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1 Introduction

For f ∈ L1(Rd), we write

f̂(ξ) =

∫
Rd

f(x)e−2πiξ·xdx, ξ ∈ Rd.

The Riemann-Lebesgue lemma tells us that f̂ ∈ C0(Rd).
For f ∈ C∞(Rd) and for multi-indices α, β, write

|f |α,β = sup
x∈Rd

|xα(∂βf)(x)|.

We say that f is a Schwartz function if for all multi-indices α and β we have
|f |α,β < ∞. We denote by S the collection of Schwartz functions. It is a fact
that S with this family of seminorms is a Fréchet space.

Let Vd = πd/2

Γ( d
2+1)

, the volume of the unit ball in Rd.

Lemma 1. For 1 ≤ p ≤ ∞, let m be the least integer ≥ d+1
p . There is some

Cd such that for any multi-index β,∥∥∂βf∥∥
p
≤ V

1/p
d |f |0,β + CdV

1/p
d

∑
|α|=m

|f |α,β , f ∈ S .

Proof. For p = ∞, the claim is true with Cd,∞ = 1. For 1 ≤ p <∞, let g = ∂βf ,
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which satisfies

∥g∥p =

(∫
|x|≤1

|g(x)|pdx+

∫
|x|≥1

|x|d+1|g(x)|p|x|−(d+1)dx

)1/p

≤

(
∥g∥p∞ Vd + sup

|x|≥1

(
|x|d+1|g(x)|p

) ∫
|x|≥1

|x|−(d+1)dx

)1/p

=

(
∥g∥p∞ Vd + sup

|x|≥1

(
|x|d+1|g(x)|p

) ∫ ∞

1

(∫
Sd−1

|rγ|−(d+1)dσ(γ)

)
rd−1dr

)1/p

=

(
∥g∥p∞ Vd + sup

|x|≥1

(
|x|d+1|g(x)|p

)
· Vd

∫ ∞

1

r−2dr

)1/p

= V
1/p
d

(
∥g∥p∞ + sup

|x|≥1

(
|x|d+1|g(x)|p

))1/p

≤ V
1/p
d ∥g∥∞ + V

1/p
d sup

|x|≥1

(
|x|

d+1
p |g(x)|

)
≤ V

1/p
d ∥g∥∞ + V

1/p
d sup

|x|≥1

(|x|m|g(x)|) .

Using that the function y 7→
∑

|α|=m |yα| is continuous Sd−1 → R, there is some
Cd such that

|x|m ≤ Cd

∑
|α|=m

|xα|, x ∈ Rd.

This gives us

∥g∥p ≤ V
1/p
d ∥g∥∞ + V

1/p
d sup

|x|≥1

Cd

∑
|α|=m

|xα||g(x)|

= V
1/p
d

∥∥∂βf∥∥∞ + CdV
1/p
d

∑
|α|=m

sup
|x|≥1

|xα(∂βf)(x)|

≤ V
1/p
d |f |0,β + CdV

1/p
d

∑
|α|=m

|f |α,β .

The dual space S ′ with the weak-* topology is a locally convex space, el-
ements of which are called tempered distributions. It is straightforward to
check that if u : S → C is linear, then u ∈ S ′ if and only if there is some C
and some nonnegative integers m,n such that

|u(f)| ≤ C
∑

|α|≤m,|β|≤n

|f |α,β , f ∈ S .
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For 1 ≤ p ≤ ∞ and g ∈ Lp(Rd), define u : S → C by

u(f) =

∫
Rd

f(x)g(x)dx, f ∈ S .

For 1
p + 1

q = 1, Hölder’s inequality tells us

|u(f)| ≤ ∥fg∥1 ≤ ∥g∥p ∥f∥q .

By Lemma 1, with m the least integer ≥ d+1
q ,

∥f∥q ≤ V
1/q
d |f |0,0 + CdV

1/q
d

∑
|α|=m

|fα,0|.

Therefore,

|u(f)| ≤ Cg,d,q

∑
|α|≤m,|β|≤0

|f |α,β ,

showing that u is continuous. We thus speak of elements of Lp(Rd) as tempered
distributions, and speak about the Fourier transform of an element of Lp(Rd).

