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1 Introduction

Let

ψ(x) =


0 x < 0,

1 0 ≤ x < 1
2 ,

−1 1
2 ≤ x < 1,

0 x ≥ 1.

For n, k ∈ Z, we define

ψn,k(x) = 2n/2ψ(2nx− k), x ∈ R.

L2(R) is a complex Hilbert space with the inner product

⟨f, g⟩ =
∫
R
f(x)g(x)dx.

We will prove that ψ satisfies the following definition of an orthonormal
wavelet.1

Definition 1 (Orthonormal wavelet). If Ψ ∈ L2(R), Ψn,k(x) = 2n/2Ψ(2nx−k),
and the set {Ψn,k : n, k ∈ Z} is an orthonormal basis for L2(R), then Ψ is called
an orthonormal wavelet.

Lemma 2. {ψn,k : n, k ∈ Z} is an orthonormal set in L2(R).

Proof. If n, n′, k, k′ ∈ Z, then∫
R
ψn,k(x)ψn′,k′(x)dx =

∫
R
2n/2ψ(2nx− k)2n

′/2ψ(2n
′
x− k′)dx

=

∫
R
2(n

′−n)/2ψ(x− k)ψ(2n
′−nx− k′)dx

= 2(n
′−n)/2δk,k′

∫ 1

0

ψ(x)ψ(2(n
′−n)/2x)dx

= δk,k′ · δn,n′ ,

hence {ψn,k : n, k ∈ Z} is an orthonormal set.

1Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 303, Definition 6.4.1.
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Bessel’s inequality states that if E is an orthonormal set in a Hilbert space
H, then for any f ∈ H we have

∑
e∈E | ⟨f, e⟩ |2 ≤ ∥f∥22, from which it follows

that
∑

e∈E ⟨f, e⟩ e ∈ H. To say that a subset E of a Hilbert space H is an
orthonormal basis is equivalent to saying that E is an orthonormal set and that

idH =
∑
e∈E

e⊗ e

in the strong operator topology. In other words, for E to be an orthonormal
basis of H means that E is an orthonormal set and that for every f ∈ H we
have

f =
∑
e∈E

⟨f, e⟩ e.

From Lemma 2 and Bessel’s inequality, we know that for each f ∈ L2(R),∑
n,k∈Z

| ⟨f, ψn,k⟩ |2 ≤ ∥f∥22 ,
∑

n,k∈Z
⟨f, ψn,k⟩ψn,k ∈ L2(R).

We have not yet proved that f is equal to the series
∑

n,k∈Z ⟨f, ψn,k⟩ψn,k, and
this will not be accomplished until later in this note.

2 Coarser sigma-algebras

For n, k ∈ Z, let

In,k =

[
k

2n
,
k + 1

2n

)
,

and let Fn be the σ-algebra generated by {Ik,n : k ∈ Z}. R =
⋃

k∈Z In,k, and if
k ̸= k′ then In,k ∩ In,k′ = ∅. If n < n′ then

Fn ⊂ Fn′ ⊂ F ,

where F is the σ-algebra of Lebesgue measurable subsets of R. An element of
L2(R,Fn) is an element of L2(R,F ) that is constant on each set In,k, k ∈ Z.
In other words, an element of L2(R,Fn) is a function f : R → C such that if
k ∈ Z then the image f(In,k) is a single element of R and such that

∥f∥22 =

∫
R
|f(x)|2dx =

∑
k∈Z

∫
In,k

|f(x)|2dx =
∑
k∈Z

1

2n
· |f(In,k)|2 <∞.

If n < n′, then
L2(R,Fn) ⊂ L2(R,Fn′) ⊂ L2(R,F ).
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3 Integral kernels

We define

ϕ(x) =


0 x < 0,

1 0 ≤ x < 1,

0 x ≥ 1.

For n ∈ Z we define

Kn(x, y) = 2n
∑
k∈Z

ϕ(2nx− k)ϕ(2ny − k), x, y ∈ R.

We have
Kn(x, y) ∈ {0, 2n}.

Kn(x, y) = 2n if and only if there is some k ∈ Z such that 2nx−k, 2ny−k ∈ [0, 1),
equivalently there is some k ∈ Z with 2nx, 2ny ∈ [k, k + 1), which is equivalent
to there being some k ∈ Z such that

x, y ∈
[
k

2n
,
k + 1

2n

)
= In,k.

