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1 Introduction

There are scarcely any decent expositions of infinite dimensional symplectic vec-
tor spaces. One good basic exposition is by Marsden and Ratiu.1 The Darboux
theorem for a real reflexive Banach space is proved in Lang and probably in
fewer other places than one might guess.2 (Other references.3)

2 Bilinear forms

Let E be a real Banach space. For a bilinear form B : E × E → R, define

∥B∥ = sup
∥e∥≤1,∥f∥≤1

|B(e, f)|.

One proves that B is continuous if and only if ∥B∥ < ∞. Namely, a bilinear
form is continuous if and only if it is bounded.

If B : E × E → R is a continuous bilinear form, we define B♭ : E → E∗ by

B♭(e)(f) = B(e, f), e ∈ E, f ∈ E;

indeed, for e ∈ E,
∥∥B♭(e)f

∥∥ = ∥B(e, f)∥ ≤ ∥B∥ ∥e∥ ∥f∥, showing that
∥∥B♭(e)

∥∥ ≤
∥B∥ ∥e∥, so that B♭(e) is continuous E → R. Moreover, it is apparent that B♭

1Jerrold E. Marsden and Tudor S. Ratiu, Introduction to Mechanics and Symmetry, second
ed., Chapter 2.

2Serge Lang, Differential and Riemannian Manifolds, p. 150, Theorem 8.1; Mircea Puta,
Hamiltonian Mechanical Systems and Geometric Quantization, p. 12, Theorem 1.3.1.

3Andreas Kriegl and Peter W. Michor, The Convenient Setting of Global Analysis, p. 522,
§48; Peter W. Michor, Some geometric evolution equations arising as geodesic equations on
groups of diffeomorphisms including the Hamiltonian approach, pp. 133–215, in Antonio Bove,
Ferruccio Colombini, and Daniele Del Santo (eds.), Phase Space Analysis of Partial Differ-
ential Equations; K.-H. Need, H. Sahlmann, and T. Thiemann, Weak Poisson Structures on
Infinite Dimensional Manifolds and Hamiltonian Actions, pp. 105–135, in Vladimir Dobrev
(ed.), Lie Theory and Its Applications in Physics; Tudor S. Ratiu, Coadjoint Orbits and the
Beginnings of a Geometric Representation Theory, pp. 417–457, in Karl-Hermann Neeb and
Arturo Pianzola (eds.), Developments and Trends in Infinite-Dimensional Lie Theory.
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is linear, and ∥∥∥B♭
∥∥∥ = sup

∥e∥≤1

∥∥∥B♭(e)
∥∥∥

= sup
∥e∥≤1

sup
∥f∥≤1

|B♭(e)(f)|

=M,

so B♭ : E → E∗ is continuous.
We call a continuous bilinear form B : E×E → F weakly nondegenerate

if B♭ : E → E∗ is one-to-one. Since B♭ is linear, this is equivalent to the state-
ment that B♭(e) = 0 implies that e = 0, which is equivalent to the statement
that if B(e, f) = 0 for all f then e = 0.

An isomorphism of Banach spaces is a linear isomorphism T : E → F
that is continuous such that T−1F → E is continuous. Equivalently, to say
that T : E → F is an isomorphism of Banach spaces means that T : E → F
is a bijective bounded linear map such that T−1 : F → E is a bounded linear
map. It follows from the open mapping theorem that if T : E → F is an onto
bounded linear isomorphism, hence is an isomorphism of Banach spaces.

We say that a continuous bilinear form B : E×E → R is strongly nonde-
generate if B♭ : E → E∗ is an isomorphism of Banach spaces.

For a real vector space V and a bilinear form B : V ×V → R, we say that B
is alternating if B(v, v) = 0 for all v ∈ V . We say that B is skew-symmetric
if B(u, v) = −B(v, u) for all u, v ∈ V . It is straightforward to check that B is
alternating if and only if B is skew-symmetric.

For Banach spaces E1, . . . , Ep and F , let L (E1, . . . , Ep;F ) denote the set
of continuous multilinear maps E1 × · · ·Ep → F . For a multilinear map T :
E1 × · · · × Ep → F to be continuous it is equivalent that

∥T∥ = sup
∥e1∥≤1,...∥ep∥≤1

∥T (e1, . . . , en)∥ <∞,

namely that it is bounded with the operator norm. With this norm, L (E1, . . . , Ep;F )
is a Banach space.4 We write

Lp(E;F ) = L (E1, . . . , Ep;F ).

