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1 Introduction

Let
0 z <0,

1 0<z<3,
-1 i<z<l,
0 x> 1.
For n, k € Z, we define
Unp(x) =222 "c — k), zeR

L?(R) is a complex Hilbert space with the inner product

(f.g) = /R f(@)g@)da

We will prove that 1) satisfies the following definition of an orthonormal
wavelet.!

Definition 1 (Orthonormal wavelet). If ¥ € L2(R), ¥,, () = 2"/2¥(2"z — k),
and the set {¥,, , : n, k € Z} is an orthonormal basis for L*(R), then ¥ is called
an orthonormal wavelet.

Lemma 2. {t,, 1 : n,k € Z} is an orthonormal set in L?(R).
Proof. If n,n’,k, k' € Z, then

/ V(2 o () d = / 222" — k)2" 22" — K )dx
R R
= / 2072z — K)p(2V e — K )da
R

1
2(”,_")/251@,1@'/ Y(x)p2" ) de
0

= 5k,k’ ' 5n,n/7

hence {¢n k : n,k € Z} is an orthonormal set. O

IMark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 303, Definition 6.4.1.



Bessel’s inequality states that if & is an orthonormal set in a Hilbert space
H, then for any f € H we have Y .| (f.e)[* < 1£112, from which it follows
that > .o (f,e)e € H. To say that a subset & of a Hilbert space H is an
orthonormal basis is equivalent to saying that & is an orthonormal set and that

idH=Ze®e

e€d

in the strong operator topology. In other words, for & to be an orthonormal
basis of H means that & is an orthonormal set and that for every f € H we

have
F=> (f.ee
ecé
From Lemma 2 and Bessel’s inequality, we know that for each f € L%(R),

S E k) P <Nz, DD (o tnk) Ynk € L2(R).

n,k€EZ n,k€Z

We have not yet proved that f is equal to the series Zn,kEZ (fs¥nk) Ynk, and
this will not be accomplished until later in this note.

2 Coarser sigma-algebras

For n,k € Z, let

k k+1
In k= |:v +> )
4 2"L 271/
and let .%,, be the o-algebra generated by {Ij, : k € Z}. R = J,cy, Ink, and if

k # k' then I, , N 1, 5r = 0. If n < n' then
Fpn C Fpy C F,

where % is the o-algebra of Lebesgue measurable subsets of R. An element of
L*(R,.%,) is an element of L?(R,.#) that is constant on each set I, 1, k € Z.
In other words, an element of L?(R,.%,) is a function f : R — C such that if
k € Z then the image f(I,, 1) is a single element of R and such that

|W@=AU@WM=§:

kEZ

[ W@Pdr =3 il < e

kEZ

If n < n/, then
L*(R, Z,) C L*(R, Z,) C L*(R,.Z).



3 Integral kernels

We define
0 =<0,

plr)=<91 0<z<1,
0 z>1.

For n € Z we define
Kn(z,y) =2") 62"z —k)¢(2"y—k),  z,yeR.
kez

We have
K, (z,y) €{0,2"}.

K, (z,y) = 2™ if and only if there is some k € Z such that 2"z —k, 2"y—k € [0, 1),
equivalently there is some k € Z with 2"z, 2"y € [k, k 4+ 1), which is equivalent
to there being some k € Z such that

c ﬁ E+1Y
z,y 2n’ on — In,k-
We define
Puf(@) = [ Kulen) i)

If z € R then there is a unique &k, € Z with z € I, ,,, and
Puf@) =2 [t 1)
n,kg

It is straightforward to check that L?(R,.%,) is a closed subspace of L?(R,.%),
and in the following theorem we prove that P, is the orthogonal projection onto
L*(R,.7,).

Lemma 3. If n € Z, then P, is the orthogonal projection of L?(R,.%#) onto
L*(R,.7,).

Proof. For each k € Z, the function P, f is constant on the interval I, 5, and



using (1) and the Cauchy-Schwarz inequality,

||PfH2—Z/ P f (2) 2de

keZ

Therefore, P, : L?(R,#) — L*(R,.%,). Moreover, the left-hand side of the
above inequality is equal to || P, f||§ and the right-hand side is equal to ||f ||§,
hence we have || P, fll, < ||f|l5, giving || P,|| < 1.

