,  teT.
[k|<n

For 0 < a < 1, we define Lip,(T) to be the collection of those functions
f: T — C such that

[f(t+h) = f()]

sup 7 < 0.
teT,h£0 |h|

For f € Lip,(T), we define

[f(t+h) — f(t)]
. — + sup ——— .
I lip, o) = Wlloem +, sup |

2 Total variation

For f: T — C, we define

var(f) = sup{ih‘(ti) —fltic)]:n>1,0=tg < - <ty = 27r}.
i=1

If var(f) < oo then we say that f is of bounded variation, and we define
BV(T) to be the set of functions T — C of bounded variation. We define

£l gy ) = sup [ £ (£)] + var(f).
teT

This is a norm on BV (T), with which BV (T) is a Banach algebra.!
Theorem 1. If f € BV(T), then

var(f)

27|n|’

|f(n)| < neZ,n#0.

Proof. Integrating by parts,

A 1 —int o 7i eiint o 1 efint
fo = 5= [ 10 =~ [ mar) = o [ emare,

—n 2min
hence

f(n) var(f).

| < 55
27|n|

IN. L. Carothers, Real Analysis, p. 206, Theorem 13.4.



3 Absolutely convergent Fourier series

Suppose that f € LY(T) and that f € ¢1(Z). For n > m,

150(£) = Sm(Dllccr) = sup FRye™ < N | f(hk)],

m<|k|<n m<|k|<n

and because f € (1(Z) it follows that S, (f) converges to some g € C(T). We
check that f(t) = g(¢t) for almost all ¢t € T.

We define A(T) to be the collection of those f € C(T) such that f € ¢*(Z),
and we define

1£lacey = |/

A(T) is a commutative Banach algebra, with unity ¢ — 1, and the Fourier
transform is an isomorphism of Banach algebras .# : A(T) — ¢1(Z). We call
A(T) the Wiener algebra. The inclusion map A(T) C C(T) has norm 1.

0z

Theorem 2. If f: T — C is absolutely continuous, then

fk)=o(k™), k| = oco.

Proof. Because f is absolutely continuous, the fundamental theorem of calculus
tells us that f’ € L(T). Doing integration by parts, for & € Z we have

i ! —ikt
W/Ef(t)e dt

= %f(t)efikt . /f (—ike™*)at
— KT ().

The Riemann-Lebesgue lemma tells us that % (f')(k) = o(1), so

F(f) (k)

Fnm=o(3). I

Theorem 3. If f : T — C is absolutely continuous and f’ € L?(T), then

- 1/2
1Al aery < Wfllpremy + (22k_2> 1N 22y
k=1

Proof. First,
1
0 = |oe [ 10at] < 171,1s



Next, because f is absolutely continuous, by the fundamental theorem of calcu-
lus we have f’ € L1(T), and for k € Z,

Z(f)(k) = ik (f) (k).

Using the Cauchy-Schwarz inequality, and since .Z (f)(0) = 0,

1f Lagry = IFO)1+ D 1F (k)

k=0
= 1f )1+ > [k Z () (k)
k=0
1/2 1/2
< fllpremy + | D IF2 S IZ k)
k0 k0

oo 1/2
— 1l gy + <2Zk2> 12 () lzy -
k=1
By Parseval’s theorem we have || F (f')[l2(z) = [[f'l| 2(r), completing the prooé

We now prove that if o > 1, then Lip,(T) C A(T), and the inclusion map
is a bounded linear operator.?

Theorem 4. If a > 1, then Lip,(T) C A(T), and for any f € Lip,(T) we have
”fHA(T) < Ca Hf“Lipa(T) )
21\ @ 1
a=1422(2) —— .
3 * ( 3 ) 1-—23—@
Proof. For f: T — C and h € R, we define

fn(t) = ft—h), teT,

which satisfies, for n € Z,

with

9(fh)(TL) = %/Tf(t _ h)e—intdt
T Jr
— e*Znh:gZ(f)(n)
Thus
ng(fh*f)(n):(e*inhfl)f(n)’ nez. (1)

2Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 34, Theorem
6.3.



