Weak symplectic forms and differential calculus in Banach spaces

Jordan Bell

May 16, 2015

1 Introduction

There are scarcely any decent expositions of infinite dimensional symplectic vector spaces. One good basic exposition is by Marsden and Ratiu. ${ }^{1}$ The Darboux theorem for a real reflexive Banach space is proved in Lang and probably in fewer other places than one might guess. ${ }^{2}$ (Other references. ${ }^{3}$)

2 Bilinear forms

Let E be a real Banach space. For a bilinear form $B: E \times E \rightarrow \mathbb{R}$, define

$$
\|B\|=\sup _{\|e\| \leq 1,\|f\| \leq 1}|B(e, f)| .
$$

One proves that B is continuous if and only if $\|B\|<\infty$. Namely, a bilinear form is continuous if and only if it is bounded.

If $B: E \times E \rightarrow \mathbb{R}$ is a continuous bilinear form, we define $B^{b}: E \rightarrow E^{*}$ by

$$
B^{\mathrm{b}}(e)(f)=B(e, f), \quad e \in E, f \in E ;
$$

indeed, for $e \in E,\left\|B^{b}(e) f\right\|=\|B(e, f)\| \leq\|B\|\|e\|\|f\|$, showing that $\left\|B^{b}(e)\right\| \leq$ $\|B\|\|e\|$, so that $B^{b}(e)$ is continuous $E \rightarrow \mathbb{R}$. Moreover, it is apparent that B^{b}

[^0]is linear, and
\[

$$
\begin{aligned}
\left\|B^{b}\right\| & =\sup _{\|e\| \leq 1}\left\|B^{b}(e)\right\| \\
& =\sup _{\|e\| \leq 1\|f\| \leq 1} \sup \left|B^{b}(e)(f)\right| \\
& =M,
\end{aligned}
$$
\]

so $B^{b}: E \rightarrow E^{*}$ is continuous.
We call a continuous bilinear form $B: E \times E \rightarrow F$ weakly nondegenerate if $B^{b}: E \rightarrow E^{*}$ is one-to-one. Since B^{b} is linear, this is equivalent to the statement that $B^{b}(e)=0$ implies that $e=0$, which is equivalent to the statement that if $B(e, f)=0$ for all f then $e=0$.

An isomorphism of Banach spaces is a linear isomorphism $T: E \rightarrow F$ that is continuous such that $T^{-1} F \rightarrow E$ is continuous. Equivalently, to say that $T: E \rightarrow F$ is an isomorphism of Banach spaces means that $T: E \rightarrow F$ is a bijective bounded linear map such that $T^{-1}: F \rightarrow E$ is a bounded linear map. It follows from the open mapping theorem that if $T: E \rightarrow F$ is an onto bounded linear isomorphism, hence is an isomorphism of Banach spaces.

We say that a continuous bilinear form $B: E \times E \rightarrow \mathbb{R}$ is strongly nondegenerate if $B^{b}: E \rightarrow E^{*}$ is an isomorphism of Banach spaces.

For a real vector space V and a bilinear form $B: V \times V \rightarrow \mathbb{R}$, we say that B is alternating if $B(v, v)=0$ for all $v \in V$. We say that B is skew-symmetric if $B(u, v)=-B(v, u)$ for all $u, v \in V$. It is straightforward to check that B is alternating if and only if B is skew-symmetric.

For Banach spaces E_{1}, \ldots, E_{p} and F, let $\mathscr{L}\left(E_{1}, \ldots, E_{p} ; F\right)$ denote the set of continuous multilinear maps $E_{1} \times \cdots E_{p} \rightarrow F$. For a multilinear map T : $E_{1} \times \cdots \times E_{p} \rightarrow F$ to be continuous it is equivalent that

$$
\|T\|=\sup _{\left\|e_{1}\right\| \leq 1, \ldots .\left\|e_{p}\right\| \leq 1}\left\|T\left(e_{1}, \ldots, e_{n}\right)\right\|<\infty
$$

namely that it is bounded with the operator norm. With this norm, $\mathscr{L}\left(E_{1}, \ldots, E_{p} ; F\right)$ is a Banach space. ${ }^{4}$ We write

$$
\mathscr{L}_{p}(E ; F)=\mathscr{L}\left(E_{1}, \ldots, E_{p} ; F\right)
$$

For Banach spaces E and F, we denote by $\operatorname{GL}(E ; F)$ the set of isomorphisms $E \rightarrow F$. One proves that $\mathrm{GL}(E ; F)$ is an open set in the Banach space $\mathscr{L}(E ; F)$ and that with the subspace topology, $u \mapsto u^{-1}$ is continuous $\mathrm{GL}(E ; F) \rightarrow$ $\mathrm{GL}(F ; E) .{ }^{5}$

For Banach spaces E, F, G, define

$$
\phi: \mathscr{L}(E, F ; G) \rightarrow \mathscr{L}(E ; \mathscr{L}(F, G))
$$

by $\phi(f)(x)(y)=f(x, y)$ for $f \in \mathscr{L}(E, F ; G), x \in E$, and $y \in F$. One proves that ϕ is an isometric isomorphism. ${ }^{6}$

[^1]
3 Differentiable functions

Let E and F be Banach spaces and let U be a nonempty open subset of E. For $a \in U$, a function $f: U \rightarrow F$ is said to be differentiable at a if (i) f is continuous at a and (ii) there is a linear mapping $g: E \rightarrow F$ such that

$$
\|f(x)-f(a)-(g(x)-g(a))\|_{F}=o\left(\|x-a\|_{E}\right)
$$

as $x \rightarrow a$ in E. We prove that there is at most one such linear mapping g and write $f^{\prime}(a)=g$, and call $f^{\prime}(a)$ the derivative of f at a. We also prove that if f is differentiable at a then $f^{\prime}(a): E \rightarrow F$ is continuous at a and therefore, being linear, is continuous on E, namely $f^{\prime}(a) \in \mathscr{L}(E ; F) .{ }^{7}$

If $f: U \rightarrow F$ is differentiable at each $a \in U$, we say that f is differentiable on U. We call $f^{\prime}: U \rightarrow \mathscr{L}(E ; F)$ the derivative of f. We also write $D f=f^{\prime}$.

We say that $f: U \rightarrow F$ is C^{1}, also called continuously differentiable, if (i) f is differentiable on U and (ii) $f^{\prime}: U \rightarrow \mathscr{L}(E ; F)$ is continuous.