If fe L*(R,.%,), then

)= [ K,(x,
) /R (2,y
=2" d
/ Sy
= f(—rn,k )
= f(=),
hence if f € L?(R,.#,) then P, f = f. O

For n € Z, we define
Ln = NDpnt1 — Kn;

and the following lemma gives a different expression for L,,.2

Lemma 4. If n € Z, then

ank wnk ) $,yER.

kEZ

2Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 293, §6.3.2.



Pmof ¢(2"w — k) = 1 means that 0 < 2"z — k < é,

2n <z< 2n , which is equivalent to 2n+1 <z < 2n+1 , which is equivalent to
x € Iyy1,2k. Y(2"x — k) = —1 means that 1 < 2"y — k < 1, which is equivalent

to k;} <z < EfL and this is equivalent to € Lnyiop+1- Y2z — k) =01if

and only if « & I, 41 9k U Int1,26+1. Therefore,

which is equivalent to

2" (x,y) € Ing12k X Ing12k U Tng1,2641 X Tng1,2k41,
U k()0 k(y) = § —2"  (2,y) € Int1,26 X Tng1,2641 U Tng1,2641 X Tt 2k,
0 otherwise.

If there is no k € Z such that (z,y) € Ink X Ink, then L,(z,y) = 0.
Otherwise, suppose that k € Z and that (z,y) € I, x X I, 5. We have

Ik = Lng1,26 U lngi 2k41-

If (z,y) € Lit1,26 X Iny1,2, then

Ly(2,y) = Kni1(2,y) — Kp(z,y) = 2" — 27 = 2™,
if (z,vy) € Lny1,2k41 X Iny1,2k41, then

Lo(z,y) = Knt1(2,y) — Kp(z,y) = 2"+ — 2" =27
if (z,y) € L4126 X Lny1,2k+1, then

Ln(z,y) = Knt1(2,y) — Kn(z,y) =0—2" = =2"
and if (z,y) € Liy1,26+1 X Int1,2k, then

Ly(z,y) = Kpy1(z,y) — Kp(x,y) =0—2" = =27,
It follows that

= k(@) r(y).

keZ

4 Continuous functions

Let Cy(R) denote those continuous functions f : R — C such that if € > 0 then
there is some compact subset K of R such that + ¢ K implies that |f(z)| < e.
We say that an element of Cy(R) is a continuous function that vanishes at
infinity. Let C.(R) denote the set of continuous functions f : R — C such that

supp(f) ={z e R: f(z) # 0}

is a compact set.

In the following lemma, we prove that the larger the intervals over which we
average a continuous function vanishing at infinity, the smaller the supremum
of the averaged function.?

3Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 295, Lemma 6.3.2.



Lemma 5. If f € Cy(R), then || P, f||,, — 0 as n — —oo0.
Proof. If g € C.(R) and = € R, then

|Prg(x)] = ‘AKn(x,y)g(y)dy’

/ Kn(z,y)9(y)dy
supp(g)

< / Koz, 9)|9(y)|dy
supp(g)

< / 2" g(y)ldy
supp(g)

< 2" p(supp(9)) - 19/l »

hence
[Pnglloe < 2" - p(supp(g)) - 19l - (2)

If f € Cp(R) and € > 0 then there is some g € C.(R) with ||f — g, < €. Hence,

1Pnflloe < I1Pa(f = 9Dlloe + [1Prgllse -

If x € R, then

|Pu(f = g)(x)] = 2"

/1 (f - 9)w)dy

ﬂn/[ (= ) W)ldy < |1f — glle-

hence || P, (f — 9)l|oo < |If — 9ll- Using this and (2) we obtain

[Poflloe < IIf —9lloe +2" - p(supp(9)) - lglloe < €+ 2" - u(supp(g)) - 9/l -

Hence,

limsup || P, f|| . < limsup (e +2" - p(supp(9)) - llgll ) =€
n——oo

n——oo
This is true for every € > 0, so

n—

Lemma 6. If f € L*(R), then || P, f||, — 0 as n — —oo.