For m > 0 and for n € Z such that 2™ < |n| < M+ et

2w
iy = =27
3
Then 5 5 5 4
7 s m 7I
=9m. T < nhyy,| < 2T T =
3 3 < [nho| 3 3
If n > 0 this implies that
37 2 3

and so b
le7inhm 1| = QSinnTm > 2Sin§ =3,

and if n < 0 this implies that

and so

This gives us
Yoo lfmP< Y 3lfm)P
2'71L5‘n|<27n+1 27n§|n‘<27n+1

< Y e 1P f ()

2m < |n|<2m+l

<D le e 1P ().

ne”Z

Using (1) and Parseval’s theorem we have
—inhm, R _ 2 _ 2
Yolem Mt 1P )P = 11F (fr = Ol = 1w = FlT2cry
nez

and thus . )
S R < 1 — FIagy -

2"‘§|n‘<2m+1
Furthermore, for g € L>(T) we have ||g[|p2(p) < |9l (1), SO

S P <

2m < |n|<2m+l

2 a
< Hf”Lipa('lT) ’ h’12n

2a
2 2
= (32m) Hf“Lipa(T)'




By the Cauchy-Schwarz inequality, because there are < 2™+! nonzero terms in

22"l§|n\<2m+1 |f(’I’L)|,

f(n)] < (2m+1)1/? S i)l

2m <|n|<am+1 2m <|n|<2m+1

m+1 2 ¢
< 2™ (3.2,”) 1l o

— ol e ()
= 3 Lip,, (T) *

Then, since a > %,

Yofml=1for+> > 1)

nez m=02m<|n|<2m+1

< 1(0) \+sz 21/2( ) ST

=142 (5) 1l 3 2

=0

A 2\ * 1
_ 1/2 -
=[f(0)[ +2 ( 3 > 1 lLip,, (m) T ola

As
O < W1y < 1 ey < Wl oy
we have for all f € Lip,(T) that

SO < callf i, o) -
nez
completing the proof. O
We now prove that if o > 0, then BV (T) N Lip,,(T) C A(T).?

Theorem 5. If @ > 0 and f € BV(T) N Lip,(T), then

1 (o7
12 = fll72(r) < th 1fILip,, vy var(f),  h>0.
and f € A(T).

3Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 35, Theorem
6.4.




Proof. For N > 1 and h = %ﬂ’

1
2

1L i
"o — f())*d
3 2 1 = st

27
fa =l = 3= | 1) = F0)ae

1oL [t
- %]Zl/o [ fin() = J-nn()dt

1 &
T2 )y > () = fonn(t)Pdt
j=1

IN

1 h N
= Plimer | 3 150) = F-up (O

1 h
< 5o M= Tligsy [ varthiar
As f € Lip,(T), [fn = fllpoo () < R® ”f“Lipa(T)’ hence

1 @
[ fn — f||iz(1r) = %hH ”fHLipa('ﬂ') var(f).

4 Wiener’s lemma

For k > 1, using the product rule (fg) = f'g + fg' we check that C*(T) is a
Banach algebra with the norm

k
_ (j)” :
1l ey ]Z::O Hf o(T)

If f € C*(T) and f(t) # 0 for all ¢ € T, then the quotient rule tells us that

F®)
f@)*
using which we get % € CK(T). That is, if f € C*(T) does not vanish then
f7h =4 e CHT).
If B is a commutative unital Banach algebra, a multiplicative linear func-
tional on B is a nonzero algebra homomorphism B — C, and the collection Apg

of multiplicative linear functionals on B is called the maximal ideal space of
B. The Gelfand transform of f € B is I'(f) : Ag — C defined by

L(f)(h) =h(f),  help.

(FrH'e=



It is a fact that f € B is invertible if and only if h(f) # 0 for all h € Ap, i.e.,
f € B is invertible if and only if T'(f) does not vanish.

