The Wiener-Pitt tauberian theorem

Jordan Bell

March 10, 2015

1 Introduction

For $f \in L^{1}\left(\mathbb{R}^{d}\right)$, we write

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i \xi \cdot x} d x, \quad \xi \in \mathbb{R}^{d}
$$

The Riemann-Lebesgue lemma tells us that $\hat{f} \in C_{0}\left(\mathbb{R}^{d}\right)$.
For $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and for multi-indices α, β, write

$$
|f|_{\alpha, \beta}=\sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha}\left(\partial^{\beta} f\right)(x)\right| .
$$

We say that f is a Schwartz function if for all multi-indices α and β we have $|f|_{\alpha, \beta}<\infty$. We denote by \mathscr{S} the collection of Schwartz functions. It is a fact that \mathscr{S} with this family of seminorms is a Fréchet space.

Let $V_{d}=\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)}$, the volume of the unit ball in \mathbb{R}^{d}.
Lemma 1. For $1 \leq p \leq \infty$, let m be the least integer $\geq \frac{d+1}{p}$. There is some C_{d} such that for any multi-index β,

$$
\left\|\partial^{\beta} f\right\|_{p} \leq V_{d}^{1 / p}|f|_{0, \beta}+C_{d} V_{d}^{1 / p} \sum_{|\alpha|=m}|f|_{\alpha, \beta}, \quad f \in \mathscr{S} .
$$

Proof. For $p=\infty$, the claim is true with $C_{d, \infty}=1$. For $1 \leq p<\infty$, let $g=\partial^{\beta} f$,
which satisfies

$$
\begin{aligned}
\|g\|_{p} & =\left(\int_{|x| \leq 1}|g(x)|^{p} d x+\int_{|x| \geq 1}|x|^{d+1}|g(x)|^{p}|x|^{-(d+1)} d x\right)^{1 / p} \\
& \leq\left(\|g\|_{\infty}^{p} V_{d}+\sup _{|x| \geq 1}\left(|x|^{d+1}|g(x)|^{p}\right) \int_{|x| \geq 1}|x|^{-(d+1)} d x\right)^{1 / p} \\
& =\left(\|g\|_{\infty}^{p} V_{d}+\sup _{|x| \geq 1}\left(|x|^{d+1}|g(x)|^{p}\right) \int_{1}^{\infty}\left(\int_{S^{d-1}}|r \gamma|^{-(d+1)} d \sigma(\gamma)\right) r^{d-1} d r\right)^{1 / p} \\
& =\left(\|g\|_{\infty}^{p} V_{d}+\sup _{|x| \geq 1}\left(|x|^{d+1}|g(x)|^{p}\right) \cdot V_{d} \int_{1}^{\infty} r^{-2} d r\right)^{1 / p} \\
& =V_{d}^{1 / p}\left(\|g\|_{\infty}^{p}+\sup _{|x| \geq 1}\left(|x|^{d+1}|g(x)|^{p}\right)\right)^{1 / p} \\
& \leq V_{d}^{1 / p}\|g\|_{\infty}+V_{d}^{1 / p} \sup _{|x| \geq 1}\left(|x|^{\frac{d+1}{p}}|g(x)|\right) \\
& \leq V_{d}^{1 / p}\|g\|_{\infty}+V_{d}^{1 / p} \sup _{|x| \geq 1}\left(|x|^{m}|g(x)|\right) .
\end{aligned}
$$

Using that the function $y \mapsto \sum_{|\alpha|=m}\left|y^{\alpha}\right|$ is continuous $S^{d-1} \rightarrow \mathbb{R}$, there is some C_{d} such that

$$
|x|^{m} \leq C_{d} \sum_{|\alpha|=m}\left|x^{\alpha}\right|, \quad x \in \mathbb{R}^{d} .
$$

This gives us

$$
\begin{aligned}
\|g\|_{p} & \leq V_{d}^{1 / p}\|g\|_{\infty}+V_{d}^{1 / p} \sup _{|x| \geq 1} C_{d} \sum_{|\alpha|=m}\left|x^{\alpha}\right||g(x)| \\
& =V_{d}^{1 / p}\left\|\partial^{\beta} f\right\|_{\infty}+C_{d} V_{d}^{1 / p} \sum_{|\alpha|=m} \sup _{|x| \geq 1}\left|x^{\alpha}\left(\partial^{\beta} f\right)(x)\right| \\
& \leq V_{d}^{1 / p}|f|_{0, \beta}+C_{d} V_{d}^{1 / p} \sum_{|\alpha|=m}|f|_{\alpha, \beta} .
\end{aligned}
$$