Let E, F, G be Banach spaces, let U be an open subset of E, let V be an open subset of F, and let $f: U \rightarrow F$ and $g: V \rightarrow G$ be continuous. Suppose that $a \in U$ and that $f(a) \in V$. We define $g \circ f: f^{-1}(V) \rightarrow G$ on $f^{-1}(V)$. One proves that if f is differentiable at a and g is differentiable at $f(a)$, then $h=g \circ f: f^{-1}(V) \rightarrow F$ is differentiable at a and satisfies ${ }^{8}$

$$
h^{\prime}(a)=g^{\prime}(f(a)) \circ f^{\prime}(a) .
$$

For Banach spaces E and F, let $\phi: \mathrm{GL}(E ; F) \rightarrow \mathscr{L}(F ; E)$ be defined by $\phi(u)=u^{-1}$. $\mathrm{GL}(E ; F)$ is an open subset of the Banach space $\mathscr{L}(E ; F)$ and ϕ is continuous. It is proved that ϕ continuously differentiable, and that for $u \in \mathrm{GL}(E ; F)$, the derivative of ϕ at u,

$$
\phi^{\prime}(u) \in \mathscr{L}(\mathscr{L}(E ; F) ; \mathscr{L}(F ; E)),
$$

satisfies ${ }^{9}$

$$
\phi^{\prime}(u)(h)=-u^{-1} \circ h \circ u^{-1}, \quad h \in \mathscr{L}(E ; F)
$$

4 Symplectic forms

A weak symplectic form on a Banach space E is a continuous bilinear form $\Omega: E \times E \rightarrow \mathbb{R}$ that is weakly nondegenerate and and alternating.

A strong symplectic form on a Banach space E is a continuous bilinear form $\Omega: E \times E \rightarrow \mathbb{R}$ that is strongly nondegenerate and alternating. If Ω is a strong symplectic form on a Banach space E, we define $\Omega^{\sharp}: E^{*} \rightarrow E$ by $\Omega^{\sharp}=\left(\Omega^{b}\right)^{-1}$, which is an isomorphism of Banach spaces.

[^2]
5 Hamiltonian functions

Let E be a real Banach space E, let $\mathscr{D}(A)$ be a linear subspace of E, and let A : $\mathscr{D}(A) \rightarrow E$ be a linear map, called an operator in E. Write $\mathscr{R}(A)=A \mathscr{D}(A)$. For a weak symplectic form ω on E, we say that A is ω-skew if

$$
\omega(A e, f)=-\omega(e, A f), \quad e, f \in \mathscr{D}(A)
$$

If $\mathscr{R}(A) \subset \mathscr{D}(A)$ and $A^{2}=-I$, then for $e, f \in \mathscr{D}(A)$ we have $\omega(A e, A f)=$ $-\omega\left(e, A^{2} f\right)=-\omega(e,-f)=\omega(e, f)$.

For an ω-skew operator A in E, we define $H: \mathscr{D}(A) \rightarrow \mathbb{R}$, called the Hamiltonian function of $A,{ }^{10}$ by

$$
H(u)=\frac{1}{2} \omega(A u, u), \quad u \in \mathscr{D}(A) .
$$

For a linear operator A in E, we define

$$
\mathscr{G}(A)=\{(u, A u): u \in \mathscr{D}(A)\} .
$$

$\mathscr{G}(A)$ is a linear subspace of $E \times E$. We say that A is closed if $\mathscr{G}(A)$ is a closed subset of $E \times E$. One proves that a linear operator A in E is closed if and only if the linear space $\mathscr{D}(A)$ with the norm

$$
\|e\|_{A}=\|e\|+\|A e\|, \quad e \in \mathscr{D}(A)
$$

is a Banach space.
For $T \in \mathscr{L}(E)$, we define $T^{*} \omega: E \times E \rightarrow \mathbb{R}$ by

$$
\left(T^{*} \omega\right)(e, f)=\omega(T e, T f), \quad(e, f) \in E \times E
$$

$T^{*} \omega$ is called the pullback of ω by T. It is apparent that $T^{*} \omega$ is bilinear. We have

$$
\begin{aligned}
\left\|T^{*} \omega\right\| & =\sup _{\|e\| \leq 1,\|f\| \leq 1}|\omega(T e, T f)| \\
& \leq \sup _{\|e\| \leq 1,\|f\| \leq 1}\|\omega\|\|T e\|\|T f\| \\
& \leq \sup _{\|e\| \leq 1,\|f\| \leq 1}\|\omega\|\|T\|\|e\|\|T\|\|f\| \\
& =\|\omega\|\|T\|^{2},
\end{aligned}
$$

showing that $T^{*} \omega$ is continuous. For $e \in E$, because ω is alternating we have

$$
\left(T^{*} \omega\right)(e, e)=\omega(T e, T e)=0
$$

i.e. $T^{*} \omega$ is alternating. For $e \in E$, suppose that $\left(T^{*} \omega\right)(e, f)=0$ for all $f \in E$. That is, $\omega(T e, T f)=0$ for all $f \in E$, and thus, to establish that $T^{*} \omega$ is weakly

[^3]nondegenerate it suffices that T be onto. In the case that $T^{*} \omega=\omega$, we say that $T \in \mathscr{L}(E)$ is a canonical transformation.

Suppose that A is a closed ω-skew operator in E, with Hamiltonian function $H: \mathscr{D}(A) \rightarrow \mathbb{R} . \mathscr{D}(A)$ is a Banach space with the norm $\|e\|_{A}=\|e\|+\|A e\|$. For $u \in \mathscr{D}(A)$ and $v \in \mathscr{D}(A)$, using the fact that A is ω-skew we check that

$$
H(v)-H(u)-\omega(A u, v-u)=\frac{1}{2} \omega(A(v-u), v-u),
$$

hence

$$
|H(v)-H(u)-\omega(A u, v-u)| \leq \frac{1}{2}\|\omega\|\|A(v-u)\|\|v-u\| \leq \frac{1}{2}\|\omega\|\|v-u\|_{A}^{2} .
$$

This shows that H is differentiable on the Banach space $\mathscr{D}(A)$, with derivative $H^{\prime}: \mathscr{D}(A) \rightarrow \mathscr{D}(A)^{*}$ defined by ${ }^{11}$

$$
H^{\prime}(u)(e)=\omega(A u, e), \quad u \in \mathscr{D}(A), \quad e \in \mathscr{D}(A)
$$

Moreover, for $u, v \in \mathscr{D}(A)$ we have

$$
\begin{aligned}
\left\|H^{\prime}(v)-H^{\prime}(u)\right\| & =\sup _{\|e\|_{A} \leq 1}\left|H^{\prime}(v)(e)-H^{\prime}(u)(e)\right| \\
& =\sup _{\|e\|_{A} \leq 1}|\omega(A v, e)-\omega(A u, e)| \\
& =\sup _{\|e\|_{A} \leq 1}|\omega(A(v-u), e)| \\
& \leq \sup _{\|e\|_{A} \leq 1}\|\omega\|\|A(v-u)\|\|e\| \\
& \leq\|\omega\|\|A(v-u)\| \\
& \leq\|\omega\|\|v-u\|_{A}
\end{aligned}
$$

showing that $H^{\prime}: \mathscr{D}(A) \rightarrow \mathscr{D}(A)^{*}$ is continuous, namely that H is C^{1}. (We also write $D H=H^{\prime}$.)