We define

Pnf(x) =

∫
R
Kn(x, y)f(y)dy.

If x ∈ R then there is a unique kx ∈ Z with x ∈ In,kx
, and

Pnf(x) = 2n
∫
In,kx

f(y)dy. (1)

It is straightforward to check that L2(R,Fn) is a closed subspace of L2(R,F ),
and in the following theorem we prove that Pn is the orthogonal projection onto
L2(R,Fn).

Lemma 3. If n ∈ Z, then Pn is the orthogonal projection of L2(R,F ) onto
L2(R,Fn).

Proof. For each k ∈ Z, the function Pnf is constant on the interval In,k, and
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using (1) and the Cauchy-Schwarz inequality,

∥Pnf∥22 =
∑
k∈Z

∫
In,k

|Pnf(x)|2dx

=
∑
k∈Z

∫
In,k

∣∣∣∣∣2n
∫
In,k

f(y)dy

∣∣∣∣∣
2

dx

= 2n
∑
k∈Z

∣∣∣∣∣
∫
In,k

f(y)dy

∣∣∣∣∣
2

≤ 2n
∑
k∈Z

(∫
In,k

|f(y)|2dy

)(∫
In,k

dy

)

=
∑
k∈Z

∫
In,k

|f(y)|2dy

=

∫
R
|f(y)|2dy.

Therefore, Pn : L2(R,F ) → L2(R,Fn). Moreover, the left-hand side of the

above inequality is equal to ∥Pnf∥22 and the right-hand side is equal to ∥f∥22,
hence we have ∥Pnf∥2 ≤ ∥f∥2, giving ∥Pn∥ ≤ 1.

If f ∈ L2(R,Fn), then

Pnf(x) =

∫
R
Kn(x, y)f(y)dy

= 2n
∫
In,kx

f(y)dy

= f(In,kx
)

= f(x),

hence if f ∈ L2(R,Fn) then Pnf = f .

For n ∈ Z, we define
Ln = Kn+1 −Kn,

and the following lemma gives a different expression for Ln.
2

Lemma 4. If n ∈ Z, then

Ln(x, y) =
∑
k∈Z

ψn,k(x)ψn,k(y), x, y ∈ R.

2Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 293, §6.3.2.
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Proof. ψ(2nx − k) = 1 means that 0 ≤ 2nx − k < 1
2 , which is equivalent to

k
2n ≤ x <

k+ 1
2

2n , which is equivalent to 2k
2n+1 ≤ x < 2k+1

2n+1 , which is equivalent to
x ∈ In+1,2k. ψ(2

nx− k) = −1 means that 1
2 ≤ 2nx− k < 1, which is equivalent

to
k+ 1

2

2n ≤ x < k+1
2n , and this is equivalent to x ∈ In+1,2k+1. ψ(2

nx − k) = 0 if
and only if x ̸∈ In+1,2k ∪ In+1,2k+1. Therefore,

ψn,k(x)ψn,k(y) =


2n (x, y) ∈ In+1,2k × In+1,2k ∪ In+1,2k+1 × In+1,2k+1,

−2n (x, y) ∈ In+1,2k × In+1,2k+1 ∪ In+1,2k+1 × In+1,2k,

0 otherwise.

If there is no k ∈ Z such that (x, y) ∈ In,k × In,k, then Ln(x, y) = 0.
Otherwise, suppose that k ∈ Z and that (x, y) ∈ In,k × In,k. We have

In,k = In+1,2k ∪ In+1,2k+1.

If (x, y) ∈ In+1,2k × In+1,2k, then

Ln(x, y) = Kn+1(x, y)−Kn(x, y) = 2n+1 − 2n = 2n;

if (x, y) ∈ In+1,2k+1 × In+1,2k+1, then

Ln(x, y) = Kn+1(x, y)−Kn(x, y) = 2n+1 − 2n = 2n;

if (x, y) ∈ In+1,2k × In+1,2k+1, then

Ln(x, y) = Kn+1(x, y)−Kn(x, y) = 0− 2n = −2n;

and if (x, y) ∈ In+1,2k+1 × In+1,2k, then

Ln(x, y) = Kn+1(x, y)−Kn(x, y) = 0− 2n = −2n.

