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1 Introduction

Let T = R/2πZ. For f ∈ L1(T) we define

∥f∥L1(T) =
1

2π

∫
T
|f(t)|dt.

For f, g ∈ L1(T), we define

(f ∗ g)(t) = 1

2π

∫
T
f(τ)g(t− τ)dτ, t ∈ T.

f ∗ g ∈ L1(T), and satisfies Young’s inequality

∥f ∗ g∥L1(T) ≤ ∥f∥L1(T) ∥g∥L1(T) .

With convolution as the operation, L1(T) is a commutative Banach algebra.

For f ∈ L1(T), we define f̂ : Z → C by

f̂(k) =
1

2π

∫
T
f(t)e−iktdt, k ∈ Z.

We define c0(Z) to be the collection of those F : Z → C such that |F (k)| → 0 as

|k| → ∞. For f ∈ L1(T), the Riemann-Lebesgue lemma tells us that f̂ ∈ c0(Z).
We define ℓ1(Z) to be the set of functions F : Z → C such that

∥F∥ℓ1(Z) =
∑
k∈Z

|F (k)|.

For F,G ∈ ℓ1(Z), we define

(F ∗G)(k) =
∑
j∈Z

F (j)G(k − j).

F ∗G ∈ ℓ1(Z), and satisfies Young’s inequality

∥F ∗G∥ℓ1(Z) ≤ ∥F∥ℓ1(Z) ∥G∥ℓ1(Z) .
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ℓ1(Z) is a commutative Banach algebra, with unity

F (k) =

{
1 k = 0,

0 k ̸= 0.

For f ∈ L1(T) and n ≥ 0 we define Sn(f) ∈ C(T) by

Sn(f)(t) =
∑
|k|≤n

f̂(k)eikt, t ∈ T.

For 0 < α < 1, we define Lipα(T) to be the collection of those functions
f : T → C such that

sup
t∈T,h ̸=0

|f(t+ h)− f(t)|
|h|α

< ∞.

For f ∈ Lipα(T), we define

∥f∥Lipα(T) = ∥f∥C(T) + sup
t∈T,h̸=0

|f(t+ h)− f(t)|
|h|α

.

2 Total variation

For f : T → C, we define

var(f) = sup

{
n∑

i=1

|f(ti)− f(ti−1)| : n ≥ 1, 0 = t0 < · · · < tn = 2π

}
.

If var(f) < ∞ then we say that f is of bounded variation, and we define
BV (T) to be the set of functions T → C of bounded variation. We define

∥f∥BV (T) = sup
t∈T

|f(t)|+ var(f).

This is a norm on BV (T), with which BV (T) is a Banach algebra.1

Theorem 1. If f ∈ BV (T), then

|f̂(n)| ≤ var(f)

2π|n|
, n ∈ Z, n ̸= 0.

Proof. Integrating by parts,

f̂(n) =
1

2π

∫
T
f(t)e−intdt = − 1

2π

∫
T

e−int

−in
df(t) =

1

2πin

∫
T
e−intdf(t),

hence

|f̂(n)| ≤ 1

2π|n|
var(f).

1N. L. Carothers, Real Analysis, p. 206, Theorem 13.4.
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3 Absolutely convergent Fourier series

Suppose that f ∈ L1(T) and that f̂ ∈ ℓ1(Z). For n ≥ m,

∥Sn(f)− Sm(f)∥C(T) = sup
t∈T

∣∣∣∣∣∣
∑

m<|k|≤n

f̂(k)eikt

∣∣∣∣∣∣ ≤
∑

m<|k|≤n

|f̂(k)|,

and because f̂ ∈ ℓ1(Z) it follows that Sn(f) converges to some g ∈ C(T). We
check that f(t) = g(t) for almost all t ∈ T.

We define A(T) to be the collection of those f ∈ C(T) such that f̂ ∈ ℓ1(Z),
and we define

∥f∥A(T) =
∥∥∥f̂∥∥∥

ℓ1(Z)
.

A(T) is a commutative Banach algebra, with unity t 7→ 1, and the Fourier
transform is an isomorphism of Banach algebras F : A(T) → ℓ1(Z). We call
A(T) the Wiener algebra. The inclusion map A(T) ⊂ C(T) has norm 1.

Theorem 2. If f : T → C is absolutely continuous, then

f̂(k) = o(k−1), |k| → ∞.