Let u ∈ D ′ be a distribution. For an open set ω, we say that u vanishes
on ω if u(ϕ) = 0 for every ϕ ∈ D(ω). Let Γ be the collection of open sets ω
on which u vanishes, and let Ω =

⋃
ω∈Γ ω. Γ is an open cover of Ω, and thus

there is a locally finite partition of unity ψj subordinate to Γ.1 For ϕ ∈ D(Ω),
because suppϕ is compact, there is some open set W , suppϕ ⊂ W ⊂ Ω, and
some m such that

ψ1(x) + · · ·+ ψm(x) = 1, x ∈W.

Then
u(ϕ) = u(ϕ(ψ1 + · · ·+ ψm)) = u(ψ1ϕ) + · · ·+ u(ψmϕ).

For each j, 1 ≤ j ≤ m, there is some ωj ∈ Γ such that suppψj ⊂ ωj , which
implies suppψjϕ ⊂ ωj , i.e. ψjϕ ∈ D(ωj). But ωj ∈ Γ, so u(ψjϕ) = 0 and hence
u(ϕ) = 0. This shows that Ω ∈ Γ, namely, Ω is the largest open set on which u
vanishes. The support of u is

suppu = Rd \ Ω.

For u ∈ S ′ we define û : S → C by

û(ϕ) = u(ϕ̂), ϕ ∈ S .

It is a fact that û ∈ S ′.
For f : Rd → C, write f̌(x) = f(−x). For ϕ ∈ S ,

F (F (ϕ)) = ϕ̌.

1Walter Rudin, Functional Analysis, second ed., p. 162, Theorem 6.20.
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2 Tauberian theory

Lemma 2. If f ∈ L1(Rd), ζ ∈ Rd, and ϵ > 0, then there is some h ∈ L1(Rd)
with ∥h∥1 < ϵ and some r > 0 such that

ĥ(ξ) = f̂(ζ)− f̂(ξ), ξ ∈ Br(ζ).

Proof. It is a fact that there is a Schwartz function g such that ĝ(ξ) = 1 for
|ξ| < 1. For λ > 0, let

gλ(x) = e2πiζ·xλ−dg(λ−1x), x ∈ Rd,

which satisfies, for ξ ∈ Rd,

ĝλ(ξ) =

∫
Rd

e−2πiξ·xe2πiζ·xλ−dg(λ−1x)dx

=

∫
Rd

e−2πiλξ·ye2πiλζ·yg(y)dy

= ĝ(λξ − λζ).

In particular, for ξ ∈ Vλ = Bλ−1(ζ) we have ĝλ(ξ) = 1. We also define

hλ(x) = f̂(ζ)gλ(x)− (f ∗ gλ)(x), x ∈ Rd,

which satisfies, for ξ ∈ Rd,

ĥλ(ξ) = f̂(ζ)ĝλ(ξ)− f̂ ∗ gλ(ξ) = f̂(ζ)ĝλ(ξ)− f̂(ξ)ĝλ(ξ) = ĝλ(ξ)(f̂(ζ)− f̂(ξ)).

Hence, for ξ ∈ Vλ we have ĥλ(ξ) = f̂(ζ)− f̂(ξ).
For x ∈ Rd,

hλ(x) =

∫
Rd

f(y)e−2πiζ·ygλ(x)−
∫
Rd

f(y)gλ(x− y)dy

=

∫
Rd

f(y)
(
e−2πiζ·ygλ(x)− gλ(x− y)

)
dy,

for which ∣∣e−2πiζ·ygλ(x)− gλ(x− y)
∣∣

=
∣∣∣e−2πiζ·ye2πiζ·xλ−dg(λ−1x)− e2πiζ·(x−y)λ−dg(λ−1(x− y))

∣∣∣
=λ−d|g(λ−1x)− g(λ−1(x− y))|.

Then

∥hλ∥1 ≤
∫
Rd

(∫
Rd

|f(y)|λ−d|g(λ−1x)− g(λ−1(x− y))|dy
)
dx

=

∫
Rd

(∫
Rd

|f(y)||g(u)− g(λ−1(λu− y))|dy
)
du

=

∫
Rd

|f(y)|
(∫

Rd

|g(u)− g(u− λ−1y))|du
)
dy.
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For each y ∈ Rd,

|f(y)|
(∫

Rd

|g(u)− g(u− λ−1y))|du
)

≤ 2 ∥g∥1 |f(y),

and hence by the dominated convergence theorem,∫
Rd

|f(y)|
(∫

Rd

|g(u)− g(u− λ−1y))|du
)
dy → 0, λ→ ∞.