Suppose that A is a closed operator in E and that $H: \mathscr{D}(A) \rightarrow \mathbb{R}$ is some function such that $H^{\prime}(u) e=\omega(A u, e)$ for all $u \in \mathscr{D}(A)$ and $e \in \mathscr{D}(A)$. On the one hand, because H^{\prime} is continuous and linear, the second derivative $D^{2} H$: $\mathscr{D}(A) \rightarrow \mathscr{L}\left(\mathscr{D}(A), \mathscr{D}(A)^{*}\right)$ is

$$
\left(D^{2} H\right)(u)(e)(f)=H^{\prime}(e)(f)=\omega(A e, f), \quad u, e, f \in \mathscr{D}(A) .
$$

On the other hand, because $D^{2} H$ is continuous, for each $u \in \mathscr{D}(A)$, the bilinear form $\left(D^{2} H\right)(u): \mathscr{D}(A) \times \mathscr{D}(A) \rightarrow \mathbb{R}$ is symmetric. ${ }^{12}$ That is, $\left(D^{2} H\right)(u)(e)(f)=$ $\left(D^{2} H\right)(u)(f)(e)$, which by the above means

$$
\omega(A e, f)=\omega(A f, e), \quad e, f \in \mathscr{D}(A),
$$

[^4]showing that A is ω-skew. Let $G: \mathscr{D}(A) \rightarrow \mathbb{R}$ be the Hamiltonian function of A, i..e
$$
G(u)=\frac{1}{2} \omega(A u, u), \quad u \in \mathscr{D}(A) .
$$

What we established earlier tells us that

$$
G^{\prime}(u)(e)=\omega(A u, e), \quad u \in \mathscr{D}(A), \quad e \in \mathscr{D}(A)
$$

Then we have that for $G^{\prime}=H^{\prime}$. Let $K=G-H$, which is C^{1} with $K^{\prime}=0$. The mean value theorem ${ }^{13}$ tells us that for any $x, y \in \mathscr{D}(A)$,

$$
K(x+y)-K(x)=\int_{0}^{1} K^{\prime}(x+t y)(y) d t=0
$$

and thus $K(u)=K(0)=C$ for all $u \in \mathscr{D}(A)$. Therefore, $G=H+C$.

6 Semigroups

Let E be a real Banach space, let ω be a weak symplectic form on E, and let A be a closed densely defined ω-skew linear operator in E. Suppose that A is the infinitesimal generator of a strongly continuous one-parameter semigroup $\left\{U_{t}: t \geq 0\right\}$, where $U_{t} \in \mathscr{L}(E)$ for each t, and let H be the Hamiltonian function of $A .^{14}$

Theorem 1. For each $t \geq 0, U_{t}$ is a canonical transformation.
For each $t \geq 0$ and for each $x \in \mathscr{D}(A)$,

$$
H\left(U_{t} x\right)=H(x) .
$$

Proof. For $u, v \in \mathscr{D}(A)$ and $t \geq 0$, using the chain rule and the fact that ω is a bilinear form, ${ }^{15}$

$$
\frac{d}{d t} \omega\left(U_{t} u, U_{t} v\right)=\omega\left(\frac{d}{d t} U_{t} u, U_{t} v\right)+\omega\left(U_{t} u, \frac{d}{d t} U_{t} v\right) .
$$

Because A is the infinitesimal generator of $\left\{U_{t}: t \geq 0\right\}$, it follows that $\frac{d}{d t}\left(U_{t} w\right)=$ $A U_{t} w$ for each $w \in \mathscr{D}(A)$. Using this and the fact that A is ω-skew,

$$
\begin{aligned}
\frac{d}{d t} \omega\left(U_{t} u, U_{t} v\right) & =\omega\left(A U_{t} u, U_{t} v\right)+\omega\left(U_{t} u, A U_{t} v\right) \\
& =-\omega\left(U_{t} u, A U_{t} v\right)+\omega\left(U_{t} u, A U_{t} v\right) \\
& =0
\end{aligned}
$$

[^5]This implies that $\omega\left(U_{t} u, U_{t} v\right)=\omega\left(U_{0} u, U_{0} v\right)=\omega(u, v)$ for all $t \geq 0$, which means that U_{t} is a canonical transformation for each $t \geq 0$.

For any $t \geq 0$ and $x \in \mathscr{D}(A), A U_{t} x=U_{t} A x$. (The infinitesimal generator of a one-parameter semigroup commutes with each element of the semigroup.) Then, using the fact that U_{t} is a canonical transformation,

$$
\begin{aligned}
H\left(U_{t} x\right) & =\frac{1}{2} \omega\left(A\left(U_{t} x\right), U_{t} x\right) \\
& =\frac{1}{2} \omega\left(U_{t} A x, U_{t} x\right) \\
& =\frac{1}{2} \omega(A x, x) \\
& =H(x) .
\end{aligned}
$$

Suppose that there is some $c>0$ such that $H(u) \geq c\|u\|_{A}^{2}$ for all $u \in \mathscr{D}(A)$, namely that H is coercive on the Banach space $\mathscr{D}(A)$. Let $t \geq 0$ and let $u \in \mathscr{D}(A)$. Then $U_{t} u \in \mathscr{D}(A)$, so using the hypothesis and Theorem 1,

$$
\left\|U_{t} u\right\|_{A}^{2} \leq \frac{1}{c} H\left(U_{t} u\right)=\frac{1}{c} H(u)=\frac{1}{2 c} \omega(A u, u) \leq \frac{1}{2 c}\|\omega\|\|A u\|\|u\| \leq \frac{\|\omega\|}{2 c}\|u\|_{A}^{2} .
$$