For Banach spaces E and F , we denote by GL(E;F ) the set of isomorphisms
E → F . One proves that GL(E;F ) is an open set in the Banach space L (E;F )
and that with the subspace topology, u 7→ u−1 is continuous GL(E;F ) →
GL(F ;E).5

For Banach spaces E,F,G, define

ϕ : L (E,F ;G) → L (E;L (F,G))

by ϕ(f)(x)(y) = f(x, y) for f ∈ L (E,F ;G), x ∈ E, and y ∈ F . One proves
that ϕ is an isometric isomorphism.6

4Henri Cartan, Differential Calculus, p. 22, Theorem 1.8.1.
5Henri Cartan, Differential Calculus, p. 20, Theorem 1.7.3.
6Henri Cartan, Differential Calculus, p. 23, §1.9.
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3 Differentiable functions

Let E and F be Banach spaces and let U be a nonempty open subset of E.
For a ∈ U , a function f : U → F is said to be differentiable at a if (i) f is
continuous at a and (ii) there is a linear mapping g : E → F such that

∥f(x)− f(a)− (g(x)− g(a))∥F = o(∥x− a∥E),

as x → a in E. We prove that there is at most one such linear mapping g and
write f ′(a) = g, and call f ′(a) the derivative of f at a. We also prove that
if f is differentiable at a then f ′(a) : E → F is continuous at a and therefore,
being linear, is continuous on E, namely f ′(a) ∈ L (E;F ).7

If f : U → F is differentiable at each a ∈ U , we say that f is differentiable
on U . We call f ′ : U → L (E;F ) the derivative of f . We also write Df = f ′.

We say that f : U → F is C1, also called continuously differentiable, if
(i) f is differentiable on U and (ii) f ′ : U → L (E;F ) is continuous.

Let E,F,G be Banach spaces, let U be an open subset of E, let V be an
open subset of F , and let f : U → F and g : V → G be continuous. Suppose
that a ∈ U and that f(a) ∈ V . We define g ◦ f : f−1(V ) → G on f−1(V ).
One proves that if f is differentiable at a and g is differentiable at f(a), then
h = g ◦ f : f−1(V ) → F is differentiable at a and satisfies8

h′(a) = g′(f(a)) ◦ f ′(a).

For Banach spaces E and F , let ϕ : GL(E;F ) → L (F ;E) be defined by
ϕ(u) = u−1. GL(E;F ) is an open subset of the Banach space L (E;F ) and
ϕ is continuous. It is proved that ϕ continuously differentiable, and that for
u ∈ GL(E;F ), the derivative of ϕ at u,

ϕ′(u) ∈ L (L (E;F );L (F ;E)),

satisfies9

ϕ′(u)(h) = −u−1 ◦ h ◦ u−1, h ∈ L (E;F ).

4 Symplectic forms

A weak symplectic form on a Banach space E is a continuous bilinear form
Ω : E × E → R that is weakly nondegenerate and and alternating.

A strong symplectic form on a Banach space E is a continuous bilinear
form Ω : E × E → R that is strongly nondegenerate and alternating. If Ω is
a strong symplectic form on a Banach space E, we define Ω♯ : E∗ → E by
Ω♯ = (Ω♭)−1, which is an isomorphism of Banach spaces.

7Henri Cartan, Differential Calculus, p. 25.
8Henri Cartan, Differential Calculus, p. 27, Theorem 2.2.1.
9Henri Cartan, Differential Calculus, p. 31, Theorem 2.4.4.
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5 Hamiltonian functions

Let E be a real Banach space E, let D(A) be a linear subspace of E, and let A :
D(A) → E be a linear map, called an operator in E. Write R(A) = AD(A).
For a weak symplectic form ω on E, we say that A is ω-skew if

ω(Ae, f) = −ω(e,Af), e, f ∈ D(A).

If R(A) ⊂ D(A) and A2 = −I, then for e, f ∈ D(A) we have ω(Ae,Af) =
−ω(e,A2f) = −ω(e,−f) = ω(e, f).

For an ω-skew operator A in E, we define H : D(A) → R, called the Hamil-
tonian function of A,10 by

H(u) =
1

2
ω(Au, u), u ∈ D(A).

For a linear operator A in E, we define

G (A) = {(u,Au) : u ∈ D(A)}.