The dual space \mathscr{S}^{\prime} with the weak-* topology is a locally convex space, elements of which are called tempered distributions. It is straightforward to check that if $u: \mathscr{S} \rightarrow \mathbb{C}$ is linear, then $u \in \mathscr{S}^{\prime}$ if and only if there is some C and some nonnegative integers m, n such that

$$
|u(f)| \leq C \sum_{|\alpha| \leq m,|\beta| \leq n}|f|_{\alpha, \beta}, \quad f \in \mathscr{S} .
$$

For $1 \leq p \leq \infty$ and $g \in L^{p}\left(\mathbb{R}^{d}\right)$, define $u: \mathscr{S} \rightarrow \mathbb{C}$ by

$$
u(f)=\int_{\mathbb{R}^{d}} f(x) g(x) d x, \quad f \in \mathscr{S}
$$

For $\frac{1}{p}+\frac{1}{q}=1$, Hölder's inequality tells us

$$
|u(f)| \leq\|f g\|_{1} \leq\|g\|_{p}\|f\|_{q}
$$

By Lemma 1, with m the least integer $\geq \frac{d+1}{q}$,

$$
\|f\|_{q} \leq V_{d}^{1 / q}|f|_{0,0}+C_{d} V_{d}^{1 / q} \sum_{|\alpha|=m}\left|f_{\alpha, 0}\right|
$$

Therefore,

$$
|u(f)| \leq C_{g, d, q} \sum_{|\alpha| \leq m,|\beta| \leq 0}|f|_{\alpha, \beta},
$$

showing that u is continuous. We thus speak of elements of $L^{p}\left(\mathbb{R}^{d}\right)$ as tempered distributions, and speak about the Fourier transform of an element of $L^{p}\left(\mathbb{R}^{d}\right)$.

Let $u \in \mathscr{D}^{\prime}$ be a distribution. For an open set ω, we say that u vanishes on ω if $u(\phi)=0$ for every $\phi \in \mathscr{D}(\omega)$. Let Γ be the collection of open sets ω on which u vanishes, and let $\Omega=\bigcup_{\omega \in \Gamma} \omega$. Γ is an open cover of Ω, and thus there is a locally finite partition of unity ψ_{j} subordinate to $\Gamma .{ }^{1}$ For $\phi \in \mathscr{D}(\Omega)$, because $\operatorname{supp} \phi$ is compact, there is some open set $W, \operatorname{supp} \phi \subset W \subset \Omega$, and some m such that

$$
\psi_{1}(x)+\cdots+\psi_{m}(x)=1, \quad x \in W
$$

Then

$$
u(\phi)=u\left(\phi\left(\psi_{1}+\cdots+\psi_{m}\right)\right)=u\left(\psi_{1} \phi\right)+\cdots+u\left(\psi_{m} \phi\right) .
$$

For each $j, 1 \leq j \leq m$, there is some $\omega_{j} \in \Gamma$ such that $\operatorname{supp} \psi_{j} \subset \omega_{j}$, which implies supp $\psi_{j} \phi \subset \omega_{j}$, i.e. $\psi_{j} \phi \in \mathscr{D}\left(\omega_{j}\right)$. But $\omega_{j} \in \Gamma$, so $u\left(\psi_{j} \phi\right)=0$ and hence $u(\phi)=0$. This shows that $\Omega \in \Gamma$, namely, Ω is the largest open set on which u vanishes. The support of u is

$$
\operatorname{supp} u=\mathbb{R}^{d} \backslash \Omega
$$

For $u \in \mathscr{S}^{\prime}$ we define $\hat{u}: \mathscr{S} \rightarrow \mathbb{C}$ by

$$
\hat{u}(\phi)=u(\hat{\phi}), \quad \phi \in \mathscr{S} .
$$

It is a fact that $\hat{u} \in \mathscr{S}^{\prime}$.
For $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$, write $\check{f}(x)=f(-x)$. For $\phi \in \mathscr{S}$,

$$
\mathscr{F}(\mathscr{F}(\phi))=\check{\phi} .
$$

[^0]
2 Tauberian theory

Lemma 2. If $f \in L^{1}\left(\mathbb{R}^{d}\right), \zeta \in \mathbb{R}^{d}$, and $\epsilon>0$, then there is some $h \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\|h\|_{1}<\epsilon$ and some $r>0$ such that

$$
\hat{h}(\xi)=\hat{f}(\zeta)-\hat{f}(\xi), \quad \xi \in B_{r}(\zeta)
$$

Proof. It is a fact that there is a Schwartz function g such that $\hat{g}(\xi)=1$ for $|\xi|<1$. For $\lambda>0$, let