Thus, there is some λϵ such that ∥hλ∥1 < ϵ when λ ≥ λϵ. For h = hλϵ
and

r = λ−1
ϵ , we have ĥ(ξ) = f̂(ζ)− f̂(ξ) for ξ ∈ Vλϵ = Br(ζ) and ∥h∥1 < ϵ, proving

the claim.

We remind ourselves that for ϕ ∈ L∞(Rd) and f ∈ L1(Rd), the convolution
f∗ϕ belongs to Cu(Rd), the collection of bounded uniformly continuous functions
Rd → C. We also remind ourselves that any element of L∞(Rd) is a tempered
distribution whose Fourier transform is a tempered distribution.2

Theorem 3. If ϕ ∈ L∞(Rd), Y is a linear subspace of L1(Rd), and

f ∗ ϕ = 0, f ∈ Y,

then
Z(Y ) =

⋂
f∈Y

{ξ ∈ Rd : f̂(ξ) = 0}

contains supp ϕ̂.

Proof. If Y = {0}, then Z(Y ) = Rd, and the claim is true. If Y has nonzero

dimension, let ζ ∈ Rd \ Z(Y ) and let f ∈ Y such that f̂(ζ) = 1; that there is
such a function f follows from Y being a linear space. Thus by Lemma 2 there
is some h ∈ L1(Rd) with ∥h∥1 < 1 and some r > 0 such that

ĥ(ξ) = 1− f̂(ξ), ξ ∈ Br(ζ);

because Z(Y ) is closed, we may take r such that Br(ζ) ⊂ Rd \ Z(Y ).

Let ρ ∈ D(Br(ζ)), and let ψ ∈ S with ψ̂ = ρ. Define g0 = ψ and gm =
h ∗ gm−1 for m ≥ 1. By Young’s inequality

∥gm∥1 ≤ ∥h∥m1 ∥ψ∥1 ,

and because ∥h∥1 < 1, this means that the sequence
∑M

m=0 gm is Cauchy in

L1(Rd) so converges to some G, for which, as |ĥ| ≤ ∥h∥1 < 1,

Ĝ =

∞∑
m=0

ĝm =

∞∑
m=0

ψ̂ · ĥm = ψ̂ · (1− ĥ)−1.

2Walter Rudin, Functional Analysis, second ed., p. 228, Theorem 9.3.
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For ξ ∈ supp ψ̂ ⊂ Br(ζ) we have ĥ(ξ) = 1− f̂(ξ) and so

ψ̂(ξ) = Ĝ(ξ)(1− ĥ(ξ)) = Ĝ(ξ)f̂(ξ);

on the other hand, for ξ ̸∈ supp ψ̂, ψ̂(ξ) = 0 = Ĝ(ξ)f̂(ξ), so

ψ̂ = Ĝ · f̂ ,

which implies that ψ = G ∗ f . Then

ψ ∗ ϕ = G ∗ f ∗ ϕ = G ∗ 0 = 0,

therefore

ϕ̂(ρ) = ϕ(ρ̂) = ϕ(F 2(ψ)) = ϕ(ψ̌) =

∫
Rd

ψ(−x)ϕ(x)dx = (ψ ∗ ϕ)(0) = 0.

This is true for all ρ ∈ D(Br(ζ)), which means that ϕ̂ vanishes on Br(ζ). This
is true for any ζ ∈ Rd \ Z(Y ), so with Ω the union of those open sets on which

ϕ̂ vanishes, Rd \ Z(Y ) ⊂ Ω. Then Z(Y ) ⊂ Rd \ Ω = supp ϕ̂.

If X is a Banach space and M is a linear subspace of X, we define the
annihilator of M as

M⊥ = {γ ∈ X∗ : if x ∈M then ⟨x, γ⟩ = 0}.

It is immediate that M⊥ is a weak-* closed linear subspace of X∗. If N is a
linear subspace of X∗, we define the annihilator of N as

⊥N = {x ∈ X : if γ ∈ N then ⟨x, γ⟩ = 0}.

