Vitali coverings on the real line

Jordan Bell

March 10, 2016

For $x \in \mathbb{R}$ and $r>0$ write

$$
B(x, r)=\{y \in \mathbb{R}:|y-x|<r\} .
$$

Let λ be Lebesgue measure on the Borel σ-algebra of \mathbb{R} and let λ^{*} be Lebesgue outer measure on \mathbb{R}.

A Vitali covering of a set $E \subset \mathbb{R}$ is a collection \mathcal{V} of closed intervals such that for $\epsilon>0$ and for $x \in E$ there is some $I \in \mathcal{V}$ with $x \in I$ and $0<\lambda(I)<\epsilon$.

The following is the Vitali covering theorem. ${ }^{1}$
Theorem 1 (Vitali covering theorem). Let U be an open set in \mathbb{R} with $\lambda(U)<$ ∞, let $E \subset U$, and let \mathcal{V} be a Vitali covering of E each interval of which is contained in U. Then for any $\epsilon>0$, there are disjoint $I_{1}, \ldots, I_{n} \in \mathcal{V}$ such that

$$
\lambda^{*}\left(E \backslash \bigcup_{j=1}^{n} I_{j}\right)<\epsilon
$$

Proof. Suppose that $I_{1}, \ldots, I_{n} \in \mathcal{V}$ are pairwise disjoint. If $E \subset \bigcup_{j=1}^{n} I_{j}$ then I_{1}, \ldots, I_{n} satisfy the claim, and otherwise, let

$$
U_{n}=U \backslash \bigcup_{j=1}^{n} I_{j},
$$

and there exists some $x \in E \cap U_{n}$. As $x \in U_{n}$ and U_{n} is open, there is some $\eta>0$ such that $B(x, \eta) \subset U_{n}$ and then as \mathcal{V} is a Vitali covering of E there is some $I \in \mathcal{V}$ with $x \in I \subset B(x, \eta) \subset U_{n}$. Thus $\delta_{n}>0$ for

$$
\delta_{n}=\sup \left\{\lambda(I): I \in \mathcal{V}, I \subset U_{n}\right\},
$$

and there is some $I_{n+1} \in \mathcal{V}$ with $I_{n+1} \subset U_{n}$ and $\lambda\left(I_{n+1}\right)>\frac{\delta_{n}}{2}$.

[^0]For $j \geq 1$ write $I_{j}=\left[x_{j}-r_{j}, x_{j}+r_{j}\right]$ and let $J_{j}=\left[x_{j}-5 r_{j}, x_{j}+5 r_{j}\right]$, namely J_{j} is concentric with I_{j} and $\lambda\left(J_{j}\right)=5 \lambda\left(I_{j}\right)$. Then, as the intervals I_{1}, I_{2}, \ldots are pairwise disjoint Borel sets each contained in U,

$$
\sum_{j=1}^{\infty} \lambda\left(J_{j}\right)=5 \sum_{j=1}^{\infty} \lambda\left(I_{j}\right)=5 \lambda\left(\bigcup_{j=1}^{\infty} I_{j}\right) \leq 5 \lambda(U)<\infty
$$

and it follows from $\sum_{j=1}^{\infty} \lambda\left(J_{j}\right)<\infty$ that $\sum_{j=M}^{\infty} \lambda\left(J_{j}\right) \rightarrow 0$ as $M \rightarrow \infty$, which with

$$
\lambda\left(\bigcup_{j=M}^{\infty} J_{j}\right) \leq \sum_{j=M}^{\infty} \lambda\left(J_{j}\right)
$$

yields $\lambda\left(\bigcup_{j=M}^{\infty} J_{j}\right) \rightarrow 0$ as $M \rightarrow \infty$.
Let $M \geq 1$. If $x \in E \backslash \bigcup_{j=1}^{\infty} I_{j}$ then $x \in E \backslash \bigcup_{j=1}^{M} I_{j}$ and so $x \in U_{M}$, and as U_{M} is open there is some $\eta>0$ with $B(x, \eta) \subset U_{M}$. But $x \in E$ and \mathcal{V} is a Vitali covering of E, so there is some $I \in \mathcal{V}$ with $x \in I$ and $I \subset B(x, \eta) \subset U_{M}$. Now, $\lambda\left(I_{j+1}\right)>\frac{\delta_{j}}{2}$ and $\sum_{j=1}^{\infty} \lambda\left(I_{j}\right)<\infty$ together imply $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$, so there is some n for which $\delta_{n}<\lambda(I)$. By the definition of δ_{n} as a supremum, this means that $I \not \subset U_{n}$ and so it makes sense to define N to be a minimal positive integer such that $I \not \subset U_{N} . M<N:$ if $M \geq N$ then $I \subset U_{M} \subset U_{N}$, contradicting $I \not \subset U_{N}$. (We shall merely use that $M \leq N$.) The fact that $I \not \subset U_{N}$ and $I \subset U_{N-1}$ means that $I \cap I_{N} \neq \emptyset$ and also, by the definition of $\delta_{N-1}, \lambda(I) \leq \delta_{N-1}<2 \lambda\left(I_{N}\right)$. Write $I=[y-r, y+r] . I \cap I_{N} \neq \emptyset$ tells us $y-r \leq x_{N}+r_{N}$ and $y+r \geq x_{N}-r_{N}$, and $\lambda(I)<2 \lambda\left(I_{N}\right)$ tells us $2 r<4 r_{N}$, hence

$$
y+r \leq x_{N}+r_{N}+2 r \leq x_{N}+5 r_{N}, \quad y-r \geq x_{N}-r_{N}-2 r \geq x_{N}-5 r_{N}
$$

showing that

$$
x \in I=[y-r, y+r] \subset J_{N} \subset \bigcup_{j=M}^{\infty} J_{j} .
$$

This is true for each $x \in E \backslash \bigcup_{j=1}^{\infty} I_{j}$, which means that

$$
E \backslash \bigcup_{j=1}^{\infty} I_{j} \subset \bigcup_{j=M}^{\infty} J_{j}
$$

Because $\lambda\left(\bigcup_{j=M}^{\infty} J_{j}\right) \rightarrow 0$ as $M \rightarrow \infty$, this yields

$$
\lambda^{*}\left(E \backslash \bigcup_{j=1}^{\infty} I_{j}\right)=0
$$

But $E \backslash \bigcup_{j=1}^{n} I_{j}$ is an increasing sequence of sets tending to $E \backslash \bigcup_{j=1}^{\infty} I_{j}$, therefore

$$
\lambda^{*}\left(E \backslash \bigcup_{j=1}^{n} I_{j}\right) \rightarrow \lambda^{*}\left(E \backslash \bigcup_{j=1}^{\infty} I_{j}\right)=0, \quad n \rightarrow \infty
$$

so there is some n such that $\lambda^{*}\left(E \backslash \bigcup_{j=1}^{n} I_{j}\right)<\epsilon$ and then I_{1}, \ldots, I_{n} satisfy the claim.

[^0]: ${ }^{1}$ Klaus Bichteler, Integration - A Functional Approach, p. 161, Lemma 10.5; John J. Benedetto and Wojciech Czaja, Integration and Modern Analysis, p. 179, Theorem 4.3.1; Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 52, Lemma 4.6.