$$
g_{\lambda}(x)=e^{2 \pi i \zeta \cdot x} \lambda^{-d} g\left(\lambda^{-1} x\right), \quad x \in \mathbb{R}^{d}
$$

which satisfies, for $\xi \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\widehat{g_{\lambda}}(\xi) & =\int_{\mathbb{R}^{d}} e^{-2 \pi i \xi \cdot x} e^{2 \pi i \zeta \cdot x} \lambda^{-d} g\left(\lambda^{-1} x\right) d x \\
& =\int_{\mathbb{R}^{d}} e^{-2 \pi i \lambda \xi \cdot y} e^{2 \pi i \lambda \zeta \cdot y} g(y) d y \\
& =\hat{g}(\lambda \xi-\lambda \zeta) .
\end{aligned}
$$

In particular, for $\xi \in V_{\lambda}=B_{\lambda^{-1}}(\zeta)$ we have $\widehat{g_{\lambda}}(\xi)=1$. We also define

$$
h_{\lambda}(x)=\hat{f}(\zeta) g_{\lambda}(x)-\left(f * g_{\lambda}\right)(x), \quad x \in \mathbb{R}^{d}
$$

which satisfies, for $\xi \in \mathbb{R}^{d}$,

$$
\widehat{h_{\lambda}}(\xi)=\hat{f}(\zeta) \widehat{g_{\lambda}}(\xi)-\widehat{f * g_{\lambda}}(\xi)=\hat{f}(\zeta) \widehat{g_{\lambda}}(\xi)-\hat{f}(\xi) \widehat{g_{\lambda}}(\xi)=\widehat{g_{\lambda}}(\xi)(\hat{f}(\zeta)-\hat{f}(\xi))
$$

Hence, for $\xi \in V_{\lambda}$ we have $\widehat{h_{\lambda}}(\xi)=\hat{f}(\zeta)-\hat{f}(\xi)$.
For $x \in \mathbb{R}^{d}$,

$$
\begin{aligned}
h_{\lambda}(x) & =\int_{\mathbb{R}^{d}} f(y) e^{-2 \pi i \zeta \cdot y} g_{\lambda}(x)-\int_{\mathbb{R}^{d}} f(y) g_{\lambda}(x-y) d y \\
& =\int_{\mathbb{R}^{d}} f(y)\left(e^{-2 \pi i \zeta \cdot y} g_{\lambda}(x)-g_{\lambda}(x-y)\right) d y
\end{aligned}
$$

for which

$$
\begin{aligned}
& \left|e^{-2 \pi i \zeta \cdot y} g_{\lambda}(x)-g_{\lambda}(x-y)\right| \\
= & \left|e^{-2 \pi i \zeta \cdot y} e^{2 \pi i \zeta \cdot x} \lambda^{-d} g\left(\lambda^{-1} x\right)-e^{2 \pi i \zeta \cdot(x-y)} \lambda^{-d} g\left(\lambda^{-1}(x-y)\right)\right| \\
= & \lambda^{-d}\left|g\left(\lambda^{-1} x\right)-g\left(\lambda^{-1}(x-y)\right)\right| .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\|h_{\lambda}\right\|_{1} & \leq \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|f(y)| \lambda^{-d}\left|g\left(\lambda^{-1} x\right)-g\left(\lambda^{-1}(x-y)\right)\right| d y\right) d x \\
& =\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|f(y)|\left|g(u)-g\left(\lambda^{-1}(\lambda u-y)\right)\right| d y\right) d u \\
& \left.=\int_{\mathbb{R}^{d}}|f(y)|\left(\int_{\mathbb{R}^{d}} \mid g(u)-g\left(u-\lambda^{-1} y\right)\right) \mid d u\right) d y
\end{aligned}
$$

For each $y \in \mathbb{R}^{d}$,

$$
\left.|f(y)|\left(\int_{\mathbb{R}^{d}} \mid g(u)-g\left(u-\lambda^{-1} y\right)\right) \mid d u\right) \leq 2\|g\|_{1} \mid f(y)
$$

and hence by the dominated convergence theorem,

$$
\left.\int_{\mathbb{R}^{d}}|f(y)|\left(\int_{\mathbb{R}^{d}} \mid g(u)-g\left(u-\lambda^{-1} y\right)\right) \mid d u\right) d y \rightarrow 0, \quad \lambda \rightarrow \infty
$$

Thus, there is some λ_{ϵ} such that $\left\|h_{\lambda}\right\|_{1}<\epsilon$ when $\lambda \geq \lambda_{\epsilon}$. For $h=h_{\lambda_{\epsilon}}$ and $r=\lambda_{\epsilon}^{-1}$, we have $\hat{h}(\xi)=\hat{f}(\zeta)-\hat{f}(\xi)$ for $\xi \in V_{\lambda_{\epsilon}}=B_{r}(\zeta)$ and $\|h\|_{1}<\epsilon$, proving the claim.