It follows that
Ln(x, y) =

∑
k∈Z

ψn,k(x)ψn,k(y).

4 Continuous functions

Let C0(R) denote those continuous functions f : R → C such that if ϵ > 0 then
there is some compact subset K of R such that x ̸∈ K implies that |f(x)| < ϵ.
We say that an element of C0(R) is a continuous function that vanishes at
infinity. Let Cc(R) denote the set of continuous functions f : R → C such that

supp(f) = {x ∈ R : f(x) ̸= 0}

is a compact set.
In the following lemma, we prove that the larger the intervals over which we

average a continuous function vanishing at infinity, the smaller the supremum
of the averaged function.3

3Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 295, Lemma 6.3.2.
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Lemma 5. If f ∈ C0(R), then ∥Pnf∥∞ → 0 as n→ −∞.

Proof. If g ∈ Cc(R) and x ∈ R, then

|Png(x)| =
∣∣∣∣∫

R
Kn(x, y)g(y)dy

∣∣∣∣
=

∣∣∣∣∣
∫
supp(g)

Kn(x, y)g(y)dy

∣∣∣∣∣
≤
∫
supp(g)

Kn(x, y)|g(y)|dy

≤
∫
supp(g)

2n|g(y)|dy

≤ 2n · µ(supp(g)) · ∥g∥∞ ,

hence
∥Png∥∞ ≤ 2n · µ(supp(g)) · ∥g∥∞ . (2)

If f ∈ C0(R) and ϵ > 0 then there is some g ∈ Cc(R) with ∥f − g∥∞ < ϵ. Hence,

∥Pnf∥∞ ≤ ∥Pn(f − g)∥∞ + ∥Png∥∞ .

If x ∈ R, then

|Pn(f − g)(x)| = 2n

∣∣∣∣∣
∫
In,kx

(f − g)(y)dy

∣∣∣∣∣ ≤ 2n
∫
In,kx

|(f − g)(y)|dy ≤ ∥f − g∥∞ ,

hence ∥Pn(f − g)∥∞ ≤ ∥f − g∥∞. Using this and (2) we obtain

∥Pnf∥∞ ≤ ∥f − g∥∞ + 2n · µ(supp(g)) · ∥g∥∞ < ϵ+ 2n · µ(supp(g)) · ∥g∥∞ .

Hence,

lim sup
n→−∞

∥Pnf∥∞ ≤ lim sup
n→−∞

(
ϵ+ 2n · µ(supp(g)) · ∥g∥∞

)
= ϵ.

This is true for every ϵ > 0, so

lim
n→−∞

∥Pnf∥∞ = 0.

Lemma 6. If f ∈ L2(R), then ∥Pnf∥2 → 0 as n→ −∞.

Proof. If ϵ > 0 then there is some g ∈ Cc(R) such that ∥f − g∥2 < ϵ. Say
supp(g) ⊆ [−K,K]. If 2m > K, then we have by (1) and because supp(g) ⊆
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I−m,−1 ∪ I−m,0,

∥P−mg∥22 =

∫
R

∣∣∣∣∣2−m

∫
I−m,kx

g(y)dy

∣∣∣∣∣
2

dx

= 2m

∣∣∣∣∣2−m

∫
I−m,−1

g(y)dy

∣∣∣∣∣
2

+ 2m

∣∣∣∣∣2−m

∫
I−m,0

g(y)dy

∣∣∣∣∣
2

= 2−m

∣∣∣∣∫ 0

−K

g(y)dy

∣∣∣∣2 + 2−m

∣∣∣∣∣
∫ K

0

g(y)dy

∣∣∣∣∣
2

≤ 2−mµ([−K, 0]) ∥g∥22 + 2−mµ([0,K]) ∥g∥22
= 2K · 2−m ∥g∥22 .

Therefore, when 2m > K we have ∥P−mg∥2 ≤ 2−
m
2

√
2K ∥g∥2, and so, as the

operator norm of P−m on L2(R) is 1,

∥P−mf∥2 ≤ ∥P−m(f − g)∥2 + ∥P−mg∥2
≤ ∥f − g∥2 + ∥P−mg∥2
< ϵ+ 2−

m
2

√
2K ∥g∥2 .