It is immediate that ⊥N is a norm closed linear subspace of the Banach space
X. One proves using the Hahn-Banach theorem that ⊥(M⊥) is the norm closure
of M in X.3

We say that a subspace Y of L1(Rd) is translation-invariant if f ∈ Y and
x ∈ Rd imply that fx ∈ Y , where fx(y) = f(y − x). The following theorem
gives conditions under which a closed translation-invariant subspace of L1(Rd)
is equal to the entire space.4

Theorem 4. If Y is a closed translation-invariant subspace of L1(Rd) and
Z(Y ) = ∅, then Y = L1(Rd).

Proof. Suppose that ϕ ∈ L∞(Rd) and
∫
fϕ̌ = 0 for each f ∈ Y . Let f ∈ Y and

x ∈ Rd. As Y is translation-invariant, f−x ∈ Y so
∫
Rd f(y+x)ϕ(−y)dy = 0, i.e.

(f ∗ϕ)(x) = 0. This is true for all x ∈ Rd, which means that f ∗ϕ = 0. Theorem

3 then tells us that supp ϕ̂ is contained in Z(Y ), namely, supp ϕ̂ is empty, which

means that the tempered distribution ϕ̂ vanishes on Rd, i.e. supp ϕ̂ is the zero

3Walter Rudin, Functional Analysis, second ed., p. 96, Theorem 4.7.
4Walter Rudin, Functional Analysis, second ed., p. 228, Theorem 9.4.
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element of the locally convex space S ′. As the Fourier transform S ′ → S ′ is
linear and one-to-one, the tempered distribution ϕ is the zero element of S ′,
which implies that ϕ ∈ L∞(Rd) is zero. As Lebesgue measure on Rd is σ-finite,
for X the Banach space L1(Rd) we have X∗ = L∞(Rd), with ⟨f, γ⟩ =

∫
fγ.

Thus Y ⊥ is the zero subspace of L∞(Rd), hence ⊥(Y ⊥) = L1(Rd). This implies
that L1(Rd) is equal to the closure of Y in L1(Rd), and because Y is closed this
means Y = L1(Rd), completing the proof.

Theorem 5. Suppose that K ∈ L1(Rd) and that Y is the smallest closed
translation-invariant subspace of L1(Rd) that includes K. Y = L1(Rd) if and
only if

K̂(ξ) ̸= 0, ξ ∈ Rd.

Proof. Suppose that K̂(ξ) ̸= 0 for all ξ ∈ Rd. As K ∈ Y , this implies that
Z(Y ) = ∅. Thus by Theorem 4 we get Y = L1(Rd).

Suppose that Y = L1(Rd). Then f(x) = e−π|x|2 belongs to Y and f̂(ξ) =

e−π|ξ|2 , which has no zeros, hence Z(Y ) = ∅. For ξ ∈ Rd, define evξ : C0(Rd) →
C by evξ(g) = g(ξ), which is a bounded linear operator. The Fourier transform
F : L1(Rd) → C0(Rd) is a bounded linear operator, hence for each ξ ∈ Rd,
evξ ◦ F : L1(Rd) → C is a bounded linear operator. Hence

Vξ = {f ∈ L1(Rd) : f̂(ξ) = 0} = ker(evξ ◦ F )

is a closed subspace of L1(Rd). If f ∈ V and x ∈ Rd, then

f̂x(ξ) =

∫
Rd

f(y − x)e−2πiξ·ydy = e−2πiξ·xf̂(ξ) = 0,

showing that Vξ is translation-invariant. Therefore

V =
⋂

K̂(ξ)=0

Vξ

is a closed translation-invariant subspace of L1(Rd), and because Y is the small-
est closed translation-invariant subspace of L1(Rd), Y ⊂ V . Y ⊂ V implies
Z(V ) ⊂ Z(Y ) = ∅, and applying Theorem 4 we get that V = L1(Rd). But
there is no ξ for which Vξ = L1(Rd), so V = L1(Rd) implies that {ξ ∈ Rd :

K̂(ξ) = 0} = ∅.

3 Slowly oscillating functions

Let B(Rd) be the collection of bounded functions Rd → C, which with the
supremum norm ∥f∥u = supx∈Rd |f(x)| is a Banach algebra.