We remind ourselves that for $\phi \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and $f \in L^{1}\left(\mathbb{R}^{d}\right)$, the convolution $f * \phi$ belongs to $C_{u}\left(\mathbb{R}^{d}\right)$, the collection of bounded uniformly continuous functions $\mathbb{R}^{d} \rightarrow \mathbb{C}$. We also remind ourselves that any element of $L^{\infty}\left(\mathbb{R}^{d}\right)$ is a tempered distribution whose Fourier transform is a tempered distribution. ${ }^{2}$

Theorem 3. If $\phi \in L^{\infty}\left(\mathbb{R}^{d}\right)$, Y is a linear subspace of $L^{1}\left(\mathbb{R}^{d}\right)$, and

$$
f * \phi=0, \quad f \in Y
$$

then

$$
Z(Y)=\bigcap_{f \in Y}\left\{\xi \in \mathbb{R}^{d}: \hat{f}(\xi)=0\right\}
$$

contains supp $\hat{\phi}$.
Proof. If $Y=\{0\}$, then $Z(Y)=\mathbb{R}^{d}$, and the claim is true. If Y has nonzero dimension, let $\zeta \in \mathbb{R}^{d} \backslash Z(Y)$ and let $f \in Y$ such that $\hat{f}(\zeta)=1$; that there is such a function f follows from Y being a linear space. Thus by Lemma 2 there is some $h \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\|h\|_{1}<1$ and some $r>0$ such that

$$
\hat{h}(\xi)=1-\hat{f}(\xi), \quad \xi \in B_{r}(\zeta)
$$

because $Z(Y)$ is closed, we may take r such that $B_{r}(\zeta) \subset \mathbb{R}^{d} \backslash Z(Y)$.
Let $\rho \in \mathscr{D}\left(B_{r}(\zeta)\right)$, and let $\psi \in \mathscr{S}$ with $\hat{\psi}=\rho$. Define $g_{0}=\psi$ and $g_{m}=$ $h * g_{m-1}$ for $m \geq 1$. By Young's inequality

$$
\left\|g_{m}\right\|_{1} \leq\|h\|_{1}^{m}\|\psi\|_{1}
$$

and because $\|h\|_{1}<1$, this means that the sequence $\sum_{m=0}^{M} g_{m}$ is Cauchy in $L^{1}\left(\mathbb{R}^{d}\right)$ so converges to some G, for which, as $|\hat{h}| \leq\|h\|_{1}<1$,

$$
\hat{G}=\sum_{m=0}^{\infty} \widehat{g_{m}}=\sum_{m=0}^{\infty} \hat{\psi} \cdot \hat{h}^{m}=\hat{\psi} \cdot(1-\hat{h})^{-1}
$$

[^1]For $\xi \in \operatorname{supp} \hat{\psi} \subset B_{r}(\zeta)$ we have $\hat{h}(\xi)=1-\hat{f}(\xi)$ and so

$$
\hat{\psi}(\xi)=\hat{G}(\xi)(1-\hat{h}(\xi))=\hat{G}(\xi) \hat{f}(\xi) ;
$$

on the other hand, for $\xi \notin \operatorname{supp} \hat{\psi}, \hat{\psi}(\xi)=0=\hat{G}(\xi) \hat{f}(\xi)$, so

$$
\hat{\psi}=\hat{G} \cdot \hat{f},
$$

which implies that $\psi=G * f$. Then

$$
\psi * \phi=G * f * \phi=G * 0=0
$$

therefore

$$
\hat{\phi}(\rho)=\phi(\hat{\rho})=\phi\left(\mathscr{F}^{2}(\psi)\right)=\phi(\check{\psi})=\int_{\mathbb{R}^{d}} \psi(-x) \phi(x) d x=(\psi * \phi)(0)=0 .
$$

This is true for all $\rho \in \mathscr{D}\left(B_{r}(\zeta)\right)$, which means that $\hat{\phi}$ vanishes on $B_{r}(\zeta)$. This is true for any $\zeta \in \mathbb{R}^{d} \backslash Z(Y)$, so with Ω the union of those open sets on which $\hat{\phi}$ vanishes, $\mathbb{R}^{d} \backslash Z(Y) \subset \Omega$. Then $Z(Y) \subset \mathbb{R}^{d} \backslash \Omega=\operatorname{supp} \hat{\phi}$.