Thus, if ϵ > 0 then
lim sup
m→∞

∥P−mf∥2 ≤ ϵ.

This is true for all ϵ > 0, so we obtain

lim
m→∞

∥P−mf∥2 = 0.

The following lemma shows that if f ∈ Cc(R), then Pnf converges to f in
the L2 norm and in the L∞ norm as n→ ∞.4

Lemma 7. If f ∈ Cc(R), then Pnf → f in the L2 norm and in the L∞ norm
as n→ ∞.

Proof. Suppose that supp(f) ⊆ [−2M , 2M ] forM ≥ 0. f is uniformly continuous
on the compact set [−2M , 2M ], thus, if ϵ > 0 then there is some δ > 0 such that
x, y ∈ [−2M , 2M ] and |x− y| < δ imply that |f(x)− f(y)| < ϵ

2M
. Let 2−n ≤ δ.

4Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 296, Lemma 6.3.3.
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For each x ∈ R, there is some kx ∈ Z such that x ∈ In,kx and we have

|Pnf(x)− f(x)| =

∣∣∣∣∣2n
∫
In,kx

f(y)dy − f(x)

∣∣∣∣∣
= 2n

∣∣∣∣∣
∫
In,kx

f(y)− f(x)dy

∣∣∣∣∣
≤ 2n

∫
In,kx

|f(y)− f(x)|dy

< 2n
∫
In,kx

ϵ

2M
dy

=
ϵ

2M
.

This tells us that if 2−n ≤ δ then ∥Pnf − f∥∞ ≤ ϵ
2M

. Therefore, if ϵ > 0 then
for sufficiently large n we have ∥Pnf − f∥∞ ≤ ϵ

2M
, showing that

lim
n→∞

∥Pnf − f∥∞ = 0.

Furthermore, if n ≥ 0 then

∥Pnf − f∥22 =

∫
R
|Pnf(x)−f(x)|2dx =

∫ 2M

−2M
|Pnf(x)−f(x)|2dx ≤ 2·2M ·∥Pnf − f∥2∞ ,

and because ∥Pnf − f∥∞ → 0 as n→ ∞ we get ∥Pnf − f∥2 → 0 as n→ ∞.

From Lemma 4, we get

(Pn+1 − Pn)f(x) =

∫
R
Kn+1(x, y)f(y)dy −

∫
R
Kn(x, y)f(y)dy

=

∫
R
Ln(x, y)f(y)dy

=

∫
R

∑
k∈Z

ψn,k(x)ψn,k(y)f(y)dy

=
∑
k∈Z

⟨f, ψn,k⟩ψn,k(x),

thus
Pn+1 − Pn =

∑
k∈Z

ψn,k ⊗ ψn,k (3)

in the strong operator topology. Using (3), we obtain for n ≥ 0 that

Pn+1 = P0 +

n∑
j=0

Pj+1 − Pj

= P0 +

n∑
j=0

∑
k∈Z

ψj,k ⊗ ψj,k
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in the strong operator topology. For n < 0,

Pn = P0 −
−1∑

j=−n

Pj+1 − Pj

= P0 −
−1∑

j=−n

∑
k∈Z

ψj,k ⊗ ψj,k

in the strong operator topology.
We have already shown in Lemma 2 that {ψn,k : n, k ∈ Z} is an orthonormal

set in L2(R), and we now prove that it is an orthonormal basis for L2(R).

Theorem 8. In the strong operator topology,

idL2(R) =
∑

n,k∈Z
ψn,k ⊗ ψn,k.

Proof. Let f ∈ L2(R) and suppose ϵ > 0. By Lemma 6, there is some M such
that m ≥ M implies that ∥P−mf∥2 <

ϵ
2 . There is some g ∈ Cc(R) satisfying

∥f − g∥2 <
ϵ
6 , and by Lemma 7 there is some N such that n ≥ N implies that

∥Png − g∥2 <
ϵ
6 . Hence, if n ≥ N then

∥Pnf − f∥2 ≤ ∥Pnf − Png∥2 + ∥Png − g∥2 + ∥g − f∥2
≤ 2 ∥f − g∥2 + ∥Png − g∥2

<
2ϵ

6
+
ϵ

6

=
ϵ

2
.