Proof. If € > 0 then there is some g € C.(R) such that [|f —g|, < e. Say
supp(g9) C [- K, K]. If 2™ > K, then we have by (1) and because supp(g) C



Ifm,fl U Ifm,Oy

2
1Pl = |
R

:2m

2

2= /1 9(y)dy| dx

—m, kg

2
+2m

2

2™ /1 9(y)dy

—m,—1 —m,0

/_OK 9(y)dy /OKg(y)dy 2

< 27 ([~ K, 0)) [|g]l3 + 27 u([0, K1) 19I5
=2K 27" |g|3.

27 /1 9(y)dy

2
4 9—m

— 2—m

m

Therefore, when 2™ > K we have ||P_,,g||, < 272 V2K |g|/,, and so, as the
operator norm of P_,, on L?(R) is 1,

| P-mflly <N Poml(f — 9)lly + |1 P-myll,
<N f = glly + 1P-mgll,
<e+272V2K ||g|, .

Thus, if € > 0 then
limsup || P—p, f|ly < €.

m—o0

This is true for all € > 0, so we obtain
i [Py fl], = 0.

O

The following lemma shows that if f € C.(R), then P, f converges to f in
the L2 norm and in the L norm as n — 0o.%

Lemma 7. If f € C.(R), then P,f — f in the L? norm and in the L® norm
as n — 0o.

Proof. Suppose that supp(f) C [-2M,2M] for M > 0. f is uniformly continuous
on the compact set [—2M,2M] thus, if € > 0 then there is some § > 0 such that
z,y € [-2M,2M] and |z — y| < 6 imply that |f(z) — f(y)| < 55 Let 27" < 4.

4Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 296, Lemma 6.3.3.



For each z € R, there is some k, € Z such that x € I, ;,, and we have

[P f () — f(2)] =

on /I F@)dy — ()

n, kg

:2”

/I () — Fx)dy

<o / F@) - F(@)ldy
I key
€
< 2”/ —dy
In,k:,; 2M
€
oM "

This tells us that if 27" < 6 then [P, f — f||., < 5% . Therefore, if € > 0 then
for sufficiently large n we have ||P,f — f| . < 5%, showing that

lim ||P,f — f|l,, =0.
n— o0

Furthermore, if n > 0 then

2 M

1P = 115 = [ 1Pas@=f@)Pdo = [ 1Puf@)~f@)Pde < 22V |Puf = 11

-2
and because || P, f — f||., — 0asn — oo we get || P, f — f|l, = 0asn —oco. O

From Lemma 4, we get

(Pass — P)f(x) = / Ko (2,9) f(y)dy — / Ko (,9)f (0)dy
- / Lo, 9) f (0)dy
- / S G (2 (9) F )y

kezZ
= Z <fa T/Jn,k> ¢n,k(x),
kezZ
thus
Pn+1 - Pn = an,k & wn,k (3)
kEZ

in the strong operator topology. Using (3), we obtain for n > 0 that

Poy1=Py+> Pi1—P
i=0

=P+ ZZ%J@ @ Yjk

7=0keZ



in the strong operator topology. For n < 0,

-1
Po=P— > PP

j=—n
1
=Fh - Z Z%‘,k ® Py k
j=—n keZ

in the strong operator topology.
We have already shown in Lemma 2 that {¢,, x : n,k € Z} is an orthonormal
set in L2(R), and we now prove that it is an orthonormal basis for L?(R).

Theorem 8. In the strong operator topology,

isz(R) = Z Unk @ Up k-

n,kE€ZL

Proof. Let f € L?>(R) and suppose € > 0. By Lemma 6, there is some M such

that m > M implies that ||P_,,f|, < §. There is some g € C.(R) satisfying

Ilf =gl < §, and by Lemma 7 there is some N such that n > N implies that
|Png —gll, < §. Hence, if n > N then

IPnf = flly NIPuf — Puglly + |1Pag — gl + lg — fllo
<2[[f = glly + 1Png — gll,

2 €
6 6
_ €
)

Therefore, if m > M and n > N, then

. € €
H(Pn - Py _ldLZ(R)fHQ SNPuf = flla +I1P-mflly < ) + 9= €.

