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For x ∈ R and r > 0 write

B(x, r) = {y ∈ R : |y − x| < r}.

Let λ be Lebesgue measure on the Borel σ-algebra of R and let λ∗ be
Lebesgue outer measure on R.

A Vitali covering of a set E ⊂ R is a collection V of closed intervals such
that for ϵ > 0 and for x ∈ E there is some I ∈ V with x ∈ I and 0 < λ(I) < ϵ.

The following is the Vitali covering theorem.1

Theorem 1 (Vitali covering theorem). Let U be an open set in R with λ(U) <
∞, let E ⊂ U , and let V be a Vitali covering of E each interval of which is
contained in U . Then for any ϵ > 0, there are disjoint I1, . . . , In ∈ V such that

λ∗

E \
n⋃

j=1

Ij

 < ϵ.

Proof. Suppose that I1, . . . , In ∈ V are pairwise disjoint. If E ⊂
⋃n

j=1 Ij then
I1, . . . , In satisfy the claim, and otherwise, let

Un = U \
n⋃

j=1

Ij ,

and there exists some x ∈ E ∩ Un. As x ∈ Un and Un is open, there is some
η > 0 such that B(x, η) ⊂ Un and then as V is a Vitali covering of E there is
some I ∈ V with x ∈ I ⊂ B(x, η) ⊂ Un. Thus δn > 0 for

δn = sup {λ(I) : I ∈ V, I ⊂ Un} ,

and there is some In+1 ∈ V with In+1 ⊂ Un and λ(In+1) >
δn
2 .

1Klaus Bichteler, Integration – A Functional Approach, p. 161, Lemma 10.5; John J.
Benedetto and Wojciech Czaja, Integration and Modern Analysis, p. 179, Theorem 4.3.1;
Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 52, Lemma
4.6.
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For j ≥ 1 write Ij = [xj−rj , xj+rj ] and let Jj = [xj−5rj , xj+5rj ], namely
Jj is concentric with Ij and λ(Jj) = 5λ(Ij). Then, as the intervals I1, I2, . . . are
pairwise disjoint Borel sets each contained in U ,

∞∑
j=1

λ(Jj) = 5

∞∑
j=1

λ(Ij) = 5λ

 ∞⋃
j=1

Ij

 ≤ 5λ(U) < ∞

and it follows from
∑∞

j=1 λ(Jj) < ∞ that
∑∞

j=M λ(Jj) → 0 as M → ∞, which
with

λ

 ∞⋃
j=M

Jj

 ≤
∞∑

j=M

λ(Jj)

yields λ
(⋃∞

j=M Jj

)
→ 0 as M → ∞.

Let M ≥ 1. If x ∈ E \
⋃∞

j=1 Ij then x ∈ E \
⋃M

j=1 Ij and so x ∈ UM , and
as UM is open there is some η > 0 with B(x, η) ⊂ UM . But x ∈ E and V is a
Vitali covering of E, so there is some I ∈ V with x ∈ I and I ⊂ B(x, η) ⊂ UM .

Now, λ(Ij+1) >
δj
2 and

∑∞
j=1 λ(Ij) < ∞ together imply δn → 0 as n → ∞, so

there is some n for which δn < λ(I). By the definition of δn as a supremum,
this means that I ̸⊂ Un and so it makes sense to define N to be a minimal
positive integer such that I ̸⊂ UN . M < N : if M ≥ N then I ⊂ UM ⊂ UN ,
contradicting I ̸⊂ UN . (We shall merely use that M ≤ N .) The fact that
I ̸⊂ UN and I ⊂ UN−1 means that I ∩ IN ̸= ∅ and also, by the definition of
δN−1, λ(I) ≤ δN−1 < 2λ(IN ). Write I = [y − r, y + r]. I ∩ IN ̸= ∅ tells us
y − r ≤ xN + rN and y + r ≥ xN − rN , and λ(I) < 2λ(IN ) tells us 2r < 4rN ,
hence

y + r ≤ xN + rN + 2r ≤ xN + 5rN , y − r ≥ xN − rN − 2r ≥ xN − 5rN ,

showing that

x ∈ I = [y − r, y + r] ⊂ JN ⊂
∞⋃

j=M

Jj .

This is true for each x ∈ E \
⋃∞

j=1 Ij , which means that

E \
∞⋃
j=1

Ij ⊂
∞⋃

j=M

Jj .

Because λ(
⋃∞

j=M Jj) → 0 as M → ∞, this yields

λ∗

E \
∞⋃
j=1

Ij

 = 0.

But E\
⋃n

j=1 Ij is an increasing sequence of sets tending to E\
⋃∞

j=1 Ij , therefore

λ∗

E \
n⋃

j=1

Ij

 → λ∗

E \
∞⋃
j=1

Ij

 = 0, n → ∞,
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so there is some n such that λ∗
(
E \

⋃n
j=1 Ij

)
< ϵ and then I1, . . . , In satisfy

the claim.
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