Therefore, if m ≥M and n ≥ N , then∥∥(Pn − P−m − idL2(R)f
∥∥
2
≤ ∥Pnf − f∥2 + ∥P−mf∥2 <

ϵ

2
+
ϵ

2
= ϵ.

For m,n > 0, we have

Pn+1 − P−m =

n∑
j=0

∑
k∈Z

ψj,k ⊗ ψj,k +

−1∑
j=−m

∑
k∈Z

ψj,k ⊗ ψj,k

=

n∑
j=−m

∑
k∈Z

ψj,k ⊗ ψj,k

in the strong operator topology.

5 Other function spaces

Let Cb(R) denote those continuous functions R → C that are bounded. We
have

Cc(R) ⊂ C0(R) ⊂ Cb(R) ⊂ C(R).

9



Lemma 9. If n ∈ Z and f ∈ Cb(R), then ∥Pnf∥∞ ≤ ∥f∥∞.

Proof. If x ∈ R, then there is a unique kx ∈ Z with x ∈ In,kx
, and

|Pnf(x)| =

∣∣∣∣∣2n
∫
In,kx

f(y)dy

∣∣∣∣∣ ≤ 2n
∫
In,kx

|f(y)|dy ≤ ∥f∥∞ .

Theorem 10. If f ∈ C0(R), then the series
∑

n,k∈Z ⟨f, ψn,k⟩ψn,k converges to
f uniformly on R.

Proof. If ϵ > 0 then there is some g ∈ Cc(R) with ∥f − g∥∞ < ϵ
6 . By Lemma

5, there is some M such that m ≥M implies that ∥P−mg∥∞ < ϵ
3 , hence

∥P−mf∥∞ ≤ ∥P−mf − P−mg∥∞ + ∥P−mg∥∞
≤ ∥f − g∥∞ + ∥P−mg∥∞
<
ϵ

6
+
ϵ

3

=
ϵ

2
.

By Lemma 7, there is some N such that n ≥ N implies that ∥Png − g∥∞ < ϵ
6 ,

hence

∥Pnf − f∥∞ ≤ ∥Pnf − Png∥∞ + ∥Png − g∥∞ + ∥g − f∥∞
≤ 2 ∥f − g∥∞ + ∥Png − g∥∞
<
ϵ

2
.

Therefore, if n ≥ N and m ≥M , then

∥Pnf − P−mf − f∥∞ ≤ ∥Pnf − f∥∞ + ∥P−mf∥∞ <
ϵ

2
+
ϵ

2
= ϵ.

The following theorem states that Pn is an operator on Lp(R) with operator
norm ≤ 1.5 In particular, it asserts that if f ∈ Lp(R) then the averaged function
Pnf is also an element of Lp(R).

Theorem 11. If 1 ≤ p <∞, n ∈ Z, and f ∈ Lp(R), then ∥Pnf∥p ≤ ∥f∥p.

Proof. Let 1
p + 1

q = 1, so q = p
p−1 . (If p = 1 then q = ∞.) If x ∈ R, then there

5Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 297, Lemma 6.3.9.
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is a unique kx ∈ Z with x ∈ In,kx , and using Hölder’s inequality we get

|Pnf(x)| =

∣∣∣∣∣2n
∫
In,kx

f(y)dy

∣∣∣∣∣
≤ 2n

(∫
In,kx

|f(y)|pdy

)1/p

(µ(In,kx
))1/q

= 2n

(∫
In,kx

|f(y)|pdy

)1/p

2−n/q.

Therefore, if k ∈ Z then∫
In,k

|Pnf(x)|pdx ≤
∫
In,k

2np2−np/q

∫
In,kx

|f(y)|pdydx

=

∫
In,k

2np2−np/q

∫
In,k

|f(y)|pdydx

= 2−n2np2−np/q

∫
In,k

|f(y)|pdy

=

∫
In,k

|f(y)|pdy.

We obtain

∥Pnf∥pp =
∑
k∈Z

∫
In,k

|Pnf(x)|pdx

≤
∑
k∈Z

∫
In,k

|f(y)|pdy

=

∫
R
|f(y)|pdy

= ∥f∥pp ,

giving ∥Pnf∥p ≤ ∥f∥p.

6 Multiresolution analysis

For a ∈ R, we define ma : R → R by ma(x) = ax, and we define τa : R → R by
τa(x) = x− a.