If X is a Banach space and M is a linear subspace of X, we define the annihilator of M as

$$
M^{\perp}=\left\{\gamma \in X^{*}: \text { if } x \in M \text { then }\langle x, \gamma\rangle=0\right\}
$$

It is immediate that M^{\perp} is a weak-* closed linear subspace of X^{*}. If N is a linear subspace of X^{*}, we define the annihilator of N as

$$
{ }^{\perp} N=\{x \in X: \text { if } \gamma \in N \text { then }\langle x, \gamma\rangle=0\} .
$$

It is immediate that ${ }^{\perp} N$ is a norm closed linear subspace of the Banach space X. One proves using the Hahn-Banach theorem that ${ }^{\perp}\left(M^{\perp}\right)$ is the norm closure of M in $X .^{3}$

We say that a subspace Y of $L^{1}\left(\mathbb{R}^{d}\right)$ is translation-invariant if $f \in Y$ and $x \in \mathbb{R}^{d}$ imply that $f_{x} \in Y$, where $f_{x}(y)=f(y-x)$. The following theorem gives conditions under which a closed translation-invariant subspace of $L^{1}\left(\mathbb{R}^{d}\right)$ is equal to the entire space. ${ }^{4}$

Theorem 4. If Y is a closed translation-invariant subspace of $L^{1}\left(\mathbb{R}^{d}\right)$ and $Z(Y)=\emptyset$, then $Y=L^{1}\left(\mathbb{R}^{d}\right)$.

Proof. Suppose that $\phi \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and $\int f \check{\phi}=0$ for each $f \in Y$. Let $f \in Y$ and $x \in \mathbb{R}^{d}$. As Y is translation-invariant, $f_{-x} \in Y$ so $\int_{\mathbb{R}^{d}} f(y+x) \phi(-y) d y=0$, i.e. $(f * \phi)(x)=0$. This is true for all $x \in \mathbb{R}^{d}$, which means that $f * \phi=0$. Theorem 3 then tells us that supp $\hat{\phi}$ is contained in $Z(Y)$, namely, supp $\hat{\phi}$ is empty, which means that the tempered distribution $\hat{\phi}$ vanishes on \mathbb{R}^{d}, i.e. supp $\hat{\phi}$ is the zero

[^2]element of the locally convex space \mathscr{S}^{\prime}. As the Fourier transform $\mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ is linear and one-to-one, the tempered distribution ϕ is the zero element of \mathscr{S}^{\prime}, which implies that $\phi \in L^{\infty}\left(\mathbb{R}^{d}\right)$ is zero. As Lebesgue measure on \mathbb{R}^{d} is σ-finite, for X the Banach space $L^{1}\left(\mathbb{R}^{d}\right)$ we have $X^{*}=L^{\infty}\left(\mathbb{R}^{d}\right)$, with $\langle f, \gamma\rangle=\int f \gamma$. Thus Y^{\perp} is the zero subspace of $L^{\infty}\left(\mathbb{R}^{d}\right)$, hence ${ }^{\perp}\left(Y^{\perp}\right)=L^{1}\left(\mathbb{R}^{d}\right)$. This implies that $L^{1}\left(\mathbb{R}^{d}\right)$ is equal to the closure of Y in $L^{1}\left(\mathbb{R}^{d}\right)$, and because Y is closed this means $Y=L^{1}\left(\mathbb{R}^{d}\right)$, completing the proof.

Theorem 5. Suppose that $K \in L^{1}\left(\mathbb{R}^{d}\right)$ and that Y is the smallest closed translation-invariant subspace of $L^{1}\left(\mathbb{R}^{d}\right)$ that includes $K . Y=L^{1}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\hat{K}(\xi) \neq 0, \quad \xi \in \mathbb{R}^{d} .
$$

Proof. Suppose that $\hat{K}(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{d}$. As $K \in Y$, this implies that $Z(Y)=\emptyset$. Thus by Theorem 4 we get $Y=L^{1}\left(\mathbb{R}^{d}\right)$.

Suppose that $Y=L^{1}\left(\mathbb{R}^{d}\right)$. Then $f(x)=e^{-\pi|x|^{2}}$ belongs to Y and $\hat{f}(\xi)=$ $e^{-\pi|\xi|^{2}}$, which has no zeros, hence $Z(Y)=\emptyset$. For $\xi \in \mathbb{R}^{d}$, define ev $\xi: C_{0}\left(\mathbb{R}^{d}\right) \rightarrow$ \mathbb{C} by $\operatorname{ev}_{\xi}(g)=g(\xi)$, which is a bounded linear operator. The Fourier transform $\mathscr{F}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$ is a bounded linear operator, hence for each $\xi \in \mathbb{R}^{d}$, $\mathrm{ev}_{\xi} \circ \mathscr{F}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ is a bounded linear operator. Hence