A function ϕ ∈ B(Rd) is said to be slowly oscillating if for each ϵ > 0
there is some A and some δ > 0 such that if |x|, |y| > A and |x − y| < δ, then
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|ϕ(x) − ϕ(y)| < ϵ. We now prove the Wiener-Pitt tauberian theorem; the
statement supposing that a function is slowly oscillating is attributed to Pitt.5

Theorem 6 (Wiener-Pitt tauberian theorem). If ϕ ∈ B(Rd), K ∈ L1(Rd),
K̂(ξ) ̸= 0 for all ξ ∈ Rd, and

lim
|x|→∞

(K ∗ ϕ)(x) = aK̂(0),

then for each f ∈ L1(Rd),

lim
|x|→∞

(f ∗ ϕ)(x) = af̂(0). (1)

Furthermore, if such ϕ is slowly oscillating then

lim
|x|→∞

ϕ(x) = a. (2)

Proof. Define ψ(x) = ϕ(x)− a. Let Y be the set of those f ∈ L1(Rd) for which

lim
|x|→∞

(f ∗ ψ)(x) = 0.

It is immediate that Y is a linear subspace of L1(Rd). Suppose that fi ∈ Y
tends to some f ∈ L1(Rd). As ψ ∈ B(Rd), f ∗ ψ and fi ∗ ψ belong to Cu(Rd).
Then

∥f ∗ ψ − fi ∗ ψ∥u = ∥(f − fi) ∗ ψ∥u = ∥ψ∥u ∥f − fi∥1 .

There is some i0 such that i ≥ i0 implies ∥f − fi∥1 < ϵ, and because fi0 ∈ Y
there is some M such that |x| ≥M implies |(fi0 ∗ψ)(x)| < ϵ. Then for |x| ≥M ,

|(f ∗ ψ)(x)| ≤ |(f ∗ ψ)(x)− (fi0 ∗ ψ)(x)|+ |(fi0 ∗ ψ)(x)|
≤ ∥ψ∥u ∥f − fi∥1 + |(fi0 ∗ ψ)(x)|
< ϵ · (∥ψ∥u + 1),

showing that f ∈ Y , namely, that Y is closed. Let f ∈ Y and x ∈ Rd. fx ∈
L1(Rd), and for y ∈ Rd,

((τxf) ∗ ψ)(y) = (f ∗ ψ)(y − x),

and as |y| → ∞ we have |y − x| → ∞ and thus (f ∗ ψ)(y − x) → 0, hence
τxf ∈ Y , i.e. Y is translation-invariant. Therefore Y is a closed translation-
invariant subspace of L1(Rd). For x ∈ Rd,

(K ∗ ψ)(x) =
∫
Rd

K(y)(ϕ(x− y)− a)dy = (K ∗ ϕ)(x)− aK̂(0),

5Walter Rudin, Functional Analysis, second ed., p. 229, Theorem 9.7; Walter Rudin,
Fourier Analysis on Groups, p. 163, Theorem 7.2.7; Gerald B. Folland, A Course in Abstract
Harmonic Analysis, p. 116, Theorem 4.72; V. P. Havin and N. K. Nikolski, Commutative Har-
monic Analysis II, p. 134; Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis
II, p. 511, Theorem 39.37.

8



and by hypothesis we get (K ∗ ψ)(x) → 0 as |x| → ∞, i.e. K ∈ Y .
Let Y0 be the smallest closed translation-invariant subspace of L1(Rd) that

includes K. On the one hand, because Y is a closed translation-invariant sub-
space of L1(Rd) and K ∈ Y we have Y0 ⊂ Y . On the other hand, because
K̂(ξ) ̸= 0 for all ξ we have by Theorem 5 that Y0 = L1(Rd). Therefore
Y = L1(Rd). This means that for each f ∈ L1(Rd), (f ∗ψ)(x) → 0 as |x| → ∞,

i.e. (f ∗ ϕ)(x) → af̂(0) as |x| → ∞, proving (1)
Assume further now that ϕ is slowly-oscillating and let ϵ > 0. There is some

A and some δ > 0 such that if |x|, |y| > A and |x− y| < δ then

|ϕ(x)− ϕ(y)| < ϵ.

There is a test function h such that h ≥ 0, h(x) = 0 for |x| ≥ δ, and ĥ(0) = 1.
By (1),

lim
|x|→∞

(h ∗ ϕ)(x) = aĥ(0) = a.