G (A) is a linear subspace of E×E. We say that A is closed if G (A) is a closed
subset of E ×E. One proves that a linear operator A in E is closed if and only
if the linear space D(A) with the norm

∥e∥A = ∥e∥+ ∥Ae∥ , e ∈ D(A)

is a Banach space.
For T ∈ L (E), we define T ∗ω : E × E → R by

(T ∗ω)(e, f) = ω(Te, Tf), (e, f) ∈ E × E;

T ∗ω is called the pullback of ω by T . It is apparent that T ∗ω is bilinear. We
have

∥T ∗ω∥ = sup
∥e∥≤1,∥f∥≤1

|ω(Te, Tf)|

≤ sup
∥e∥≤1,∥f∥≤1

∥ω∥ ∥Te∥ ∥Tf∥

≤ sup
∥e∥≤1,∥f∥≤1

∥ω∥ ∥T∥ ∥e∥ ∥T∥ ∥f∥

= ∥ω∥ ∥T∥2 ,

showing that T ∗ω is continuous. For e ∈ E, because ω is alternating we have

(T ∗ω)(e, e) = ω(Te, Te) = 0,

i.e. T ∗ω is alternating. For e ∈ E, suppose that (T ∗ω)(e, f) = 0 for all f ∈ E.
That is, ω(Te, Tf) = 0 for all f ∈ E, and thus, to establish that T ∗ω is weakly

10See Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical Foundations of Elastic-
ity, p. 253, §5.1.
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nondegenerate it suffices that T be onto. In the case that T ∗ω = ω, we say that
T ∈ L (E) is a canonical transformation.

Suppose that A is a closed ω-skew operator in E, with Hamiltonian function
H : D(A) → R. D(A) is a Banach space with the norm ∥e∥A = ∥e∥ + ∥Ae∥.
For u ∈ D(A) and v ∈ D(A), using the fact that A is ω-skew we check that

H(v)−H(u)− ω(Au, v − u) =
1

2
ω(A(v − u), v − u),

hence

|H(v)−H(u)− ω(Au, v − u)| ≤ 1

2
∥ω∥ ∥A(v − u)∥ ∥v − u∥ ≤ 1

2
∥ω∥ ∥v − u∥2A .

This shows that H is differentiable on the Banach space D(A), with derivative
H ′ : D(A) → D(A)∗ defined by11

H ′(u)(e) = ω(Au, e), u ∈ D(A), e ∈ D(A).

Moreover, for u, v ∈ D(A) we have

∥H ′(v)−H ′(u)∥ = sup
∥e∥A≤1

|H ′(v)(e)−H ′(u)(e)|

= sup
∥e∥A≤1

|ω(Av, e)− ω(Au, e)|

= sup
∥e∥A≤1

|ω(A(v − u), e)|

≤ sup
∥e∥A≤1

∥ω∥ ∥A(v − u)∥ ∥e∥

≤ ∥ω∥ ∥A(v − u)∥
≤ ∥ω∥ ∥v − u∥A ,

showing that H ′ : D(A) → D(A)∗ is continuous, namely that H is C1. (We
also write DH = H ′.)

Suppose that A is a closed operator in E and that H : D(A) → R is some
function such that H ′(u)e = ω(Au, e) for all u ∈ D(A) and e ∈ D(A). On the
one hand, because H ′ is continuous and linear, the second derivative D2H :
D(A) → L (D(A),D(A)∗) is

(D2H)(u)(e)(f) = H ′(e)(f) = ω(Ae, f), u, e, f ∈ D(A).

On the other hand, because D2H is continuous, for each u ∈ D(A), the bilinear
form (D2H)(u) : D(A)×D(A) → R is symmetric.12 That is, (D2H)(u)(e)(f) =
(D2H)(u)(f)(e), which by the above means

ω(Ae, f) = ω(Af, e), e, f ∈ D(A),

11cf. Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical Foundations of Elasticity,
p. 254, Proposition 2.2.

12Serge Lang, Real and Functional Analysis, third ed., p. 344, Theorem 5.3.
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showing that A is ω-skew. Let G : D(A) → R be the Hamiltonian function of
A, i..e

G(u) =
1

2
ω(Au, u), u ∈ D(A).

What we established earlier tells us that

G′(u)(e) = ω(Au, e), u ∈ D(A), e ∈ D(A).

Then we have that for G′ = H ′. Let K = G − H, which is C1 with K ′ = 0.
The mean value theorem13 tells us that for any x, y ∈ D(A),

K(x+ y)−K(x) =

∫ 1

0

K ′(x+ ty)(y)dt = 0,

and thus K(u) = K(0) = C for all u ∈ D(A). Therefore, G = H + C.

6 Semigroups

Let E be a real Banach space, let ω be a weak symplectic form on E, and let
A be a closed densely defined ω-skew linear operator in E. Suppose that A is
the infinitesimal generator of a strongly continuous one-parameter semigroup
{Ut : t ≥ 0}, where Ut ∈ L (E) for each t, and let H be the Hamiltonian
function of A.14

Theorem 1. For each t ≥ 0, Ut is a canonical transformation.
For each t ≥ 0 and for each x ∈ D(A),

H(Utx) = H(x).