Proof. Because f is absolutely continuous, the fundamental theorem of calculus
tells us that f ′ ∈ L1(T). Doing integration by parts, for k ∈ Z we have

F (f ′)(k) =
1

2π

∫
T
f ′(t)e−iktdt

=
1

2π
f(t)e−ikt

∣∣∣2π
0

− 1

2π

∫
T
f(t)(−ike−ikt)dt

= ikF (f)(k).

The Riemann-Lebesgue lemma tells us that F (f ′)(k) = o(1), so

F (f)(k) = o

(
1

k

)
, |k| → ∞.

Theorem 3. If f : T → C is absolutely continuous and f ′ ∈ L2(T), then

∥f∥A(T) ≤ ∥f∥L1(T) +

(
2

∞∑
k=1

k−2

)1/2

∥f ′∥L2(T) .

Proof. First,

|f̂(0)| =
∣∣∣∣ 12π

∫
T
f(t)dt

∣∣∣∣ ≤ ∥f∥L1(T) .
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Next, because f is absolutely continuous, by the fundamental theorem of calcu-
lus we have f ′ ∈ L1(T), and for k ∈ Z,

F (f ′)(k) = ikF (f)(k).

Using the Cauchy-Schwarz inequality, and since F (f ′)(0) = 0,

∥f∥A(T) = |f̂(0)|+
∑
k ̸=0

|f̂(k)|

= |f̂(0)|+
∑
k ̸=0

|k|−1|F (f ′)(k)|

≤ ∥f∥L1(T) +

∑
k ̸=0

|k|−2

1/2∑
k ̸=0

|F (f ′)(k)|2
1/2

= ∥f∥L1(T) +

(
2

∞∑
k=1

k−2

)1/2

∥F (f ′)∥ℓ2(Z) .

By Parseval’s theorem we have ∥F (f ′)∥ℓ2(Z) = ∥f ′∥L2(T), completing the proof.

We now prove that if α > 1
2 , then Lipα(T) ⊂ A(T), and the inclusion map

is a bounded linear operator.2

Theorem 4. If α > 1
2 , then Lipα(T) ⊂ A(T), and for any f ∈ Lipα(T) we have

∥f∥A(T) ≤ cα ∥f∥Lipα(T) ,

with

cα = 1 + 21/2
(
2π

3

)α
1

1− 2
1
2−α

.

Proof. For f : T → C and h ∈ R, we define

fh(t) = f(t− h), t ∈ T,

which satisfies, for n ∈ Z,

F (fh)(n) =
1

2π

∫
T
f(t− h)e−intdt

=
1

2π

∫
T
f(t)e−in(t+h)dt

= e−inhF (f)(n).

Thus
F (fh − f)(n) = (e−inh − 1)f̂(n), n ∈ Z. (1)

2Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 34, Theorem
6.3.
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For m ≥ 0 and for n ∈ Z such that 2m ≤ |n| < 2m+1, let

hm =
2π

3
· 2−m.

Then
2π

3
= 2m · 2π

3
· 2−m ≤ |nhm| < 2m+1 · 2π

3
· 2−m =

4π

3
.

If n > 0 this implies that
π

3
≤ nhm

2
<

2π

3

and so

|e−inhm − 1| = 2 sin
nhm

2
≥ 2 sin

π

3
=

√
3,

and if n < 0 this implies that

−2π

3
<

nhm

2
≤ −π

3

and so
|e−inhm − 1| ≥

√
3.

This gives us ∑
2m≤|n|<2m+1

|f̂(n)|2 ≤
∑

2m≤|n|<2m+1

3|f̂(n)|2

≤
∑

2m≤|n|<2m+1

|e−inhm − 1|2|f̂(n)|2

≤
∑
n∈Z

|e−inhm − 1|2|f̂(n)|2.

Using (1) and Parseval’s theorem we have∑
n∈Z

|e−inhm − 1|2|f̂(n)|2 = ∥F (fhm − f)∥2ℓ2(Z) = ∥fhm − f∥2L2(T) ,

and thus ∑
2m≤|n|<2m+1

|f̂(n)|2 ≤ ∥fhm
− f∥2L2(T) .

Furthermore, for g ∈ L∞(T) we have ∥g∥L2(T) ≤ ∥g∥L∞(T), so∑
2m≤|n|<2m+1

|f̂(n)|2 ≤ ∥fhm
− f∥2L∞(T)

≤ ∥f∥2Lipα(T) · h
2α
m

=

(
2π

3 · 2m

)2α

∥f∥2Lipα(T) .
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By the Cauchy-Schwarz inequality, because there are ≤ 2m+1 nonzero terms in∑
2m≤|n|<2m+1 |f̂(n)|,

∑
2m≤|n|<2m+1

|f̂(n)| ≤ (2m+1)1/2

 ∑
2m≤|n|<2m+1

|f̂(n)|2
1/2

≤ 2
m+1

2

(
2π

3 · 2m

)α

∥f∥Lipα(T)

= 2m(
1
2−α) · 21/2

(
2π

3

)α

· ∥f∥Lipα(T) .