For m,n > 0, we have

n —1
Ppi1— Py = Zzwﬂc ® Yk + Z Z¢j,k ® )k

=0 kez j=—mkeZ
n
= E E Yik @Yk
j=—mk€Z

in the strong operator topology. O

5 Other function spaces

Let Cy(R) denote those continuous functions R — C that are bounded. We
have
C.(R) C Ch(R) € Cu(R) C C(R).



Lemma 9. If n € Z and f € Cy(R), then || P, f]l . < ||fllo-

Proof. If z € R, then there is a unique k,; € Z with « € I, ;,_, and

IRJ@H=2"£ f(y)dy

n, kg

gw/ F)ldy < £

IT"7 x

O

Theorem 10. If f € Cy(R), then the series >, ;) (f,¥n k) ¥n,k converges to
f uniformly on R.

Proof. 1f € > 0 then there is some g € C.(R) with [|f —g||,, < §. By Lemma
5, there is some M such that m > M implies that ||P_,,g|,, < §, hence

I1P-mflloe < 1P-mf = P-mglloc + I1P-mgll
<f =9l + 1P-mgllo

€ €
-+ =

<
3

[\ R s W

By Lemma 7, there is some N such that n > N implies that ||P,g — g/, < §,
hence

1Puf = flloe < 1Puf = Puglls + 1Png — 9l + l9 = fll

<2[f = glloe + 129 = 9l

< £
%

Therefore, if n > N and m > M, then

€ €
1Baf = P = fllae < I1Pf = fllas + 1P-mfllc < 5+ 5 =€

O

The following theorem states that P, is an operator on LP(R) with operator
norm < 1.° In particular, it asserts that if f € LP(R) then the averaged function
P, f is also an element of LP(R).

Theorem 11. If 1 < p < oo, n € Z, and f € LP(R), then [P, f|[, < | f],-

Proof. Let 1% + % =1,s0q= p’%l. (If p =1 then ¢ = 00.) If z € R, then there

5Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 297, Lemma 6.3.9.

10



is a unique k, € Z with x € I, 1, , and using Holder’s inequality we get

1P f(a)] = |27 / F(y)dy

n kg

1/p
<" (/j If(y>|”dy> (I, )4

1/p
—_9n P —n/q
2 (/ £(y)| dy> 2/,

Therefore, if k € Z then

[ @iz < [z [ p)pagas

Ik Ik In iy

= [z [ p)dys
I,k In,k

n,

=2l [ )y

Ink

- / )Py,
Ik

‘We obtain

1A =3 [ Pse)de

kEZ

<3 /1 Py

keZ

- [ 1wy
R
= 111

giving || B f|,, < [ 1l,,-

6 Multiresolution analysis

For a € R, we define m, : R = R by m,(x) = az, and we define 7, : R — R by

To(T) = T — a.

Definition 12 (Multiresolution analysis). A multiresolution analysis of L*(R)
is a set {V,, : n € Z} of closed subspaces of the Hilbert space L?*(R) and a

function ® € L?(R) satisfying

1. If n € Z, then f €V, if and only if foms € V,41.

11



[N)

. Vn c VnJrl'
Unez Vo = L2(R).
Mnez Vo = {0}

. {® o7y : k €Z} is an orthonormal basis for V;.

ooe e

It is straightforward to prove the following theorem using what we have
established so far.

Theorem 13. The closed subspaces {L?(R,.%,) : n € Z} of L*(R) and the
function ¢ = x|o,1) is a multiresolution analysis of L?(R).

The following lemma shows that if P, is the projection onto V,,, where V,,
is a closed subspace of a multiresolution analysis of L*(R), then P, — 0 in the
strong operator topology as n — —00.6

Lemma 14. If {V,, : n € Z} and ® € L?(R) is a multiresolution analysis of
L?(R), P, : L*(R) — V,, is the orthogonal projection onto V,,, and f € L?(R),
then

lim P,f=0.

n——0oo

Proof. Define ®,, (z) = 2"/2®(2"z — k). The set {®g 1 : k € Z} is an orthonor-
mal basis for Vp, and one checks that the set {®,,  : k € Z} is an orthonormal
basis for V;,. Therefore
Pn = Z(I)n,k & q)n,k
kez
in the strong operator topology.
For R> 0, let fr = fx|—rr)- f2"R < %, then, using the Cauchy-Schwarz

SMark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 313, Lemma 6.4.28.