Proof. For u, v ∈ D(A) and t ≥ 0, using the chain rule and the fact that ω is a
bilinear form,15

d

dt
ω(Utu, Utv) = ω

(
d

dt
Utu, Utv

)
+ ω

(
Utu,

d

dt
Utv

)
.

Because A is the infinitesimal generator of {Ut : t ≥ 0}, it follows that d
dt (Utw) =

AUtw for each w ∈ D(A). Using this and the fact that A is ω-skew,

d

dt
ω(Utu, Utv) = ω(AUtu, Utv) + ω(Utu,AUtv)

= −ω(Utu,AUtv) + ω(Utu,AUtv)

= 0.

13Serge Lang, Real and Functional Analysis, third ed., p. 341, Theorem 4.2.
14Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical Foundations of Elasticity,

p. 256, Proposition 2.6.
15Henri Cartan, Differential Calculus, p. 30, Theorem 2.4.3.
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This implies that ω(Utu, Utv) = ω(U0u, U0v) = ω(u, v) for all t ≥ 0, which
means that Ut is a canonical transformation for each t ≥ 0.

For any t ≥ 0 and x ∈ D(A), AUtx = UtAx. (The infinitesimal generator
of a one-parameter semigroup commutes with each element of the semigroup.)
Then, using the fact that Ut is a canonical transformation,

H(Utx) =
1

2
ω(A(Utx), Utx)

=
1

2
ω(UtAx,Utx)

=
1

2
ω(Ax, x)

= H(x).

Suppose that there is some c > 0 such that H(u) ≥ c ∥u∥2A for all u ∈ D(A),
namely that H is coercive on the Banach space D(A). Let t ≥ 0 and let
u ∈ D(A). Then Utu ∈ D(A), so using the hypothesis and Theorem 1,

∥Utu∥2A ≤ 1

c
H(Utu) =

1

c
H(u) =

1

2c
ω(Au, u) ≤ 1

2c
∥ω∥ ∥Au∥ ∥u∥ ≤ ∥ω∥

2c
∥u∥2A .

Therefore, for each t ≥ 0 and u ∈ D(A),

∥Utu∥A ≤
√

∥ω∥
2c

∥u∥A .

7 Hilbert spaces

For a real vector space V , a complex struture on V is a linear map J : V → V
such that J2 = −I. For v ∈ V , define iv = Jv ∈ V , for which on the one hand,

(α+ iβ)(γ + iδ)v = (α+ iβ)(γv + δJv)

= αγv + αδJv + J(βγv) + J(βδJv)

= αγv + (αδ + βγ)Jv + βδJ2v

= (αγ − βδ)v + (αδ + βγ)Jv,

and on the other hand,

(α+ iβ)(γ + iδ)v = (αγ − βδ + (αδ + βγ)i)v.

It follows that V with iv = Jv is a complex vector space. We emphasize that
the complex vector space V contains the same elements as the real vector space
V . The following theorem connects symplectic forms, real inner products, and
complex inner products.16 By a complex inner product on a complex vector

16Paul R. Chernoff and Jerrold E. Marsden, Properties of Infinite Dimensional Hamiltonian
Systems, p. 6, Theorem 2.
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space W , we mean a function h : W ×W → C that is conjugate symmetric,
complex linear in the first argument, h(w,w) ≥ 0 for all w ∈W , and h(w,w) = 0
implies w = 0.

Theorem 2. LetH be a real Hilbert space with inner product ⟨·, ·⟩ : H×H → R
and let ω be a weak symplectic form on H. Then there is a complex structure
J : H → H and a real inner product s on H such that

s(x, y) = −ω(Jx, y), x, y ∈ H

is a real inner product on the real vector space H, and

h(x, y) = s(x, y)− iω(x, y), x, y ∈ H

is a complex inner product on H with the complex structure J .
Furthermore, the following are equivalent:

1. The norm induced by h is equivalent with the norm induced by ⟨·, ·⟩.

2. The norm induced by s is equivalent with the norm induced by ⟨·, ·⟩.

3. ω is a strong symplectic form on the real Hilbert space H.

Proof. By the Riesz representation theorem,17 because ω is a bounded bilinear
form there is a unique A ∈ L (H) such that

ω(x, y) = ⟨Ax, y⟩ , x, y ∈ H. (1)

Because ω is skew-symmetric,

⟨Ax, y⟩ = ω(x, y) = −ω(y, x) = −⟨Ay, x⟩ = ⟨(−A)y, x⟩ .

On the other hand, because ⟨·, ·⟩ is a real inner product, ⟨Ax, y⟩ = ⟨x,A∗y⟩ =
⟨A∗y, x⟩. Therefore A∗ = −A.