Definition 12 (Multiresolution analysis). A multiresolution analysis of L2(R)
is a set {Vn : n ∈ Z} of closed subspaces of the Hilbert space L2(R) and a
function Φ ∈ L2(R) satisfying

1. If n ∈ Z, then f ∈ Vn if and only if f ◦m2 ∈ Vn+1.

11



2. Vn ⊆ Vn+1.

3.
⋃

n∈Z Vn = L2(R).

4.
⋂

n∈Z Vn = {0}.

5. {Φ ◦ τk : k ∈ Z} is an orthonormal basis for V0.

It is straightforward to prove the following theorem using what we have
established so far.

Theorem 13. The closed subspaces {L2(R,Fn) : n ∈ Z} of L2(R) and the
function ϕ = χ[0,1) is a multiresolution analysis of L2(R).

The following lemma shows that if Pn is the projection onto Vn, where Vn
is a closed subspace of a multiresolution analysis of L2(R), then Pn → 0 in the
strong operator topology as n→ −∞.6

Lemma 14. If {Vn : n ∈ Z} and Φ ∈ L2(R) is a multiresolution analysis of
L2(R), Pn : L2(R) → Vn is the orthogonal projection onto Vn, and f ∈ L2(R),
then

lim
n→−∞

Pnf = 0.

Proof. Define Φn,k(x) = 2n/2Φ(2nx−k). The set {Φ0,k : k ∈ Z} is an orthonor-
mal basis for V0, and one checks that the set {Φn,k : k ∈ Z} is an orthonormal
basis for Vn. Therefore

Pn =
∑
k∈Z

Φn,k ⊗ Φn,k

in the strong operator topology.
For R > 0, let fR = fχ[−R,R]. If 2

nR < 1
2 , then, using the Cauchy-Schwarz

6Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 313, Lemma 6.4.28.
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inequality,

∥PnfR∥22 =
∑
k∈Z

| ⟨PnfR,Φn,k⟩ |2

=
∑
k∈Z

| ⟨fR,Φn,k⟩ |2

=
∑
k∈Z

|
〈
fR, χ[−R,R]Φn,k

〉
|2

≤
∑
k∈Z

(∫ R

−R

|fR(x)|2dx

)(∫ R

−R

|Φn,k(x)|2dx

)

= ∥fR∥22
∑
k∈Z

∫ R

−R

|Φn,k(x)|2dx

= ∥fR∥22
∑
k∈Z

2n
∫ R

−R

|Φ(2nx− k)|2dx

= ∥fR∥22
∑
k∈Z

∫ 2nR−k

−2nR−k

|Φ(x)|2dx

= ∥fR∥22
∫
Un

|Φ(x)|2dx,

where
Un =

⋃
k∈Z

(−k − 2nR,−k + 2nR);

the intervals are disjoint because 2nR < 1
2 . Define Fn(x) = |Φ(x)|2χUn(x). For

all x ∈ R we have |Fn(x)| ≤ |Φ(x)|2, and if x ∈ R then

lim
n→−∞

Fn(x) → |Φ(x)|2χZ(x),

where Z =
⋂

n∈Z Un. Thus by the dominated convergence theorem we get

lim
n→−∞

∫
R
Fn(x)dx =

∫
R
|Φ(x)|2χZ(x)dx = 0,

because µ(Z) = 0. Therefore,

lim
n→−∞

∥PnfR∥2 = 0.

If ϵ > 0 then there is some R such that ∥f − fR∥2 < ϵ. We have, because
Pn is an orthogonal projection,

lim sup
n→−∞

∥Pnf∥2 ≤ lim sup
n→−∞

∥Pnf − PnfR∥2 + lim sup
n→−∞

∥PnfR∥2

= lim sup
n→−∞

∥Pnf − PnfR∥2

≤ lim sup
n→−∞

∥f − fR∥2

< ϵ.
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This is true for all ϵ > 0, so we obtain

lim
n→−∞

∥Pnf∥2 = 0.

If Sα, α ∈ I, are subsets of a Hilbert space H, we denote by
∨

α∈I Sα the

closure of the span of
⋃

α∈I Sα. If S is a subset of H, let S⊥ be the set of all
x ∈ H such that y ∈ S implies that ⟨x, y⟩ = 0. If Sn, n ∈ Z, are mutually
orthogonal closed subspaces of a Hilbert space, we write⊕

n∈Z
Sn =

∨
n∈Z

Sn.