12



inequality,

1P frlly =D | (Pafr, ®ng)

kEZ

= Z' <fRa(I)n,k> |

keZ

= Z | (fRs X[ R, R) Pk ) |

kEZ

<Z< / e dx> ( / I;|<1>n,k<x>|2dx>

— £l Z/ By ()| 2d

kEZ

— a2 / " k)da
kEZ
Z 2"R—k 2

— 1Rl / o) de
kez” —2"R-k

= |1 frl2 / B(x)Pde,

Un
where
Up=|J(=k—2"R, —k + 2"R);
kez
the intervals are disjoint because 2"R < 3. Define F,(z) = |®(z)|*xv, (z). For
all z € R we have |F,,(z)| < |®(2)|?, and if € R then
lim_ F(x) = [0() Pxa()

where Z = (1,,c; Un. Thus by the dominated convergence theorem we get

Jim RFn(x)dx:/R|<I>(x)\2xz(a:)dx:

n——oo
because p(Z) = 0. Therefore,
tim_ [Py fall, = 0.

If € > 0 then there is some R such that ||f — fr|l, < e. We have, because
P, is an orthogonal projection,

limsup || P, f]l5 <hmsup||P f—P fR||2+hmsup||P frlly

n——oo

= hmsup ||Pnf - PnfR||2
n——o0o

< limsup [|f — f&ll
n——oo

< €.

13



This is true for all € > 0, so we obtain
i [|Pufl, = 0.

O

If Sy, € I, are subsets of a Hilbert space H, we denote by \/,.; S. the
closure of the span of |J,.; Sa. If S is a subset of H, let S+ be the set of all
x € H such that y € S implies that (z,y) = 0. If S,,n € Z, are mutually
orthogonal closed subspaces of a Hilbert space, we write

B s.=V S
nez nez

The following theorem shows a consequence of Definition 12.

Theorem 15. If {V,, : n € Z} are the closed subspaces of a multiresolution
analysis of L?(R) and W,, = V;, 41 N V,;-, then

L*(R) = P W,

neZ

Proof. Because W,, = V,, 11 NV, is the intersection of two closed subspaces, it
is itself a closed subspace. Suppose that n < n’, f € W,,g € Wyr. n+1 < n/,
and hence V11 C V,,,. Therefore

L L 1L
Wn/ - Vn/+1 N Vn/ C Vn/ g Vn+1'

But fe W, C Vyy1and g € W,» C Vnﬁrl, so (f,g) = 0. Therefore W,, L W,,,.
If f eV, and f # 0, then there is a minimal NV such that f € Vy; this

minimal N exists because V,, € V;,41 and (1, o, Vi, = {0}. We have

VN =VNn_1 ®Wn_1,
hence f = fy_1 + gn—1, with fx_1 € Vi_1 and gy_1 € Wx_;. Likewise,
VN1 =VN_2® Wn_o,

hence fy_1 = fnv_2 + gn_2, With fy_o € VN_9 and gy_o € Win_5. In this
way, for any M > 0 we obtain

M
f=In-m+ Z IN—m,

m=1

where fy_y € V_n and gy _m € Wiy, Check that fy_ s is the orthogonal
projection of f onto Vy_jps. It thus follows from Lemma 14 that fy_ps — 0
as M — oco. Thus, for any € > 0 there is some M with | fxv_all, < € and

14



f e fn-m+ @f\n/[:l Wy _m. Therefore, if f € |J,cz Vn then there is some
9 € @,z Wi satistying ||f — gl < co. Thus

Uv.cw.,

neZ nez
and so
L*(R) = @ W,
nez

7 The unit interval

L?([0,1)) is a Hilbert space with the inner product

(f.g) = /O (@) da.