A∗A = (−A)A = −A2 and AA∗ = A(−A) = −A2, so A is normal. Therefore
A has a polar decomposition:18 there is a unitary U ∈ L (H) and some
P ∈ L (H) with P ≥ 0, such that

A = UP,

and such that A,U, P commute; a fortiori, P is self-adjoint. If Ax = 0, then
ω(x, y) = ⟨Ax, y⟩ = ⟨0, y⟩ = 0 for all y ∈ H, and because ω is weakly nonde-
generate this implies that x = 0, hence A is one-to-one, which implies that P is
one-to-one (this implication does not use that U is unitary). We have

A∗ = (UP )∗ = P ∗U∗ = PU∗, A∗ = −A = −UP = −PU,

hence
PU∗ = P (−U).

17Walter Rudin, Functional Analysis, second ed., p. 310, Theorem 12.8.
18Walter Rudin, Functional Analysis, second ed., p. 332, Theorem 12.35.
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Because P is one-to-one, this yields U∗ = −U . But U is unitary, i.e. U∗U = I
and UU∗ = I. Therefore (−U)U = I, i.e. −U2 = I. This means that U is a
complex structure on the real Hilbert space H. We write J = U .

The complex structure J satisfies, for x, y ∈ H,

ω(Jx, Jy) = ⟨AJx, Jy⟩ = ⟨JAx, Jy⟩ = ⟨Ax, J∗Jy⟩ = ⟨Ax, y⟩ = ω(x, y),

showing that J is a canonical transformation.
s : H ×H → R is defined, for x, y ∈ H, by

s(x, y) = −ω(Jx, y) = −⟨AJx, y⟩ = ⟨(−J)Ax, y⟩ =
〈
J−1Ax, y

〉
= ⟨Px, y⟩ .

It is apparent that s is bilinear. Because P is self-adjoint and ⟨·, ·⟩ is symmetric,

s(x, y) = ⟨Px, y⟩ = ⟨x, Py⟩ = ⟨Py, x⟩ = s(y, x),

showing that s is symmetric. Because P ≥ 0, for any x ∈ H we have s(x, x) =
⟨Px, x⟩ ≥ 0, namely s is positive. Also because P ≥ 0, there is a unique
S ∈ L (H), S ≥ 0, satisfying S2 = P .19 If s(x, x) = 0, we get

0 = ⟨Px, x⟩ =
〈
S2x, x

〉
= ⟨Sx, Sx⟩ = ∥Sx∥2 ,

hence Sx = 0 and so Px = 0, and because P is one-to-one, x = 0. Therefore s
is positive definite, and thus is a real inner product on H.

h : H ×H → C is defined, for x, y ∈ H, by

h(x, y) = s(x, y)− iω(x, y) = ⟨Px, y⟩ − iω(x, y) = ⟨Px, y⟩ − i ⟨Ax, y⟩ .

For x1, x2, y ∈ H,
h(x1 + x2, y) = h(x1, y) + h(x2, y).

For α+ iβ ∈ C,

h((α+ iβ)x, y) = h(αx+ βJx, y)

= h(αx, y) + βh(Jx, y)

= αh(x, y) + β ⟨PJx, y⟩ − iβ ⟨AJx, y⟩
= αh(x, y) + β ⟨Ax, y⟩ − iβ

〈
A(−J−1)x, y

〉
= αh(x, y) + βω(x, y) + iβ ⟨Px, y⟩
= αh(x, y) + βω(x, y) + iβs(x, y)

= αh(x, y) + iβ(s(x, y)− iω(x, y))

= αh(x, y) + iβh(x, y)

= (α+ iβ)h(x, y).

Therefore h is complex linear in its first argument. Because s is symmetric and
ω is skew-symmetric, h(x, y) = s(x, y)− iω(x, y) satisfies

h(y, x) = s(y, x)− iω(y, x) = s(x, y) + iω(x, y) = h(x, y),

19Walter Rudin, Functional Analysis, second ed., p. 331, Theorem 12.33.
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showing that h is conjugate symmetric. For x ∈ H,

h(x, x) = s(x, x)− iω(x, x) = s(x, x) ≥ 0.

If h(x, x) = 0, then s(x, x) = 0, which implies that x = 0. Therefore h is a
complex inner product on H with the complex structure J .