Then, since α > 1
2 ,∑

n∈Z
|f̂(n)| = |f̂(0)|+

∞∑
m=0

∑
2m≤|n|<2m+1

|f̂(n)|

≤ |f̂(0)|+
∞∑

m=0

2m(
1
2−α) · 21/2

(
2π

3

)α

· ∥f∥Lipα(T)

= |f̂(0)|+ 21/2
(
2π

3

)α

∥f∥Lipα(T)

∞∑
m=0

2m(
1
2−α)

= |f̂(0)|+ 21/2
(
2π

3

)α

∥f∥Lipα(T)
1

1− 2
1
2−α

As
|f̂(0)| ≤ ∥f∥L1(T) ≤ ∥f∥L∞(T) ≤ ∥f∥Lipα(T) ,

we have for all f ∈ Lipα(T) that∑
n∈Z

|f̂(n)| ≤ cα ∥f∥Lipα(T) ,

completing the proof.

We now prove that if α > 0, then BV (T) ∩ Lipα(T) ⊂ A(T).3

Theorem 5. If α > 0 and f ∈ BV (T) ∩ Lipα(T), then

∥fh − f∥2L2(T) ≤
1

2π
h1+α ∥f∥Lipα(T) var(f), h > 0.

and f ∈ A(T).
3Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 35, Theorem

6.4.
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Proof. For N ≥ 1 and h = 2π
N ,

∥fh − f∥2L2(T) =
1

2π

∫ 2π

0

|fh(t)− f(t)|2dt

=
1

2π

N∑
j=1

∫ jh

(j−1)h

|fh(t)− f(t)|2dt

=
1

2π

N∑
j=1

∫ h

0

|fjh(t)− f(j−1)h(t)|2dt

=
1

2π

∫ h

0

N∑
j=1

|fjh(t)− f(j−1)h(t)|2dt

≤ 1

2π
∥fh − f∥L∞(T)

∫ h

0

N∑
j=1

|fjh(t)− f(j−1)h(t)|dt

≤ 1

2π
∥fh − f∥L∞(T)

∫ h

0

var(f)dt.

As f ∈ Lipα(T), ∥fh − f∥L∞(T) ≤ hα ∥f∥Lipα(T), hence

∥fh − f∥2L2(T) ≤
1

2π
h1+α ∥f∥Lipα(T) var(f).

4 Wiener’s lemma

For k ≥ 1, using the product rule (fg)′ = f ′g + fg′ we check that Ck(T) is a
Banach algebra with the norm

∥f∥Ck(T) =

k∑
j=0

∥∥∥f (j)
∥∥∥
C(T)

.

If f ∈ Ck(T) and f(t) ̸= 0 for all t ∈ T, then the quotient rule tells us that(
f−1

)′
(t) = − f ′(t)

f(t)2
,

using which we get 1
f ∈ Ck(T). That is, if f ∈ Ck(T) does not vanish then

f−1 = 1
f ∈ Ck(T).

If B is a commutative unital Banach algebra, amultiplicative linear func-
tional on B is a nonzero algebra homomorphism B → C, and the collection ∆B

of multiplicative linear functionals on B is called the maximal ideal space of
B. The Gelfand transform of f ∈ B is Γ(f) : ∆B → C defined by

Γ(f)(h) = h(f), h ∈ ∆B .
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It is a fact that f ∈ B is invertible if and only if h(f) ̸= 0 for all h ∈ ∆B , i.e.,
f ∈ B is invertible if and only if Γ(f) does not vanish.

We now prove that if f ∈ A(T) and does not vanish, then f is invertible in
A(T). We call this statement Wiener’s lemma.4

Theorem 6 (Wiener’s lemma). If f ∈ A(T) and f(t) ̸= 0 for all t ∈ T, then
1/f ∈ A(T).

Proof. Let w : A(T) → C be a multiplicative linear functional. The fact that
w is a multiplicative linear functional implies that ∥w∥ = 1. Define u(t) = eit,
t ∈ T, for which ∥u∥A(T) = 1. We define λ = w(u), which satisfies

|λ| ≤ ∥w∥ ∥u∥A(T) = 1

and because
∥∥u−1

∥∥
A(T) = 1 we have λ−1 = w(u−1) and

|λ−1| ≤ ∥w∥
∥∥u−1

∥∥
A(T) = 1,

hence |λ| = 1. Then there is some tw ∈ T such that λ = eitw . For n ∈ Z,

w(un) = λn = eintw .