Therefore, for each $t \geq 0$ and $u \in \mathscr{D}(A)$,

$$
\left\|U_{t} u\right\|_{A} \leq \sqrt{\frac{\|\omega\|}{2 c}}\|u\|_{A}
$$

7 Hilbert spaces

For a real vector space V, a complex struture on V is a linear map $J: V \rightarrow V$ such that $J^{2}=-I$. For $v \in V$, define $i v=J v \in V$, for which on the one hand,

$$
\begin{aligned}
(\alpha+i \beta)(\gamma+i \delta) v & =(\alpha+i \beta)(\gamma v+\delta J v) \\
& =\alpha \gamma v+\alpha \delta J v+J(\beta \gamma v)+J(\beta \delta J v) \\
& =\alpha \gamma v+(\alpha \delta+\beta \gamma) J v+\beta \delta J^{2} v \\
& =(\alpha \gamma-\beta \delta) v+(\alpha \delta+\beta \gamma) J v,
\end{aligned}
$$

and on the other hand,

$$
(\alpha+i \beta)(\gamma+i \delta) v=(\alpha \gamma-\beta \delta+(\alpha \delta+\beta \gamma) i) v
$$

It follows that V with $i v=J v$ is a complex vector space. We emphasize that the complex vector space V contains the same elements as the real vector space V. The following theorem connects symplectic forms, real inner products, and complex inner products. ${ }^{16}$ By a complex inner product on a complex vector

[^6]space W, we mean a function $h: W \times W \rightarrow \mathbb{C}$ that is conjugate symmetric, complex linear in the first argument, $h(w, w) \geq 0$ for all $w \in W$, and $h(w, w)=0$ implies $w=0$.

Theorem 2. Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{R}$ and let ω be a weak symplectic form on H. Then there is a complex structure $J: H \rightarrow H$ and a real inner product s on H such that

$$
s(x, y)=-\omega(J x, y), \quad x, y \in H
$$

is a real inner product on the real vector space H, and

$$
h(x, y)=s(x, y)-i \omega(x, y), \quad x, y \in H
$$

is a complex inner product on H with the complex structure J.
Furthermore, the following are equivalent:

1. The norm induced by h is equivalent with the norm induced by $\langle\cdot, \cdot\rangle$.
2. The norm induced by s is equivalent with the norm induced by $\langle\cdot, \cdot\rangle$.
3. ω is a strong symplectic form on the real Hilbert space H.

Proof. By the Riesz representation theorem, ${ }^{17}$ because ω is a bounded bilinear form there is a unique $A \in \mathscr{L}(H)$ such that

$$
\begin{equation*}
\omega(x, y)=\langle A x, y\rangle, \quad x, y \in H \tag{1}
\end{equation*}
$$

Because ω is skew-symmetric,

$$
\langle A x, y\rangle=\omega(x, y)=-\omega(y, x)=-\langle A y, x\rangle=\langle(-A) y, x\rangle .
$$

On the other hand, because $\langle\cdot, \cdot\rangle$ is a real inner product, $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle=$ $\left\langle A^{*} y, x\right\rangle$. Therefore $A^{*}=-A$.
$A^{*} A=(-A) A=-A^{2}$ and $A A^{*}=A(-A)=-A^{2}$, so A is normal. Therefore A has a polar decomposition: ${ }^{18}$ there is a unitary $U \in \mathscr{L}(H)$ and some $P \in \mathscr{L}(H)$ with $P \geq 0$, such that

$$
A=U P
$$

and such that A, U, P commute; a fortiori, P is self-adjoint. If $A x=0$, then $\omega(x, y)=\langle A x, y\rangle=\langle 0, y\rangle=0$ for all $y \in H$, and because ω is weakly nondegenerate this implies that $x=0$, hence A is one-to-one, which implies that P is one-to-one (this implication does not use that U is unitary). We have

$$
A^{*}=(U P)^{*}=P^{*} U^{*}=P U^{*}, \quad A^{*}=-A=-U P=-P U
$$

hence

$$
P U^{*}=P(-U)
$$

[^7]Because P is one-to-one, this yields $U^{*}=-U$. But U is unitary, i.e. $U^{*} U=I$ and $U U^{*}=I$. Therefore $(-U) U=I$, i.e. $-U^{2}=I$. This means that U is a complex structure on the real Hilbert space H. We write $J=U$.

The complex structure J satisfies, for $x, y \in H$,

$$
\omega(J x, J y)=\langle A J x, J y\rangle=\langle J A x, J y\rangle=\left\langle A x, J^{*} J y\right\rangle=\langle A x, y\rangle=\omega(x, y),
$$

showing that J is a canonical transformation.
$s: H \times H \rightarrow \mathbb{R}$ is defined, for $x, y \in H$, by

$$
s(x, y)=-\omega(J x, y)=-\langle A J x, y\rangle=\langle(-J) A x, y\rangle=\left\langle J^{-1} A x, y\right\rangle=\langle P x, y\rangle .
$$

It is apparent that s is bilinear. Because P is self-adjoint and $\langle\cdot, \cdot\rangle$ is symmetric,

$$
s(x, y)=\langle P x, y\rangle=\langle x, P y\rangle=\langle P y, x\rangle=s(y, x),
$$

showing that s is symmetric. Because $P \geq 0$, for any $x \in H$ we have $s(x, x)=$ $\langle P x, x\rangle \geq 0$, namely s is positive. Also because $P \geq 0$, there is a unique $S \in \mathscr{L}(H), S \geq 0$, satisfying $S^{2}=P .{ }^{19}$ If $s(x, x)=0$, we get

$$
0=\langle P x, x\rangle=\left\langle S^{2} x, x\right\rangle=\langle S x, S x\rangle=\|S x\|^{2}
$$

hence $S x=0$ and so $P x=0$, and because P is one-to-one, $x=0$. Therefore s is positive definite, and thus is a real inner product on H.
$h: H \times H \rightarrow \mathbb{C}$ is defined, for $x, y \in H$, by

$$
h(x, y)=s(x, y)-i \omega(x, y)=\langle P x, y\rangle-i \omega(x, y)=\langle P x, y\rangle-i\langle A x, y\rangle .
$$

For $x_{1}, x_{2}, y \in H$,

$$
h\left(x_{1}+x_{2}, y\right)=h\left(x_{1}, y\right)+h\left(x_{2}, y\right) .
$$