Suppose that ω is a strong symplectic form on the real Hilbert space H.
That is, ω♭ : H → H∗ is an isomorphism of Banach spaces. We shall show that
A, from (1), is onto. For y ∈ H, define λ : H → R by λ(x) = ⟨x, y⟩. Then
λ ∈ H∗, so there is some v ∈ H for which ω♭(v) = λ. That is, ω(v, x) = λ(x) =
⟨x, y⟩ = ⟨y, x⟩ for all x ∈ H. But ω(v, x) = ⟨Av, x⟩, so ⟨Av, x⟩ = ⟨y, x⟩ for all
x ∈ H, which implies that Av = y, and thus shows that A is onto, and hence
invertible in L (H). Because A = UP and A,U are invertible in L (H), P is
invertible in L (H). Therefore S, P = S2, S ≥ 0, is invertible in L (H), whence

∥x∥2 =
∥∥S−1Sx

∥∥2
≤

∥∥S−1
∥∥2 ∥Sx∥2

=
∥∥S−1

∥∥2 ⟨Sx, Sx⟩
=

∥∥S−1
∥∥2 ⟨Px, x⟩

=
∥∥S−1

∥∥2 s(x, x)
=

∥∥S−1
∥∥ ∥x∥2s ,

and on the other hand

∥x∥2s = s(x, x) = ⟨Px, x⟩ ≤ ∥Px∥ ∥x∥ ≤ ∥P∥ ∥x∥2 = ∥S∥2 ∥x∥2 .

so
∥x∥ ≤

∥∥S−1
∥∥ ∥x∥s , ∥x∥s ≤ ∥S∥ ∥x∥ .

Namely this establishes that the norms ∥x∥2 = ⟨x, x⟩ and ∥x∥2s = s(x, x) are
equivalent.

8 Hamiltonian vector fields

Let E be a real Banach space and let k ≥ 1; if we do not specify k we merely
suppose that it is ≥ 1. A Ck vector field on U , where U an open subset of
E, is a Ck function v : U → E.

Let v be a Ck, k ≥ 1, vector field on E. For x ∈ E, an integral curve
of v through x is a differentiable function ϕ : J → E, where J is some open
interval in R containing 0, that satisfies

ϕ′(t) = (v ◦ ϕ)(t), t ∈ J, ϕ(0) = x.

If ψ : I → E and ϕ : J → E are integral curves of v through x, it is proved that
for t ∈ I ∩ J , ψ(t) = ϕ(t).20 An integral curve of v through x, ϕ : J → E, is

20Rodney Coleman, Calculus on Normed Vector Spaces, p. 194, Proposition 9.3.
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said to be maximal if there is no integral curve of v through x whose domain
strictly includes J . If X : E → E is a C1 vector field, for each x ∈ E it is
proved that there is a unique maximal integral curve of v through x, denoted
ϕx : Jx → E.21 A vector field v : E → E is called complete when Jx = R for
each x ∈ E. For a vector field v : E → E, a C1 function f : E → R is called a
first integral of v if for any integral curve ϕ : J → E of v, f ◦ ϕ : J → E is
constant. It is proved that if a vector field has a first integral f : E → R such
that f−1(c) is a compact subset of E for each c ∈ R, then v is a complete vector
field.22

The flow of v is the function σ : Σv → E, where

Σv =
⋃
x∈E

Jx × {x},

such that for each x ∈ E, σ(t, x) = ϕx(t), t ∈ Jx. It is proved that Σv is an open
subset of R×E, and that σ : Σv → E is continuous.23 It is also proved that for
any k ≥ 1, if v is Ck then σ : Σv → E is Ck.24 If (s, x), (t, σ(s, x)), (t+s, x) ∈ Σv,
then25

σ(t+ s, x) = σ(t, σ(s, x)).

When v is a complete vector field, its flow is called a global flow. In this
case, for t ∈ R we define σt : E → E by σt(x) = σ(t, x). Then σ−1

t = σ−t, and
thus each σt is a C

k diffeomorphism E → E.

9 Differential forms

For vector spaces V and W and for p ≥ 1, a function f : V p → W is called
alternating if (v1, . . . , vp) ∈ V p and vi = vi+1 for some 1 ≤ i ≤ p − 1 imply
that f(v1, . . . , vp) = 0.

For Banach spaces E and F and for p ≥ 1, we denote by Ap(E;F ) the
set of alternating elements of Lp(E;F ). In particular, A1(E;F ) = L1(E;F ) =
L (E;F ). Ap(E;F ) is a closed linear subspace of the Banach space Lp(E;F ).26

We define
A0(E;F ) = L0(E;F ) = F.

Let Σn be the set of permutation {1, . . . , n}, which has n! elements. Let
Shp,q be the set of permutations σ of {1, . . . , p, p+ 1, . . . , p+ q} for which

σ(1) < · · · < σ(p), σ(p+ 1) < · · · < σ(p+ q).