If P (t) =
∑

|n|≤N ane
int is a trigonometric polynomial, then

w(P ) = w

 ∑
|n|≤N

anu
n

 =
∑

|n|≤N

anw(u)
n =

∑
|n|≤N

ane
intw = P (tw). (2)

For g ∈ A(T), if ϵ > 0, then there is some N such that ∥g − SN (g)∥A(T) < ϵ.

Using (2) and the fact that ∥g∥C(T) ≤ ∥g∥A(T),

|w(g)− g(tw)| ≤ |w(g)− w(SN (g))|+ |w(SN (g))− SN (g)(tw)|
+ |SN (g)(tw)− g(tw)|
= |w(g − SN (g))|+ |SN (g)(tw)− f(tw)|
≤ ∥w∥ ∥g − SN (g)∥A(T) + ∥SN (g)− g∥C(T)

≤ ∥w∥ ∥g − SN (g)∥A(T) + ∥g − SN (g)∥A(T)

< 2ϵ.

Because this is true for all ϵ > 0, it follows that w(g) = g(tw).
Let ∆ be the maximal ideal space of A(T). Then for w ∈ ∆ there is some

tw ∈ T such that w(f) = f(tw), hence, because f(t) ̸= 0 for all t ∈ T,

Γ(f)(w) = w(f) = f(tw) ̸= 0.

That is, Γ(f) does not vanish, and therefore f is invertible in A(T). It is then
immediate that f−1(t) = 1

f(t) for all t ∈ T, completing the proof.

4Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 239, Theorem
2.9.
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The above proof of Wiener’s lemma uses the theory of the commutative
Banach algebras. The following is a proof of the theorem that does not use the
Gelfand transform.5

Proof. Because f ∈ A(T), f∗ defined by f∗(t) = f(t), t ∈ T, belongs to A(T).
Let

g =
|f |2

∥f∥2C(T)
=

ff∗

∥f∥2C(T)
∈ A(T),

which satisfies 0 < g(t) ≤ 1 for all t ∈ T. As 1
f = f∗

|f |2 = f∗

∥f∥2
C(T)g

, to show that

1/f ∈ A(T) it suffices to show that 1
g ∈ A(T).

Because g is continuous and g(t) ̸= 0 for all t ∈ T,

δ = inf
t∈T

g(t) > 0;

if δ = 1 then g = 1, and indeed 1
g ∈ A(T). Otherwise, ∥g − 1∥C(T) = 1− δ < 1.

This implies that g is invertible in the Banach algebra C(T) and that g−1 =∑∞
j=0(1− g)j in C(T). Let h = 1− g ∈ A(T).
For ϵ > 0, there is some N such that ∥h− SN (h)∥A(T) < ϵ. Now, if P is a

trigonometric polynomial of degreeM then using the Cauchy-Schwarz inequality
and Parseval’s theorem,

∥P∥A(T) =
∥∥∥P̂∥∥∥

ℓ1(Z)

≤ (2M + 1)1/2
∥∥∥P̂∥∥∥

ℓ2(Z)

= (2M + 1)1/2 ∥P∥L2(T)

≤ (2M + 1)1/2 ∥P∥L∞(T) .

Furthermore, for j ≥ 1, P j is a trigonometric polynomial of degree jM . The
binomial theorem tells us, with P = SN (h) and r = h− P ,

hk = (P + r)k =

k∑
j=0

(
k

j

)
P jrk−j ,

5Karlheinz Gröchenig, Wiener’s Lemma: Theme and Variations. An Introduction to Spec-
tral Invariance and Its Applications, p. 180, §5.2.4, in Brigitte Forster and Peter Massopust,
eds., Four Short Courses on Harmonic Analysis, pp. 175–234.
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and using this and
∥∥P j

∥∥
A(T) ≤ (2jN + 1)1/2

∥∥P j
∥∥
L∞(T),

∥∥hk
∥∥
A(T) ≤

k∑
j=0

(
k

j

)∥∥P j
∥∥
A(T)

∥∥rk−j
∥∥
A(T)

≤
k∑

j=0

(
k

j

)∥∥P j
∥∥
A(T) ∥h− SN (h)∥k−j

A(T)

≤
k∑

j=0

(
k

j

)
(2jN + 1)1/2

∥∥P j
∥∥
L∞(T) ϵ

k−j

≤ (2kN + 1)1/2
k∑

j=0

(
k

j

)
∥P∥jL∞(T) ϵ

k−j

= (2kN + 1)1/2(∥P∥L∞(T) + ϵ)k.