$$
V_{\xi}=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right): \hat{f}(\xi)=0\right\}=\operatorname{ker}\left(\operatorname{ev}_{\xi} \circ \mathscr{F}\right)
$$

is a closed subspace of $L^{1}\left(\mathbb{R}^{d}\right)$. If $f \in V$ and $x \in \mathbb{R}^{d}$, then

$$
\widehat{f}_{x}(\xi)=\int_{\mathbb{R}^{d}} f(y-x) e^{-2 \pi i \xi \cdot y} d y=e^{-2 \pi i \xi \cdot x} \hat{f}(\xi)=0
$$

showing that V_{ξ} is translation-invariant. Therefore

$$
V=\bigcap_{\hat{K}(\xi)=0} V_{\xi}
$$

is a closed translation-invariant subspace of $L^{1}\left(\mathbb{R}^{d}\right)$, and because Y is the smallest closed translation-invariant subspace of $L^{1}\left(\mathbb{R}^{d}\right), Y \subset V . Y \subset V$ implies $Z(V) \subset Z(Y)=\emptyset$, and applying Theorem 4 we get that $V=L^{1}\left(\mathbb{R}^{d}\right)$. But there is no ξ for which $V_{\xi}=L^{1}\left(\mathbb{R}^{d}\right)$, so $V=L^{1}\left(\mathbb{R}^{d}\right)$ implies that $\left\{\xi \in \mathbb{R}^{d}\right.$: $\hat{K}(\xi)=0\}=\emptyset$.

3 Slowly oscillating functions

Let $B\left(\mathbb{R}^{d}\right)$ be the collection of bounded functions $\mathbb{R}^{d} \rightarrow \mathbb{C}$, which with the supremum norm $\|f\|_{u}=\sup _{x \in \mathbb{R}^{d}}|f(x)|$ is a Banach algebra.

A function $\phi \in B\left(\mathbb{R}^{d}\right)$ is said to be slowly oscillating if for each $\epsilon>0$ there is some A and some $\delta>0$ such that if $|x|,|y|>A$ and $|x-y|<\delta$, then
$|\phi(x)-\phi(y)|<\epsilon$. We now prove the Wiener-Pitt tauberian theorem; the statement supposing that a function is slowly oscillating is attributed to Pitt. ${ }^{5}$

Theorem 6 (Wiener-Pitt tauberian theorem). If $\phi \in B\left(\mathbb{R}^{d}\right), K \in L^{1}\left(\mathbb{R}^{d}\right)$, $\hat{K}(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{d}$, and

$$
\lim _{|x| \rightarrow \infty}(K * \phi)(x)=a \hat{K}(0),
$$

then for each $f \in L^{1}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}(f * \phi)(x)=a \hat{f}(0) \tag{1}
\end{equation*}
$$

Furthermore, if such ϕ is slowly oscillating then

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \phi(x)=a . \tag{2}
\end{equation*}
$$

Proof. Define $\psi(x)=\phi(x)-a$. Let Y be the set of those $f \in L^{1}\left(\mathbb{R}^{d}\right)$ for which

$$
\lim _{|x| \rightarrow \infty}(f * \psi)(x)=0
$$

It is immediate that Y is a linear subspace of $L^{1}\left(\mathbb{R}^{d}\right)$. Suppose that $f_{i} \in Y$ tends to some $f \in L^{1}\left(\mathbb{R}^{d}\right)$. As $\psi \in B\left(\mathbb{R}^{d}\right), f * \psi$ and $f_{i} * \psi$ belong to $C_{u}\left(\mathbb{R}^{d}\right)$. Then

$$
\left\|f * \psi-f_{i} * \psi\right\|_{u}=\left\|\left(f-f_{i}\right) * \psi\right\|_{u}=\|\psi\|_{u}\left\|f-f_{i}\right\|_{1}
$$

There is some i_{0} such that $i \geq i_{0}$ implies $\left\|f-f_{i}\right\|_{1}<\epsilon$, and because $f_{i_{0}} \in Y$ there is some M such that $|x| \geq M$ implies $\left|\left(f_{i_{0}} * \psi\right)(x)\right|<\epsilon$. Then for $|x| \geq M$,

$$
\begin{aligned}
|(f * \psi)(x)| & \leq\left|(f * \psi)(x)-\left(f_{i_{0}} * \psi\right)(x)\right|+\left|\left(f_{i_{0}} * \psi\right)(x)\right| \\
& \leq\|\psi\|_{u}\left\|f-f_{i}\right\|_{1}+\left|\left(f_{i_{0}} * \psi\right)(x)\right| \\
& <\epsilon \cdot\left(\|\psi\|_{u}+1\right),
\end{aligned}
$$