The following theorem shows a consequence of Definition 12.

Theorem 15. If {Vn : n ∈ Z} are the closed subspaces of a multiresolution
analysis of L2(R) and Wn = Vn+1 ∩ V ⊥

n , then

L2(R) =
⊕
n∈Z

Wn.

Proof. Because Wn = Vn+1 ∩ V ⊥
n is the intersection of two closed subspaces, it

is itself a closed subspace. Suppose that n < n′, f ∈ Wn, g ∈ Wn′ . n+ 1 ≤ n′,
and hence Vn+1 ⊆ Vn′ . Therefore

Wn′ = Vn′+1 ∩ V ⊥
n′ ⊂ V ⊥

n′ ⊆ V ⊥
n+1.

But f ∈Wn ⊂ Vn+1 and g ∈Wn′ ⊂ V ⊥
n+1, so ⟨f, g⟩ = 0. Therefore Wn ⊥Wn′ .

If f ∈ Vn and f ̸= 0, then there is a minimal N such that f ∈ VN ; this
minimal N exists because Vn ⊆ Vn+1 and

⋂
n∈Z Vn = {0}. We have

VN = VN−1 ⊕WN−1,

hence f = fN−1 + gN−1, with fN−1 ∈ VN−1 and gN−1 ∈WN−1. Likewise,

VN−1 = VN−2 ⊕WN−2,

hence fN−1 = fN−2 + gN−2, with fN−2 ∈ VN−2 and gN−2 ∈ WN−2. In this
way, for any M ≥ 0 we obtain

f = fN−M +

M∑
m=1

gN−m,

where fN−M ∈ VN−M and gN−m ∈WN−m. Check that fN−M is the orthogonal
projection of f onto VN−M . It thus follows from Lemma 14 that fN−M → 0
as M → ∞. Thus, for any ϵ > 0 there is some M with ∥fN−M∥2 < ϵ and
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f ∈ fN−M +
⊕M

m=1WN−m. Therefore, if f ∈
⋃

n∈Z Vn then there is some
g ∈

⊕
n∈ZWn satisfying ∥f − g∥2 <∞. Thus⋃

n∈Z
Vn ⊆

⊕
n∈Z

Wn,

and so
L2(R) =

⊕
n∈Z

Wn.

7 The unit interval

L2([0, 1)) is a Hilbert space with the inner product

⟨f, g⟩ =
∫ 1

0

f(x)g(x)dx.

If n ≥ 0, then In,0 =
[
0, 1

2n

)
and In,2n−1 =

[
1− 1

2n , 1
)
, and we have

[0, 1) =

2n−1⋃
k=0

In,k.

Let n ≥ 0, let Gn be the σ-algebra generated by {In,k : 0 ≤ k ≤ 2n− 1}, and
let G be the σ-algebra of Lebesgue measurable subsets of [0, 1). If n < n′, then

Gn ⊂ Gn′ ⊂ G .

An element of L2([0, 1),Gn) is an element of L2([0, 1),G ) that is constant on
each set In,k, 0 ≤ k ≤ 2n − 1. Equivalently, an element of L2([0, 1),Gn) is a
function f : [0, 1) → C that is constant on each set In,k, 0 ≤ k ≤ 2n−1; because
[0, 1) is a union of finitely many In,k, any such function will be an element of
L2([0, 1),G ). It is apparent that

L2([0, 1),Gn) ⊂ L2([0, 1),Gn′) ⊂ L2([0, 1),G ).

We check that L2([0, 1),Gn) is a complex vector space of dimension 2n.
In,k = In+1,2k ∪ In+1,2k+1. If x ∈ In+1,2k, then

2k
2n+1 ≤ x < 2k+1

2n+1 , so
k
2n ≤

x < k
2n + 1

2n+1 , hence 0 ≤ 2nx−k < 1
2 . If x ∈ In+1,2k+1, then

2k+1
2n+1 ≤ x < 2k+2

2n+1 ,

hence k
2n + 1

2n+1 ≤ x < k+1
2n , and so 1

2 ≤ 2nx− k < 1. Thus, if x ∈ In+1,2k then

ψn,k(x) = 2n/2ψ(2nx− k) = 2n/2

and if x ∈ In+1,2k+1 then

ψn,k(x) = 2n/2ψ(2nx− k) = −2n/2.