We now prove that if f € A(T) and does not vanish, then f is invertible in
A(T). We call this statement Wiener’s lemma.*

Theorem 6 (Wiener’s lemma). If f € A(T) and f(t) # 0 for all t € T, then
1/f € A(T).

Proof. Let w : A(T) — C be a multiplicative linear functional. The fact that
w is a multiplicative linear functional implies that ||w|| = 1. Define u(t) = e,
t € T, for which |ul| 4y = 1. We define A = w(u), which satisfies

Al < Jlwl lull gy =1

and because Hu‘ =1 we have A~! = w(u~!) and

1||A(1I‘)

AT < ] 1,

-1 .

lacry =

hence |A| = 1. Then there is some t,, € T such that A = e'*v. For n € Z,
w(u™) = \" = e,

If P(t) = <n a,e™ is a trigonometric polynomial, then

w(P) =w Z apu™ | = Z apw(u)™® = Z ane™v = P(t,).  (2)

In|<N In|<N In|<N

For g € A(T), if € > 0, then there is some N such that ||g — SN(g)||A(T) < e
Using (2) and the fact that ||gllc(r) < 9/l 4(r)»

lw(g) = g(tw)| < [w(g) —w(Sn(9))] + [w(Sn(9)) — Sn(9)(tw)
+ 155 (9) (tw) — g(tw)]
= [w(g = Sn(9)] + [Sn(9)(tw) = f(tw)]
<|lwlflg = Sn ()l acry + 1158 (9) = gller
< wllllg = S (Dl aery + llg = SN (@)l aery
< 2e.
Because this is true for all € > 0, it follows that w(g) = g(tw).

Let A be the maximal ideal space of A(T). Then for w € A there is some
tw € T such that w(f) = f(tw), hence, because f(t) # 0 for all t € T,

I(f)(w) = w(f) = f(tw) # 0.

That is, I'(f) does not vanish, and therefore f is invertible in A(T). It is then
immediate that f=1(¢) = ﬁ for all ¢ € T, completing the proof. O

4Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 239, Theorem
2.9.



The above proof of Wiener’s lemma uses the theory of the commutative
Banach algebras. The following is a proof of the theorem that does not use the
Gelfand transform.®

Proof. Because f € A(T), f* defined by f*(t) = f(t), t € T, belongs to A(T).
Let
VI
£ Iem 1A 1S
which satisfies 0 < g(t) <1 forall t € T. As % =L

— f
P If1Eme
1/f € A(T) it suffices to show that % e A(T).
Because g is continuous and ¢(t) # 0 for all t € T,

A(T),

*

, to show that

¢ = inf ¢(t) > 0;
if 6 =1 then g =1, and indeed % € A(T). Otherwise, [lg = 1f|g(ry =1 -6 < 1.
This implies that g is invertible in the Banach algebra C(T) and that g=! =
Z;’;O(l —g)? in O(T). Let h=1— g € A(T).
For e > 0, there is some N such that [[h — Sy ()| op) < €. Now, if P is a
trigonometric polynomial of degree M then using the Cauchy-Schwarz inequality
and Parseval’s theorem,

1Plla = ||

0@

< @M+ 1)V P

2(2)
= (2M + 1) || P|| p2

< @M+ D)2 Py

Furthermore, for j > 1, P7 is a trigonometric polynomial of degree jM. The
binomial theorem tells us, with P = Sy (h) and r = h — P,

k
W= (P )k =" (?)Pjrk_j7

Jj=0

5Karlheinz Grochenig, Wiener’s Lemma: Theme and Variations. An Introduction to Spec-
tral Invariance and Its Applications, p. 180, §5.2.4, in Brigitte Forster and Peter Massopust,
eds., Four Short Courses on Harmonic Analysis, pp. 175-234.



and using this and || P/ < (2N +1)1/2 HPj||LW(T)7

k . .
> () 1P e I s

k , o
(Y 1Ly 0= vl

gy

[|n* <

gy

.
e IIMw
=

IN

j=0

IN
= |l

LAY ; i
(5) @i 42 [P gy

k

k ; _
< (2kN + 1)) (j) 1Pl o0 oy €77

j=0
= (kN + DY2(IPl ey + )"

Jj=0

Because
1Pl o (ry < I = SN (A)ll oo (my + 12l] oo ¢y
< b= Sn (W)l acry + N7l oo )
<e+|[hllpoory s
we have
||h’“||A(T) (2kN + 1)1/2(||hHLOO(T) +26)F = (2kN +1)Y/2(1 — 6 + 2¢)*.