showing that $f \in Y$, namely, that Y is closed. Let $f \in Y$ and $x \in \mathbb{R}^{d} . f_{x} \in$ $L^{1}\left(\mathbb{R}^{d}\right)$, and for $y \in \mathbb{R}^{d}$,

$$
\left(\left(\tau_{x} f\right) * \psi\right)(y)=(f * \psi)(y-x),
$$

and as $|y| \rightarrow \infty$ we have $|y-x| \rightarrow \infty$ and thus $(f * \psi)(y-x) \rightarrow 0$, hence $\tau_{x} f \in Y$, i.e. Y is translation-invariant. Therefore Y is a closed translationinvariant subspace of $L^{1}\left(\mathbb{R}^{d}\right)$. For $x \in \mathbb{R}^{d}$,

$$
(K * \psi)(x)=\int_{\mathbb{R}^{d}} K(y)(\phi(x-y)-a) d y=(K * \phi)(x)-a \hat{K}(0)
$$

[^3]and by hypothesis we get $(K * \psi)(x) \rightarrow 0$ as $|x| \rightarrow \infty$, i.e. $K \in Y$.
Let Y_{0} be the smallest closed translation-invariant subspace of $L^{1}\left(\mathbb{R}^{d}\right)$ that includes K. On the one hand, because Y is a closed translation-invariant subspace of $L^{1}\left(\mathbb{R}^{d}\right)$ and $K \in Y$ we have $Y_{0} \subset Y$. On the other hand, because $\hat{K}(\xi) \neq 0$ for all ξ we have by Theorem 5 that $Y_{0}=L^{1}\left(\mathbb{R}^{d}\right)$. Therefore $Y=L^{1}\left(\mathbb{R}^{d}\right)$. This means that for each $f \in L^{1}\left(\mathbb{R}^{d}\right),(f * \psi)(x) \rightarrow 0$ as $|x| \rightarrow \infty$, i.e. $(f * \phi)(x) \rightarrow a \hat{f}(0)$ as $|x| \rightarrow \infty$, proving (1)

Assume further now that ϕ is slowly-oscillating and let $\epsilon>0$. There is some A and some $\delta>0$ such that if $|x|,|y|>A$ and $|x-y|<\delta$ then

$$
|\phi(x)-\phi(y)|<\epsilon .
$$

There is a test function h such that $h \geq 0, h(x)=0$ for $|x| \geq \delta$, and $\hat{h}(0)=1$. By (1),

$$
\lim _{|x| \rightarrow \infty}(h * \phi)(x)=a \hat{h}(0)=a
$$

On the other hand, for $x \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\phi(x)-(h * \phi)(x) & =\hat{h}(0) \phi(x)-(h * \phi)(x) \\
& =\int_{\mathbb{R}^{d}}(h(y) \phi(x)-\phi(x-y) h(y)) d y \\
& =\int_{|y|<\delta}(\phi(x)-\phi(x-y)) h(y) d y,
\end{aligned}
$$

and so for $|x|>A+\delta$,

$$
|\phi(x)-(h * \phi)(x)| \leq \int_{|y|<\delta} \epsilon \cdot|h(y)| d y=\epsilon \int_{\mathbb{R}^{d}} h(y) d y=\epsilon \hat{h}(0)=\epsilon
$$

We have thus established that as $|x| \rightarrow \infty$, (i) $(h * \phi)(x)=a+o(1)$ and (ii) $\phi(x)=(h * \phi)(x)+o(1)$, which together yield $\phi(x)=a+o(1)$, i.e. $\phi(x) \rightarrow a$ as $|x| \rightarrow \infty$, proving (2).

4 Closed ideals in $L^{1}\left(\mathbb{R}^{d}\right)$

$L^{1}\left(\mathbb{R}^{d}\right)$ is a Banach algebra using convolution as the product. ${ }^{6}$
Theorem 7. Suppose that I is a closed linear subspace of $L^{1}\left(\mathbb{R}^{d}\right)$. I is translationinvariant if and only if I is an ideal.

Proof. Assume that I is translation-invariant and let $f \in I$ and $g \in L^{1}\left(\mathbb{R}^{d}\right)$.