The set Shp,q has
(
p+q
p

)
=

(
p+q
q

)
elements.

21Rodney Coleman, Calculus on Normed Vector Spaces, p. 194, Theorem 9.2.
22Rodney Coleman, Calculus on Normed Vector Spaces, p. 207, Theorem 9.8.
23Rodney Coleman, Calculus on Normed Vector Spaces, p. 213, Theorem 10.1.
24Rodney Coleman, Calculus on Normed Vector Spaces, p. 222, Theorem 10.3.
25Yvonne Choquet-Bruhat and Cecile DeWitt-Morette, Analysis, Manifolds and Physics,

Part I, p. 551.
26Henri Cartan, Differential Forms, p. 9.
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For f ∈ Ap(E;R) and g ∈ Aq(E;R), we define f ∧ g : Ep × Eq → R by

(f ∧ g)(x1, . . . , xp, xp+1, . . . , xp+q)

=
∑

σ∈Shp,q

sgn(σ)f(xσ(1), . . . , xσ(p))g(xσ(p+1), . . . , xσ(p+q)).

It is proved that f ∧ g ∈ Ap+q(E;R).27
For f ∈ Ap(E;R) and g ∈ Aq(E;R),

∥f ∧ g∥ = sup
∥x1∥≤1,...,∥xp+q∥≤1

|(f ∧ g)(x1, . . . , xp, xp+1, . . . , xp+q)|

≤ sup
∥x1∥≤1,...,∥xp+q∥≤1

∑
σ∈Shp,q

|f(xσ(1), . . . , xσ(p))g(xσ(p+1), . . . , xσ(p+q))|

≤ sup
∥x1∥≤1,...,∥xp+q∥≤1

∑
σ∈Shp,q

∥f∥ ∥g∥

=

(
p+ q

p

)
∥f∥ ∥g∥ ,

showing that the operator norm of the bilinear map (f, g) 7→ f ∧ g, Ap(E;R)×
Aq(E;R) is ≤

(
p+q
p

)
, and thus is continuous.

One proves that for f ∈ Ap(E;R) and g ∈ Aq(E;R), then28

g ∧ f = (−1)pqf ∧ g.

It is also proved that for f ∈ Ap(E;R), g ∈ Aq(E;R), and h ∈ Ar(E;R), then29

(f ∧ g) ∧ h = f ∧ (g ∧ h).

It thus makes sense to speak about f1 ∧ · · · ∧ fn. We remind ourselves that
A1(E;R) = L (E;R) = E∗. It is proved that if f1, . . . , fn ∈ E∗, then f1 ∧ · · · ∧
fn ∈ An(E;R) satisfies

f1∧· · ·∧fn(x1, . . . , xn) =
∑
σ∈Σn

sgn(σ)f1(xσ(1)) · · · fn(xσ(n)), (x1, . . . , xn) ∈ En,

and that f1, . . . , fn ∈ E∗ are linearly independent if and only if f1∧· · ·∧fn = 0.30

Let U be an open subset of the Banach space E. For k ≥ 0 and p ≥ 0, a Ck

differential form of degree p on U is a Ck function

α : U → Ap(E;R).

We abbreviate “differential form of degree p” as “differential p-form”. In partic-
ular, a Ck differential 0-form is a Ck function U → A0(E;R) = R. We denote

27Henri Cartan, Differential Forms, pp. 12–14.
28Henri Cartan, Differential Forms, p. 14, Proposition 1.5.1.
29Henri Cartan, Differential Forms, p. 15, Proposition 1.5.2.
30Henri Cartan, Differential Forms, p. 16, Proposition 1.6.1.
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by Ω
(k)
p (U,R) the set of Ck differential p-forms on U . It is apparent that this is

a real vector space.
For a Ck function f : U → R, with k ≥ 1, the derivative f ′ is Ck−1 function

U → L (E;R) = A1(E;R), hence f ′ ∈ Ω
(k−1)
p (U).

For α ∈ Ω
(k)
p (U,R) and β ∈ Ω

(k)
q (U,R), we define α∧ : U → Ap+q(E;R) by

(α ∧ β)(x) = (α(x)) ∧ (β(x)), x ∈ U.

It is proved that α ∧ β ∈ Ω
(k)
p+q(U,R).31

Suppose that k ≥ 1 and α ∈ Ω
(k)
p (U,R), i.e. α : U → Ap(U ;R) is a Ck

function. Then the derivative is the Ck−1 function

α′ : U → L (E;Ap(E;R).