For $\alpha+i \beta \in \mathbb{C}$,

$$
\begin{aligned}
h((\alpha+i \beta) x, y) & =h(\alpha x+\beta J x, y) \\
& =h(\alpha x, y)+\beta h(J x, y) \\
& =\alpha h(x, y)+\beta\langle P J x, y\rangle-i \beta\langle A J x, y\rangle \\
& =\alpha h(x, y)+\beta\langle A x, y\rangle-i \beta\left\langle A\left(-J^{-1}\right) x, y\right\rangle \\
& =\alpha h(x, y)+\beta \omega(x, y)+i \beta\langle P x, y\rangle \\
& =\alpha h(x, y)+\beta \omega(x, y)+i \beta s(x, y) \\
& =\alpha h(x, y)+i \beta(s(x, y)-i \omega(x, y)) \\
& =\alpha h(x, y)+i \beta h(x, y) \\
& =(\alpha+i \beta) h(x, y) .
\end{aligned}
$$

Therefore h is complex linear in its first argument. Because s is symmetric and ω is skew-symmetric, $h(x, y)=s(x, y)-i \omega(x, y)$ satisfies

$$
h(y, x)=s(y, x)-i \omega(y, x)=s(x, y)+i \omega(x, y)=\overline{h(x, y)},
$$

[^8]showing that h is conjugate symmetric. For $x \in H$,
$$
h(x, x)=s(x, x)-i \omega(x, x)=s(x, x) \geq 0 .
$$

If $h(x, x)=0$, then $s(x, x)=0$, which implies that $x=0$. Therefore h is a complex inner product on H with the complex structure J.

Suppose that ω is a strong symplectic form on the real Hilbert space H. That is, $\omega^{b}: H \rightarrow H^{*}$ is an isomorphism of Banach spaces. We shall show that A, from (1), is onto. For $y \in H$, define $\lambda: H \rightarrow \mathbb{R}$ by $\lambda(x)=\langle x, y\rangle$. Then $\lambda \in H^{*}$, so there is some $v \in H$ for which $\omega^{b}(v)=\lambda$. That is, $\omega(v, x)=\lambda(x)=$ $\langle x, y\rangle=\langle y, x\rangle$ for all $x \in H$. But $\omega(v, x)=\langle A v, x\rangle$, so $\langle A v, x\rangle=\langle y, x\rangle$ for all $x \in H$, which implies that $A v=y$, and thus shows that A is onto, and hence invertible in $\mathscr{L}(H)$. Because $A=U P$ and A, U are invertible in $\mathscr{L}(H), P$ is invertible in $\mathscr{L}(H)$. Therefore $S, P=S^{2}, S \geq 0$, is invertible in $\mathscr{L}(H)$, whence

$$
\begin{aligned}
\|x\|^{2} & =\left\|S^{-1} S x\right\|^{2} \\
& \leq\left\|S^{-1}\right\|^{2}\|S x\|^{2} \\
& =\left\|S^{-1}\right\|^{2}\langle S x, S x\rangle \\
& =\left\|S^{-1}\right\|^{2}\langle P x, x\rangle \\
& =\left\|S^{-1}\right\|^{2} s(x, x) \\
& =\left\|S^{-1}\right\|\|x\|_{s}^{2},
\end{aligned}
$$

and on the other hand

$$
\|x\|_{s}^{2}=s(x, x)=\langle P x, x\rangle \leq\|P x\|\|x\| \leq\|P\|\|x\|^{2}=\|S\|^{2}\|x\|^{2} .
$$

so

$$
\|x\| \leq\left\|S^{-1}\right\|\|x\|_{s}, \quad\|x\|_{s} \leq\|S\|\|x\| .
$$

Namely this establishes that the norms $\|x\|^{2}=\langle x, x\rangle$ and $\|x\|_{s}^{2}=s(x, x)$ are equivalent.

8 Hamiltonian vector fields

Let E be a real Banach space and let $k \geq 1$; if we do not specify k we merely suppose that it is ≥ 1. A C^{k} vector field on U, where U an open subset of E, is a C^{k} function $v: U \rightarrow E$.

Let v be a $C^{k}, k \geq 1$, vector field on E. For $x \in E$, an integral curve of v through x is a differentiable function $\phi: J \rightarrow E$, where J is some open interval in \mathbb{R} containing 0 , that satisfies

$$
\phi^{\prime}(t)=(v \circ \phi)(t), \quad t \in J, \quad \phi(0)=x .
$$

If $\psi: I \rightarrow E$ and $\phi: J \rightarrow E$ are integral curves of v through x, it is proved that for $t \in I \cap J, \psi(t)=\phi(t) .^{20}$ An integral curve of v through $x, \phi: J \rightarrow E$, is

[^9]said to be maximal if there is no integral curve of v through x whose domain strictly includes J. If $X: E \rightarrow E$ is a C^{1} vector field, for each $x \in E$ it is proved that there is a unique maximal integral curve of v through x, denoted $\phi_{x}: J_{x} \rightarrow E .{ }^{21}$ A vector field $v: E \rightarrow E$ is called complete when $J_{x}=\mathbb{R}$ for each $x \in E$. For a vector field $v: E \rightarrow E$, a C^{1} function $f: E \rightarrow \mathbb{R}$ is called a first integral of v if for any integral curve $\phi: J \rightarrow E$ of $v, f \circ \phi: J \rightarrow E$ is constant. It is proved that if a vector field has a first integral $f: E \rightarrow \mathbb{R}$ such that $f^{-1}(c)$ is a compact subset of E for each $c \in \mathbb{R}$, then v is a complete vector field. ${ }^{22}$

The flow of v is the function $\sigma: \Sigma_{v} \rightarrow E$, where

$$
\Sigma_{v}=\bigcup_{x \in E} J_{x} \times\{x\}
$$

such that for each $x \in E, \sigma(t, x)=\phi_{x}(t), t \in J_{x}$. It is proved that Σ_{v} is an open subset of $\mathbb{R} \times E$, and that $\sigma: \Sigma_{v} \rightarrow E$ is continuous. ${ }^{23}$ It is also proved that for any $k \geq 1$, if v is C^{k} then $\sigma: \Sigma_{v} \rightarrow E$ is $C^{k}{ }^{24}$ If $(s, x),(t, \sigma(s, x)),(t+s, x) \in \Sigma_{v}$, then ${ }^{25}$

$$
\sigma(t+s, x)=\sigma(t, \sigma(s, x))
$$

When v is a complete vector field, its flow is called a global flow. In this case, for $t \in \mathbb{R}$ we define $\sigma_{t}: E \rightarrow E$ by $\sigma_{t}(x)=\sigma(t, x)$. Then $\sigma_{t}^{-1}=\sigma_{-t}$, and thus each σ_{t} is a C^{k} diffeomorphism $E \rightarrow E$.