If n >0, then I, o = [O, 2%) and I on_1 = [1 — 2%, 1), and we have

2" -1
0,1) = | J Lo
k=0

Let n > 0, let 4, be the o-algebra generated by {I,,; : 0 < k < 2" —1}, and
let ¢ be the o-algebra of Lebesgue measurable subsets of [0,1). If n < n’, then

9. C%, CY.

An element of L?([0,1),%,) is an element of L?([0,1),%) that is constant on
each set I, 1,0 < k < 2" — 1. Equivalently, an element of L%*([0,1),%,) is a
function f : [0,1) — C that is constant on each set I,, 5,0 < k < 2™ —1; because
[0,1) is a union of finitely many I,, s, any such function will be an element of
L?([0,1),%). Tt is apparent that

Lz([oa 1)7%11) - LZ([Ov 1)agn/) C L2([0, ]_)7%)

We check that L?([0,1),%,) is a complex vector space of dimension 2".
In,k = In+1,2k U In+1,2k+1. If z € In+172k7 then 72,%&1 <z < 22’721117 SO 2% <

T < Q%Jrgn%, hence 0 < 2"z —k < 5. If v € I,41,925+1, then 3’2111 <z < 242
hence Q%Jrﬁ <z <kl andso

2n+1 9
o < 2% —k < 1. Thus, if x € 1,412 then

INIE NI

Yn(x) = 222" — k) = 27/2
and if € I,,11 2541 then
Yn(z) =222 x — k) = =22

Otherwise x & I, i, for which 1, x(z) = 0. It follows that ¢, ,, € L*([0,1),%11).

15



Theorem 16. If
PBo = {xp,1)}

and, for n > 0,
%n+1 = {wn,k : 0 S k § 2" — 1}7

then
N
U %
n=0

is an orthonormal basis of L?([0,1), %y ).

Proof. 1t follows from Lemma 2 that U;V:1 A, is orthonormal in L?([0,1)), as it
is a subset of an orthonormal set. If 0 < n < N then %, C L?([0,1),%x), hence
Uﬁ[:l %, is orthonormal in L?([0,1),%y). f0<n < Nand 0 <k <2771 -1,
then 9,1 1 € %, and

1
<'l/)n—1,k7X[0,1)>:/ Yn—1,1(2)X[0,1)(x)dx
0

1

:/ wnfl,k<x)dx
0

_ / () da + / Vo1 i (@)da
I ok In 2k+1

:/ 2(”_1)/2dx+/ —2n=1/2 gy
I 2k I 2ky1

0.

Therefore, Ug:o %, is orthonormal in L?([0,1),%x).
|By| = 1, and if n > 1 then |%4,,| = 2"~1. Therefore the number of elements
N :

of U,,_o %n is

N N—1
L4y 2t =14y 2n =2V
n=1 n=0
As dim L?([0,1),%x) = 2V, the orthonormal set Ufj:o Py, is an orthonormal
basis for L2([0,1),%n). O

By Theorem 16, if N > 0 then [J)_, %, is an orthonormal set in L?([0, 1)).
Hence

B = G B,
n=0

is an orthonormal set in L2([0,1)): if f,g € % then there is some N with

f,g € UT]:,:O PBy,, which is an orthonormal set. The following theorem shows
that 4 is an orthonormal basis for the Hilbert space L2([0,1)).”

7John K. Hunter and Bruno Nachtergaele, Applied Analysis, p. 177, Lemma 7.13.
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Theorem 17. % is an orthonormal basis for L2([0,1)).

Proof. If f € L*([0,1)) and € > 0 then there is some g € C([0,1]) with
If —gll, < 5. g is uniformly continuous on the compact set [0,1], so there
is some § > 0 such that |z —y| < ¢ implies that [g(z) — g(y)| < 5. Let 27" <0,
and define h : [0,1) — C by

h(z) = Zilg (2]1) X1, (%)

k=0

If x € [0,1) then there is a unique k,,0 < k, < 2" — 1, with « € I,, s, and for

this k, we have ‘x — ]2“—,{ < 27" < §, and hence

Therefore [|g — hl|, < 5
We have h € L?([0,1),%,), and

€
1F = Ally < 1f = gllz +llg = Ally < 5 +llg = hlls <e

We have shown that if f € L%([0,1)) and € > 0 then there is some n and some h €
L*(0,1),%,) with || f — h||l, < €. This tells us that [ J;—, L*([0,1),%,) is a dense
subset of L?([0,1)). Since 4 is orthonormal and span # = |J;—, L*([0,1),%,),
% is an orthonormal basis for L2([0,1)). O
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Hernédndez and Guido Weiss, A First Course on Wavelets.
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