On the other hand, for x ∈ Rd,

ϕ(x)− (h ∗ ϕ)(x) = ĥ(0)ϕ(x)− (h ∗ ϕ)(x)

=

∫
Rd

(h(y)ϕ(x)− ϕ(x− y)h(y))dy

=

∫
|y|<δ

(ϕ(x)− ϕ(x− y))h(y)dy,

and so for |x| > A+ δ,

|ϕ(x)− (h ∗ ϕ)(x)| ≤
∫
|y|<δ

ϵ · |h(y)|dy = ϵ

∫
Rd

h(y)dy = ϵĥ(0) = ϵ.

We have thus established that as |x| → ∞, (i) (h ∗ ϕ)(x) = a + o(1) and (ii)
ϕ(x) = (h ∗ ϕ)(x) + o(1), which together yield ϕ(x) = a+ o(1), i.e. ϕ(x) → a as
|x| → ∞, proving (2).

4 Closed ideals in L1(Rd)

L1(Rd) is a Banach algebra using convolution as the product.6

Theorem 7. Suppose that I is a closed linear subspace of L1(Rd). I is translation-
invariant if and only if I is an ideal.

Proof. Assume that I is translation-invariant and let f ∈ I and g ∈ L1(Rd).

6Eberhard Kaniuth, A Course in Commutative Banach Algebras, p. 25, Proposition 1.4.7.
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For ϕ ∈ I⊥ ⊂ L∞(Rd),

⟨g ∗ f, ϕ⟩ =
∫
Rd

(g ∗ f)(x)ϕ(x)dx

=

∫
Rd

ϕ(x)

(∫
Rd

g(x− y)f(y)dy

)
dx

=

∫
Rd

g(z)

(∫
Rd

ϕ(x)fz(x)dx

)
dz

=

∫
Rd

g(z) ⟨ϕ, fz⟩ dz

= 0,

because fz ∈ I for each z ∈ Rd. This shows that f ∗ g ∈⊥ (I⊥). But ⊥(I⊥) is
the closure of I in L1(Rd),7 and I is closed so f ∗ g ∈ I, showing that I is an
ideal.

Assume that I is an ideal and let f ∈ I and x ∈ Rd. Let V be a closed ball
centered at 0, and let χA be the indicator function of a set A. We have∥∥∥∥fx − 1

µ(V )
χx+V ∗ f

∥∥∥∥
1

=

∫
Rd

∣∣∣∣fx(y)− 1

µ(V )
(χx+V ∗ f)(y)

∣∣∣∣ dy
=

∫
Rd

∣∣∣∣ 1

µ(V )

∫
V

fx(y)dz −
1

µ(V )

∫
Rd

χx+V (z)f(y − z)dz

∣∣∣∣ dy
=

1

µ(V )

∫
Rd

∣∣∣∣∫
V

f(y − x)dz −
∫
V

f(y − z − x)dz

∣∣∣∣ dy
=

1

µ(V )

∫
Rd

∣∣∣∣∫
V

(f(y − x)− f(y − z − x))dz

∣∣∣∣ dy
≤ 1

µ(V )

∫
V

(∫
Rd

|f(y − x)− f(y − z − x)| dy
)
dz

=
1

µ(V )

∫
V

∥fx − fz+x∥1 dz

=
1

µ(V )

∫
V

∥f − fz∥1 dz

≤ sup
z∈V

∥f − fz∥1 .

Let ϵ > 0. The map z 7→ fz is continuous Rd → L1(Rd), so there is some δ > 0
such that if |z| < δ then ∥fz − f0∥1 < ϵ, i.e. ∥f − fz∥1 < ϵ. Then let V be the
closed ball of radius δ, with which∥∥∥∥fx − 1

µ(V )
χx+V ∗ f

∥∥∥∥
1

≤ sup
z∈V

∥f − fz∥1 ≤ ϵ. (3)

As I is an ideal and 1
µ(V )χx+V ∈ L1(Rd) we have 1

µ(V )χx+V ∗ f ∈ L1(Rd), and

7Walter Rudin, Functional Analysis, second ed., p. 96, Theorem 4.7.

10



then (3) and the fact that I is closed imply fx ∈ I. Therefore I is translation-
invariant.
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