9 Differential forms

For vector spaces V and W and for $p \geq 1$, a function $f: V^{p} \rightarrow W$ is called alternating if $\left(v_{1}, \ldots, v_{p}\right) \in V^{p}$ and $v_{i}=v_{i+1}$ for some $1 \leq i \leq p-1$ imply that $f\left(v_{1}, \ldots, v_{p}\right)=0$.

For Banach spaces E and F and for $p \geq 1$, we denote by $\mathscr{A}_{p}(E ; F)$ the set of alternating elements of $\mathscr{L}_{p}(E ; F)$. In particular, $\mathscr{A}_{1}(E ; F)=\mathscr{L}_{1}(E ; F)=$ $\mathscr{L}(E ; F) . \mathscr{A}_{p}(E ; F)$ is a closed linear subspace of the Banach space $\mathscr{L}_{p}(E ; F) .{ }^{26}$ We define

$$
\mathscr{A}_{0}(E ; F)=\mathscr{L}_{0}(E ; F)=F .
$$

Let Σ_{n} be the set of permutation $\{1, \ldots, n\}$, which has n ! elements. Let $\mathrm{Sh}_{p, q}$ be the set of permutations σ of $\{1, \ldots, p, p+1, \ldots, p+q\}$ for which

$$
\sigma(1)<\cdots<\sigma(p), \quad \sigma(p+1)<\cdots<\sigma(p+q)
$$

The set $\mathrm{Sh}_{p, q}$ has $\binom{p+q}{p}=\binom{p+q}{q}$ elements.

[^10]For $f \in \mathscr{A}_{p}(E ; \mathbb{R})$ and $g \in \mathscr{A}_{q}(E ; \mathbb{R})$, we define $f \wedge g: E^{p} \times E^{q} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& (f \wedge g)\left(x_{1}, \ldots, x_{p}, x_{p+1}, \ldots, x_{p+q}\right) \\
= & \sum_{\sigma \in \operatorname{Sh}_{p, q}} \operatorname{sgn}(\sigma) f\left(x_{\sigma(1)}, \ldots, x_{\sigma(p)}\right) g\left(x_{\sigma(p+1)}, \ldots, x_{\sigma(p+q)}\right) .
\end{aligned}
$$

It is proved that $f \wedge g \in \mathscr{A}_{p+q}(E ; \mathbb{R}) .{ }^{27}$
For $f \in \mathscr{A}_{p}(E ; \mathbb{R})$ and $g \in \mathscr{A}_{q}(E ; \mathbb{R})$,

$$
\begin{aligned}
\|f \wedge g\| & =\sup _{\left\|x_{1}\right\| \leq 1, \ldots,\left\|x_{p+q}\right\| \leq 1}\left|(f \wedge g)\left(x_{1}, \ldots, x_{p}, x_{p+1}, \ldots, x_{p+q}\right)\right| \\
& \leq \sup _{\left\|x_{1}\right\| \leq 1, \ldots,\left\|x_{p+q}\right\| \leq 1} \sum_{\sigma \in \operatorname{Sh}_{p, q}}\left|f\left(x_{\sigma(1)}, \ldots, x_{\sigma(p)}\right) g\left(x_{\sigma(p+1)}, \ldots, x_{\sigma(p+q)}\right)\right| \\
& \leq \sup _{\left\|x_{1}\right\| \leq 1, \ldots,\left\|x_{p+q}\right\| \leq 1} \sum_{\sigma \in \operatorname{Sh}_{p, q}}\|f\|\|g\| \\
& =\binom{p+q}{p}\|f\|\|g\|
\end{aligned}
$$

showing that the operator norm of the bilinear map $(f, g) \mapsto f \wedge g, \mathscr{A}_{p}(E ; \mathbb{R}) \times$ $\mathscr{A}_{q}(E ; \mathbb{R})$ is $\leq\binom{ p+q}{p}$, and thus is continuous.

One proves that for $f \in \mathscr{A}_{p}(E ; \mathbb{R})$ and $g \in \mathscr{A}_{q}(E ; \mathbb{R})$, then ${ }^{28}$

$$
g \wedge f=(-1)^{p q} f \wedge g
$$

It is also proved that for $f \in \mathscr{A}_{p}(E ; \mathbb{R}), g \in \mathscr{A}_{q}(E ; \mathbb{R})$, and $h \in \mathscr{A}_{r}(E ; \mathbb{R})$, then ${ }^{29}$

$$
(f \wedge g) \wedge h=f \wedge(g \wedge h)
$$

It thus makes sense to speak about $f_{1} \wedge \cdots \wedge f_{n}$. We remind ourselves that $\mathscr{A}_{1}(E ; \mathbb{R})=\mathscr{L}(E ; \mathbb{R})=E^{*}$. It is proved that if $f_{1}, \ldots, f_{n} \in E^{*}$, then $f_{1} \wedge \cdots \wedge$ $f_{n} \in \mathscr{A}_{n}(E ; \mathbb{R})$ satisfies
$f_{1} \wedge \cdots \wedge f_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma) f_{1}\left(x_{\sigma(1)}\right) \cdots f_{n}\left(x_{\sigma(n)}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$, and that $f_{1}, \ldots, f_{n} \in E^{*}$ are linearly independent if and only if $f_{1} \wedge \cdots \wedge f_{n}=0 .{ }^{30}$

Let U be an open subset of the Banach space E. For $k \geq 0$ and $p \geq 0$, a C^{k} differential form of degree p on U is a C^{k} function

$$
\alpha: U \rightarrow \mathscr{A}_{p}(E ; \mathbb{R})
$$

We abbreviate "differential form of degree p " as "differential p-form". In particular, a C^{k} differential 0 -form is a C^{k} function $U \rightarrow \mathscr{A}_{0}(E ; \mathbb{R})=\mathbb{R}$. We denote

[^11]by $\Omega_{p}^{(k)}(U, \mathbb{R})$ the set of C^{k} differential p-forms on U. It is apparent that this is a real vector space.

For a C^{k} function $f: U \rightarrow \mathbb{R}$, with $k \geq 1$, the derivative f^{\prime} is C^{k-1} function $U \rightarrow \mathscr{L}(E ; \mathbb{R})=\mathscr{A}_{1}(E ; \mathbb{R})$, hence $f^{\prime} \in \Omega_{p}^{(k-1)}(U)$.