Otherwise x ̸∈ In,k, for which ψn,k(x) = 0. It follows that ψn,k ∈ L2([0, 1),Gn+1).
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Theorem 16. If
B0 = {χ[0,1)}

and, for n ≥ 0,
Bn+1 = {ψn,k : 0 ≤ k ≤ 2n − 1},

then
N⋃

n=0

Bn

is an orthonormal basis of L2([0, 1),GN ).

Proof. It follows from Lemma 2 that
⋃N

n=1 Bn is orthonormal in L2([0, 1)), as it
is a subset of an orthonormal set. If 0 ≤ n ≤ N then Bn ⊂ L2([0, 1),GN ), hence⋃N

n=1 Bn is orthonormal in L2([0, 1),GN ). If 0 < n ≤ N and 0 ≤ k ≤ 2n−1 − 1,
then ψn−1,k ∈ Bn and

〈
ψn−1,k, χ[0,1)

〉
=

∫ 1

0

ψn−1,k(x)χ[0,1)(x)dx

=

∫ 1

0

ψn−1,k(x)dx

=

∫
In,2k

ψn−1,k(x)dx+

∫
In,2k+1

ψn−1,k(x)dx

=

∫
In,2k

2(n−1)/2dx+

∫
In,2k+1

−2(n−1)/2dx

= 0.

Therefore,
⋃N

n=0 Bn is orthonormal in L2([0, 1),GN ).
|B0| = 1, and if n ≥ 1 then |Bn| = 2n−1. Therefore the number of elements

of
⋃N

n=0 Bn is

1 +

N∑
n=1

2n−1 = 1 +

N−1∑
n=0

2n = 2N .

As dimL2([0, 1),GN ) = 2N , the orthonormal set
⋃N

n=0 Bn is an orthonormal
basis for L2([0, 1),GN ).

By Theorem 16, if N ≥ 0 then
⋃N

n=0 Bn is an orthonormal set in L2([0, 1)).
Hence

B =

∞⋃
n=0

Bn

is an orthonormal set in L2([0, 1)): if f, g ∈ B then there is some N with

f, g ∈
⋃N

n=0 Bn, which is an orthonormal set. The following theorem shows
that B is an orthonormal basis for the Hilbert space L2([0, 1)).7

7John K. Hunter and Bruno Nachtergaele, Applied Analysis, p. 177, Lemma 7.13.
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Theorem 17. B is an orthonormal basis for L2([0, 1)).

Proof. If f ∈ L2([0, 1)) and ϵ > 0 then there is some g ∈ C([0, 1]) with
∥f − g∥2 < ϵ

2 . g is uniformly continuous on the compact set [0, 1], so there
is some δ > 0 such that |x− y| < δ implies that |g(x)− g(y)| < ϵ

2 . Let 2
−n ≤ δ,

and define h : [0, 1) → C by

h(x) =

2n−1∑
k=0

g

(
k

2n

)
χIn,k

(x).

If x ∈ [0, 1) then there is a unique kx, 0 ≤ kx ≤ 2n − 1, with x ∈ In,kx
, and for

this kx we have
∣∣x− kx

2n

∣∣ < 2−n ≤ δ, and hence

|g(x)− h(x)| =
∣∣∣∣g(x)− g

(
kx
2n

)∣∣∣∣ < ϵ

2
.

Therefore ∥g − h∥∞ ≤ ϵ
2 .

We have h ∈ L2([0, 1),Gn), and

∥f − h∥2 ≤ ∥f − g∥2 + ∥g − h∥2 <
ϵ

2
+ ∥g − h∥∞ ≤ ϵ.

We have shown that if f ∈ L2([0, 1)) and ϵ > 0 then there is some n and some h ∈
L2([0, 1),Gn) with ∥f − h∥2 < ϵ. This tells us that

⋃∞
n=0 L

2([0, 1),Gn) is a dense
subset of L2([0, 1)). Since B is orthonormal and spanB =

⋃∞
n=0 L

2([0, 1),Gn),
B is an orthonormal basis for L2([0, 1)).
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