Because

∥P∥L∞(T) ≤ ∥h− SN (h)∥L∞(T) + ∥h∥L∞(T)

≤ ∥h− SN (h)∥A(T) + ∥h∥L∞(T)

< ϵ+ ∥h∥L∞(T) ,

we have∥∥hk
∥∥
A(T) ≤ (2kN + 1)1/2(∥h∥L∞(T) + 2ϵ)k = (2kN + 1)1/2(1− δ + 2ϵ)k.

Take some ϵ < δ
2 , so that 1− δ + 2ϵ < 1. Then with N = N(ϵ),

∞∑
k=0

∥∥hk
∥∥
A(T) ≤

∞∑
k=0

(2kN+1)1/2(1−δ+2ϵ)k =
√
2NΦ

(
1− δ + 2ϵ,−1

2
,

1

2N

)
< ∞,

where Φ is the Lerch transcendent. This implies that the the series
∑∞

k=0 h
k

converges in A(T). We check that
∑∞

k=0 h
k is the inverse of 1 − h, namely,

g = 1− h is invertible in A(T), proving the claim.

5 Spectral theory

Suppose that A is a commutative Banach algebra with unity 1. We define U(A)
to be the collection of those f ∈ A such that f is invertible in A. It is a fact
that U(A) is an open subset of A. We define

σA(f) = {λ ∈ C : f − λ ̸∈ U(A)},

called the spectrum of f . It is a fact that σA(f) is a nonempty compact subset
of C.
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If A ⊂ B are Banach algebras with unity 1, we say that A is inverse-closed
in B if f ∈ A and f−1 ∈ B together imply that f−1 ∈ A.6

Lemma 7. Suppose that A ⊂ B are Banach algebras with unity 1. The fol-
lowing are equivalent:

1. A is inverse-closed in B.

2. σA(f) = σB(f) for all f ∈ A.

Proof. Assume that A is inverse-closed in B and let f ∈ A. If λ ̸∈ σA(f)
then f − λ ∈ U(A) ⊂ U(B), hence λ ̸∈ σB(f). Therefore σB(f) ⊂ σA(f). If
λ ̸∈ σB(f) then f − λ ∈ U(B). That is, (f − λ)−1 ∈ B. Because A is inverse-
closed in B and f−λ ∈ A, we get (f−λ)−1 ∈ A. Thus λ ̸∈ σA(f), and therefore
σA(f) ⊂ σB(f). We thus have obtained σA(f) = σB(f).

Assume that for all f ∈ A, σA(f) = σB(f). Suppose that f ∈ A and
f−1 ∈ B. That is, f ∈ U(B), so 0 ̸∈ σB(f). Then 0 ̸∈ σA(f), meaning that
f ∈ U(A).

A(T) ⊂ C(T) are Banach algebras with unity 1. Wiener’s lemma states that
A(T) is inverse-closed in C(T). It is apparent that for f ∈ C(T), σC(T)(f) =
f(T) ⊂ C. Therefore, Lemma 7 tells us for f ∈ A(T) that σA(T)(f) = f(T).

The Wiener-Lévy theorem states that if f ∈ A(T), Ω ⊂ C is an open
set containing f(T), and F : Ω → C is holomorphic, then F ◦ f ∈ A(T).7
In particular, if f ∈ A(T) does not vanish, then Ω = C \ {0} is an open set
containing f(T) and F (z) = 1

z is a holomorphic function on Ω, and hence
F ◦ f(t) = 1

f(t) belongs to A(T), which is the statement of Wiener’s lemma.

6Karlheinz Gröchenig, Wiener’s Lemma: Theme and Variations. An Introduction to Spec-
tral Invariance and Its Applications, p. 183, §5.2.5, in Brigitte Forster and Peter Massopust,
eds., Four Short Courses on Harmonic Analysis, pp. 175–234.

7Karlheinz Gröchenig, Wiener’s Lemma: Theme and Variations. An Introduction to Spec-
tral Invariance and Its Applications, p. 187, Theorem 5.16, in Brigitte Forster and Peter Mas-
sopust, eds., Four Short Courses on Harmonic Analysis, pp. 175–234; Walter Rudin, Fourier
Analysis on Groups, Chapter 6; N. K. Nikolski (ed.), Functional Analysis I, p. 235; V. P.
Havin and N. K. Nikolski (eds.), Commutative Harmonic Analysis II, p. 240, §7.7.
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