For $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$ and $\beta \in \Omega_{q}^{(k)}(U, \mathbb{R})$, we define $\alpha \wedge: U \rightarrow \mathscr{A}_{p+q}(E ; \mathbb{R})$ by

$$
(\alpha \wedge \beta)(x)=(\alpha(x)) \wedge(\beta(x)), \quad x \in U .
$$

It is proved that $\alpha \wedge \beta \in \Omega_{p+q}^{(k)}(U, \mathbb{R}) .{ }^{31}$
Suppose that $k \geq 1$ and $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$, i.e. $\alpha: U \rightarrow \mathscr{A}_{p}(U ; \mathbb{R})$ is a C^{k} function. Then the derivative is the C^{k-1} function

$$
\alpha^{\prime}: U \rightarrow \mathscr{L}\left(E ; \mathscr{A}_{p}(E ; \mathbb{R}) .\right.
$$

We define $d \alpha: U \rightarrow \mathscr{A}_{p+1}(E ; \mathbb{R})$ by

$$
(d \alpha)(x)\left(\xi_{0}, \xi_{1}, \ldots, \xi_{p}\right)=\sum_{i=0}^{p}(-1)^{i} \alpha^{\prime}(x)\left(\xi_{i}\right)\left(\xi_{0}, \ldots, \hat{\xi}_{i}, \ldots, \xi_{p}\right)
$$

It is proved that $d \alpha \in \Omega_{p+1}^{(k-1)}(U, \mathbb{R}) .{ }^{32}$
In particular, if $f: U \rightarrow \mathbb{R}$ is a C^{k} function, then $d f \in \Omega_{1}^{(k-1)}(U, \mathbb{R})$ is the function $d f: U \rightarrow \mathscr{A}_{1}(E ; \mathbb{R})=\mathscr{L}(E ; \mathbb{R})$ defined by

$$
(d f)(x)(\xi)=f^{\prime}(x)(\xi), \quad x \in U, \quad \xi \in E
$$

Thus, $d f=f^{\prime}$.
For $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$ and $\beta \in \Omega_{q}^{(k)}(U, \mathbb{R})$ with $k \geq 1$, it is a fact that ${ }^{33}$

$$
d(\alpha \wedge \beta)=(d \alpha) \wedge \beta+(-1)^{p} \alpha \wedge(d \beta)
$$

In particular, an element f of $\Omega_{0}^{(k)}(U, \mathbb{R})$ is a C^{k} function $U \rightarrow \mathbb{R}$, for which, because $f \wedge \beta=f \beta$,

$$
d(f \beta)=(d f) \wedge \beta+f(d \beta)
$$

For $\left.\alpha \in \Omega_{p}^{(} k\right)(U, \mathbb{R})$, with $k \geq 2,{ }^{34}$

$$
d(d \alpha)=0 .
$$

Let $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$, let V be an open subset of a Banach space F, and let $\phi: V \rightarrow U$ be a C^{k+1} function. The the pullback of α by f, denoted $\phi^{*} \alpha: V \rightarrow \mathscr{A}_{p}(F ; \mathbb{R})$, is an element of $\Omega_{p}^{(k)}(V, \mathbb{R})$ satisfying ${ }^{35}$
$\left(\phi^{*} \alpha\right)(y)\left(\eta_{1}, \ldots, \eta_{p}\right)=\alpha(\phi(y))\left(\phi^{\prime}(y)\left(\eta_{1}\right), \ldots, \phi^{\prime}(y)\left(\eta_{p}\right)\right), \quad\left(\eta_{1}, \ldots, \eta_{p}\right) \in F^{p}$.

[^12]The pullback satisfies, for $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$ and $\beta \in \Omega_{q}^{(k)}(U, \mathbb{R})$,

$$
\phi^{*}(\alpha \wedge \beta)=\left(\phi^{*} \alpha\right) \wedge\left(\phi^{*} \beta\right)
$$

which is an element of $\Omega_{p+q}^{(k)}(V, \mathbb{R})$. It also satisfies, if $\phi: V \rightarrow U$ and $f: U \rightarrow \mathbb{R}$ are C^{1},

$$
\phi^{*}(d f)=d\left(\phi^{*} f\right),
$$

where $\left(\phi^{*} f\right)(y)=f(\phi(y))$.

10 Contractions and Lie derivatives

Let U be an open subset of a Banach space E, let $k \geq 1, p \geq 1$, let v be a C^{k} vector field on U, and let $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$. We define $\iota_{v} \alpha: U \rightarrow \mathscr{A}_{p-1}(E ; \mathbb{R})$ by

$$
\left(\iota_{v} \alpha\right)(x)\left(v_{1}, \ldots, v_{p-1}\right)=\alpha\left(v(x), v_{1}, \ldots, v_{p-1}\right), \quad\left(v_{1}, \ldots, v_{p-1}\right) \in E^{p-1}
$$

(It is straightforward to check that indeed $\left(\iota_{v} \alpha\right)(x) \in \mathscr{A}_{p-1}(E ; \mathbb{R})$.) It is proved that $\iota_{v} \alpha: U \rightarrow \mathscr{A}_{p-1}(E ; \mathbb{R})$ is C^{k}, and thus $\iota_{v} \alpha \in \Omega_{p-1}^{(k)}(U, \mathbb{R}) .^{36}$ For $p=0$, with $f \in \Omega_{0}^{(k)}(U, \mathbb{R})$, i.e. f is a C^{k} function $U \rightarrow \mathbb{R}$, we define $\iota_{v} f=0$. We call $\iota_{v} \alpha$ the contraction of α by v.