Take some € < 3, so that 1 — & + 2¢ < 1. Then with N = N (e),
k 1/2 _ -
;—0 [B¥]] g epy < k§_0 (2kN+1)'2(1-6+2¢)" = V2N @ (1 0+26-5,5 > < 0,

where @ is the Lerch transcendent. This implies that the the series >~ hk
converges in A(T). We check that Y ;- h* is the inverse of 1 — h, namely,
g =1 — h is invertible in A(T), proving the claim. O

5 Spectral theory

Suppose that A is a commutative Banach algebra with unity 1. We define U(A)
to be the collection of those f € A such that f is invertible in A. It is a fact
that U(A) is an open subset of A. We define

oa(f)={reC:f-AgU(A)},

called the spectrum of f. It is a fact that o4 (f) is a nonempty compact subset
of C.

10



If A C B are Banach algebras with unity 1, we say that A is inverse-closed
in Bif f € A and f~! € B together imply that f=* € A.

Lemma 7. Suppose that A C B are Banach algebras with unity 1. The fol-
lowing are equivalent:

1. A is inverse-closed in B.

2. oa(f) =op(f) for all f e A.

Proof. Assume that A is inverse-closed in B and let f € A. If A € oa(f)
then f — X € U(A) C U(B), hence XA € op(f). Therefore op(f) C oa(f). If
A& op(f) then f — X € U(B). That is, (f — A\)~! € B. Because A is inverse-
closed in Band f—)\ € A, we get (f—\)"! € A. Thus A € o4(f), and therefore
oa(f) Cop(f). We thus have obtained o4 (f) = op(f).

Assume that for all f € A, o4(f) = op(f). Suppose that f € A and
f~1 € B. Thatis, f € U(B), s0 0 € op(f). Then 0 ¢ o4(f), meaning that
feu(A). O

A(T) € C(T) are Banach algebras with unity 1. Wiener’s lemma states that
A(T) is inverse-closed in C(T). It is apparent that for f € C(T), o¢(m)(f) =
f(T) c C. Therefore, Lemma 7 tells us for f € A(T) that o1 (f) = f(T).

The Wiener-Lévy theorem states that if f € A(T), @ C C is an open
set containing f(T), and F : @ — C is holomorphic, then F o f € A(T).”
In particular, if f € A(T) does not vanish, then 2 = C\ {0} is an open set
containing f(T) and F(z) = % is a holomorphic function on €2, and hence
Fo f(t)= ﬁ belongs to A(T), which is the statement of Wiener’s lemma.

SKarlheinz Grochenig, Wiener’s Lemma: Theme and Variations. An Introduction to Spec-
tral Invariance and Its Applications, p. 183, §5.2.5, in Brigitte Forster and Peter Massopust,
eds., Four Short Courses on Harmonic Analysis, pp. 175-234.

"Karlheinz Grochenig, Wiener’s Lemma: Theme and Variations. An Introduction to Spec-
tral Invariance and Its Applications, p. 187, Theorem 5.16, in Brigitte Forster and Peter Mas-
sopust, eds., Four Short Courses on Harmonic Analysis, pp. 175-234; Walter Rudin, Fourier
Analysis on Groups, Chapter 6; N. K. Nikolski (ed.), Functional Analysis I, p. 235; V. P.
Havin and N. K. Nikolski (eds.), Commutative Harmonic Analysis 11, p. 240, §7.7.
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