[^4]For $\phi \in I^{\perp} \subset L^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\langle g * f, \phi\rangle & =\int_{\mathbb{R}^{d}}(g * f)(x) \phi(x) d x \\
& =\int_{\mathbb{R}^{d}} \phi(x)\left(\int_{\mathbb{R}^{d}} g(x-y) f(y) d y\right) d x \\
& =\int_{\mathbb{R}^{d}} g(z)\left(\int_{\mathbb{R}^{d}} \phi(x) f_{z}(x) d x\right) d z \\
& =\int_{\mathbb{R}^{d}} g(z)\left\langle\phi, f_{z}\right\rangle d z \\
& =0
\end{aligned}
$$

because $f_{z} \in I$ for each $z \in \mathbb{R}^{d}$. This shows that $f * g \in^{\perp}\left(I^{\perp}\right)$. But ${ }^{\perp}\left(I^{\perp}\right)$ is the closure of I in $L^{1}\left(\mathbb{R}^{d}\right),{ }^{7}$ and I is closed so $f * g \in I$, showing that I is an ideal.

Assume that I is an ideal and let $f \in I$ and $x \in \mathbb{R}^{d}$. Let V be a closed ball centered at 0 , and let χ_{A} be the indicator function of a set A. We have

$$
\begin{aligned}
\left\|f_{x}-\frac{1}{\mu(V)} \chi_{x+V} * f\right\|_{1} & =\int_{\mathbb{R}^{d}}\left|f_{x}(y)-\frac{1}{\mu(V)}\left(\chi_{x+V} * f\right)(y)\right| d y \\
& =\int_{\mathbb{R}^{d}}\left|\frac{1}{\mu(V)} \int_{V} f_{x}(y) d z-\frac{1}{\mu(V)} \int_{\mathbb{R}^{d}} \chi_{x+V}(z) f(y-z) d z\right| d y \\
& =\frac{1}{\mu(V)} \int_{\mathbb{R}^{d}}\left|\int_{V} f(y-x) d z-\int_{V} f(y-z-x) d z\right| d y \\
& =\frac{1}{\mu(V)} \int_{\mathbb{R}^{d}}\left|\int_{V}(f(y-x)-f(y-z-x)) d z\right| d y \\
& \leq \frac{1}{\mu(V)} \int_{V}\left(\int_{\mathbb{R}^{d}}|f(y-x)-f(y-z-x)| d y\right) d z \\
& =\frac{1}{\mu(V)} \int_{V}\left\|f_{x}-f_{z+x}\right\|_{1} d z \\
& =\frac{1}{\mu(V)} \int_{V}\left\|f-f_{z}\right\|_{1} d z \\
& \leq \sup _{z \in V}\left\|f-f_{z}\right\|_{1} .
\end{aligned}
$$

Let $\epsilon>0$. The map $z \mapsto f_{z}$ is continuous $\mathbb{R}^{d} \rightarrow L^{1}\left(\mathbb{R}^{d}\right)$, so there is some $\delta>0$ such that if $|z|<\delta$ then $\left\|f_{z}-f_{0}\right\|_{1}<\epsilon$, i.e. $\left\|f-f_{z}\right\|_{1}<\epsilon$. Then let V be the closed ball of radius δ, with which

$$
\begin{equation*}
\left\|f_{x}-\frac{1}{\mu(V)} \chi_{x+V} * f\right\|_{1} \leq \sup _{z \in V}\left\|f-f_{z}\right\|_{1} \leq \epsilon . \tag{3}
\end{equation*}
$$

As I is an ideal and $\frac{1}{\mu(V)} \chi_{x+V} \in L^{1}\left(\mathbb{R}^{d}\right)$ we have $\frac{1}{\mu(V)} \chi_{x+V} * f \in L^{1}\left(\mathbb{R}^{d}\right)$, and

[^5]then (3) and the fact that I is closed imply $f_{x} \in I$. Therefore I is translationinvariant.

[^0]: ${ }^{1}$ Walter Rudin, Functional Analysis, second ed., p. 162, Theorem 6.20.

[^1]: ${ }^{2}$ Walter Rudin, Functional Analysis, second ed., p. 228, Theorem 9.3.

[^2]: ${ }^{3}$ Walter Rudin, Functional Analysis, second ed., p. 96, Theorem 4.7.
 ${ }^{4}$ Walter Rudin, Functional Analysis, second ed., p. 228, Theorem 9.4.

[^3]: ${ }^{5}$ Walter Rudin, Functional Analysis, second ed., p. 229, Theorem 9.7; Walter Rudin, Fourier Analysis on Groups, p. 163, Theorem 7.2.7; Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 116, Theorem 4.72; V. P. Havin and N. K. Nikolski, Commutative Harmonic Analysis II, p. 134; Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis II, p. 511, Theorem 39.37.

[^4]: ${ }^{6}$ Eberhard Kaniuth, A Course in Commutative Banach Algebras, p. 25, Proposition 1.4.7.

[^5]: ${ }^{7}$ Walter Rudin, Functional Analysis, second ed., p. 96, Theorem 4.7.