It can be proved that if $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$ and $\beta \in \Omega_{q}^{(k)}(U, \mathbb{R})$,

$$
\iota_{v}(\alpha \wedge \beta)=\left(\iota_{v} \alpha\right) \wedge \beta+(-1)^{p} \alpha \wedge \iota_{v} \beta .
$$

Also, for a C^{k} vector field w on U,

$$
\iota_{v}\left(\iota_{w} \alpha\right)=-\iota_{w}\left(\iota_{v} \alpha\right),
$$

and hence $\iota_{v}^{2} \alpha=0$. And $(v, \alpha) \mapsto \iota_{v} \alpha$ is bilinear.
For a C^{k} vector field v on U and $\alpha \in \Omega_{p}^{(k)}(U, \mathbb{R})$, the Lie derivative of α with respect to v is ${ }^{37}$

$$
\mathscr{L}_{v} \alpha=d\left(\iota_{v} \alpha\right)+\iota_{v} d \alpha \in \Omega_{p}^{(k)}(U, \mathbb{R}) .
$$

The Lie derivative satisfies

$$
\mathscr{L}_{v}(\alpha \wedge \beta)=\left(\mathscr{L}_{v} \alpha\right) \wedge \beta+\alpha \wedge \mathscr{L}_{v} \beta .
$$

If ω is a weak symplectic form on a Banach space E and v is a C^{1} vector field on E, we say that v is a symplectic vector field if

$$
\mathscr{L}_{v} \omega=0
$$

If there is some C^{1} function $H: E \rightarrow E$ such that

$$
\iota_{v} \omega=-d H,
$$

[^13]we say that v is a Hamiltonian vector field with Hamiltonian function H. If v is a Hamiltonian vector field with Hamiltonian function H, then
$$
\mathscr{L}_{v} \omega=d\left(\iota_{v} \omega\right)+\iota_{v} d \omega=d\left(\iota_{v} \omega\right)=d(-d H)=-d^{2} H=0,
$$
showing that if a vector field is Hamiltonian then it is symplectic. (This is analogous to the statement that if a differential form is exact then it is closed.)

[^0]: ${ }^{1}$ Jerrold E. Marsden and Tudor S. Ratiu, Introduction to Mechanics and Symmetry, second ed., Chapter 2.
 ${ }^{2}$ Serge Lang, Differential and Riemannian Manifolds, p. 150, Theorem 8.1; Mircea Puta, Hamiltonian Mechanical Systems and Geometric Quantization, p. 12, Theorem 1.3.1.
 ${ }^{3}$ Andreas Kriegl and Peter W. Michor, The Convenient Setting of Global Analysis, p. 522, $\S 48$; Peter W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach, pp. 133-215, in Antonio Bove, Ferruccio Colombini, and Daniele Del Santo (eds.), Phase Space Analysis of Partial Differential Equations; K.-H. Need, H. Sahlmann, and T. Thiemann, Weak Poisson Structures on Infinite Dimensional Manifolds and Hamiltonian Actions, pp. 105-135, in Vladimir Dobrev (ed.), Lie Theory and Its Applications in Physics; Tudor S. Ratiu, Coadjoint Orbits and the Beginnings of a Geometric Representation Theory, pp. 417-457, in Karl-Hermann Neeb and Arturo Pianzola (eds.), Developments and Trends in Infinite-Dimensional Lie Theory.

[^1]: ${ }^{4}$ Henri Cartan, Differential Calculus, p. 22, Theorem 1.8.1.
 ${ }^{5}$ Henri Cartan, Differential Calculus, p. 20, Theorem 1.7.3.
 ${ }^{6}$ Henri Cartan, Differential Calculus, p. 23, §1.9.

[^2]: ${ }^{7}$ Henri Cartan, Differential Calculus, p. 25.
 ${ }^{8}$ Henri Cartan, Differential Calculus, p. 27, Theorem 2.2.1.
 ${ }^{9}$ Henri Cartan, Differential Calculus, p. 31, Theorem 2.4.4.

[^3]: ${ }^{10}$ See Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical Foundations of Elasticity, p. 253, §5.1.

[^4]: ${ }^{11}$ cf. Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical Foundations of Elasticity, p. 254, Proposition 2.2.
 ${ }^{12}$ Serge Lang, Real and Functional Analysis, third ed., p. 344, Theorem 5.3.

[^5]: ${ }^{13}$ Serge Lang, Real and Functional Analysis, third ed., p. 341, Theorem 4.2.
 ${ }^{14}$ Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical Foundations of Elasticity, p. 256, Proposition 2.6.
 ${ }^{15}$ Henri Cartan, Differential Calculus, p. 30, Theorem 2.4.3.

[^6]: ${ }^{16}$ Paul R. Chernoff and Jerrold E. Marsden, Properties of Infinite Dimensional Hamiltonian Systems, p. 6, Theorem 2.

[^7]: ${ }^{17}$ Walter Rudin, Functional Analysis, second ed., p. 310, Theorem 12.8.
 ${ }^{18}$ Walter Rudin, Functional Analysis, second ed., p. 332, Theorem 12.35.

[^8]: ${ }^{19}$ Walter Rudin, Functional Analysis, second ed., p. 331, Theorem 12.33.

[^9]: ${ }^{20}$ Rodney Coleman, Calculus on Normed Vector Spaces, p. 194, Proposition 9.3.

[^10]: ${ }^{21}$ Rodney Coleman, Calculus on Normed Vector Spaces, p. 194, Theorem 9.2.
 ${ }^{22}$ Rodney Coleman, Calculus on Normed Vector Spaces, p. 207, Theorem 9.8.
 ${ }^{23}$ Rodney Coleman, Calculus on Normed Vector Spaces, p. 213, Theorem 10.1.
 ${ }^{24}$ Rodney Coleman, Calculus on Normed Vector Spaces, p. 222, Theorem 10.3.
 ${ }^{25}$ Yvonne Choquet-Bruhat and Cecile DeWitt-Morette, Analysis, Manifolds and Physics, Part I, p. 551.
 ${ }^{26}$ Henri Cartan, Differential Forms, p. 9.

[^11]: ${ }^{27}$ Henri Cartan, Differential Forms, pp. 12-14.
 ${ }^{28}$ Henri Cartan, Differential Forms, p. 14, Proposition 1.5.1.
 ${ }^{29}$ Henri Cartan, Differential Forms, p. 15, Proposition 1.5.2.
 ${ }^{30}$ Henri Cartan, Differential Forms, p. 16, Proposition 1.6.1.

[^12]: ${ }^{31}$ Henri Cartan, Differential Forms, p. 19, §2.2.
 ${ }^{32}$ Henri Cartan, Differential Forms, pp. 20-21, §2.3.
 ${ }^{33}$ Henri Cartan, Differential Forms, p. 22, Theorem 2.4.2.
 ${ }^{34}$ Henri Cartan, Differential Forms, p. 23, Theorem 2.5.1.
 ${ }^{35}$ Henri Cartan, Differential Forms, p. 29, Proposition 2.8.1.

[^13]: ${ }^{36}$ cf. Serge Lang, Differential and Riemannian Manifolds, p. 137, V, §5.
 ${ }^{37}$ cf. Serge Lang, Differential and Riemannian Manifolds, pp. 138-141, V, §5.