We define dα : U → Ap+1(E;R) by

(dα)(x)(ξ0, ξ1, . . . , ξp) =

p∑
i=0

(−1)iα′(x)(ξi)(ξ0, . . . , ξ̂i, . . . , ξp)

It is proved that dα ∈ Ω
(k−1)
p+1 (U,R).32

In particular, if f : U → R is a Ck function, then df ∈ Ω
(k−1)
1 (U,R) is the

function df : U → A1(E;R) = L (E;R) defined by

(df)(x)(ξ) = f ′(x)(ξ), x ∈ U, ξ ∈ E.

Thus, df = f ′.

For α ∈ Ω
(k)
p (U,R) and β ∈ Ω

(k)
q (U,R) with k ≥ 1, it is a fact that33

d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ).

In particular, an element f of Ω
(k)
0 (U,R) is a Ck function U → R, for which,

because f ∧ β = fβ,
d(fβ) = (df) ∧ β + f(dβ).

For α ∈ Ω
(
pk)(U,R), with k ≥ 2,34

d(dα) = 0.

Let α ∈ Ω
(k)
p (U,R), let V be an open subset of a Banach space F , and

let ϕ : V → U be a Ck+1 function. The the pullback of α by f , denoted

ϕ∗α : V → Ap(F ;R), is an element of Ω
(k)
p (V,R) satisfying35

(ϕ∗α)(y)(η1, . . . , ηp) = α(ϕ(y))(ϕ′(y)(η1), . . . , ϕ
′(y)(ηp)), (η1, . . . , ηp) ∈ F p.

31Henri Cartan, Differential Forms, p. 19, §2.2.
32Henri Cartan, Differential Forms, pp. 20–21, §2.3.
33Henri Cartan, Differential Forms, p. 22, Theorem 2.4.2.
34Henri Cartan, Differential Forms, p. 23, Theorem 2.5.1.
35Henri Cartan, Differential Forms, p. 29, Proposition 2.8.1.
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The pullback satisfies, for α ∈ Ω
(k)
p (U,R) and β ∈ Ω

(k)
q (U,R),

ϕ∗(α ∧ β) = (ϕ∗α) ∧ (ϕ∗β),

which is an element of Ω
(k)
p+q(V,R). It also satisfies, if ϕ : V → U and f : U → R

are C1,
ϕ∗(df) = d(ϕ∗f),

where (ϕ∗f)(y) = f(ϕ(y)).

10 Contractions and Lie derivatives

Let U be an open subset of a Banach space E, let k ≥ 1, p ≥ 1, let v be a Ck

vector field on U , and let α ∈ Ω
(k)
p (U,R). We define ιvα : U → Ap−1(E;R) by

(ιvα)(x)(v1, . . . , vp−1) = α(v(x), v1, . . . , vp−1), (v1, . . . , vp−1) ∈ Ep−1.

(It is straightforward to check that indeed (ιvα)(x) ∈ Ap−1(E;R).) It is proved

that ιvα : U → Ap−1(E;R) is Ck, and thus ιvα ∈ Ω
(k)
p−1(U,R).36 For p = 0,

with f ∈ Ω
(k)
0 (U,R), i.e. f is a Ck function U → R, we define ιvf = 0. We call

ιvα the contraction of α by v.

It can be proved that if α ∈ Ω
(k)
p (U,R) and β ∈ Ω

(k)
q (U,R),

ιv(α ∧ β) = (ιvα) ∧ β + (−1)pα ∧ ιvβ.

Also, for a Ck vector field w on U ,

ιv(ιwα) = −ιw(ιvα),

and hence ι2vα = 0. And (v, α) 7→ ιvα is bilinear.

For a Ck vector field v on U and α ∈ Ω
(k)
p (U,R), the Lie derivative of α

with respect to v is37

Lvα = d(ιvα) + ιvdα ∈ Ω(k)
p (U,R).

The Lie derivative satisfies

Lv(α ∧ β) = (Lvα) ∧ β + α ∧ Lvβ.

If ω is a weak symplectic form on a Banach space E and v is a C1 vector
field on E, we say that v is a symplectic vector field if

Lvω = 0.

If there is some C1 function H : E → E such that

ιvω = −dH,
36cf. Serge Lang, Differential and Riemannian Manifolds, p. 137, V, §5.
37cf. Serge Lang, Differential and Riemannian Manifolds, pp. 138–141, V, §5.
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we say that v is a Hamiltonian vector field with Hamiltonian function
H. If v is a Hamiltonian vector field with Hamiltonian function H, then

Lvω = d(ιvω) + ιvdω = d(ιvω) = d(−dH) = −d2H = 0,

showing that if a vector field is Hamiltonian then it is symplectic. (This is
analogous to the statement that if a differential form is exact then it is closed.)
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