The C^{∞} Urysohn lemma

Jordan Bell

September 11, 2015

Define $\eta : \mathbb{R} \to \mathbb{R}$ by

$$\eta(t) = e^{-1/t} \mathbf{1}_{(0,\infty)}(t).$$

It is a fact that η is C^{∞} . This is proved by showing that for each $k \geq 1$ there is a polynomial P_k of degree 2k such that $\eta^{(k)}(t) = P_k(t^{-1})e^{-1/t}$ for t > 0, and that $\eta^{(k)}(0) = 0$, which together imply that $\eta \in C^k$.

Define $\psi : \mathbb{R}^d \to \mathbb{R}$ by

$$\psi(x) = \eta(1 - |x|^2) = \begin{cases} e^{\frac{1}{|x|^2 - 1}} & |x| < 1\\ 0 & |x| \ge 1. \end{cases}$$

Because $x \mapsto 1 - |x|^2$ is $C^{\infty} : \mathbb{R}^d \to \mathbb{R}$, the chain rule tells us that ψ is C^{∞} . For a function ϕ on \mathbb{R}^d and for t > 0, we define

 $\phi_t(x) = t^{-d}\phi(t^{-1}x).$

We now construct bump functions.¹

Theorem 1 (C^{∞} Urysohn lemma). If K is a compact subset of \mathbb{R}^d and U is an open set containing K, then there exists $\phi \in C^{\infty}(\mathbb{R}^d)$ with $0 \le \phi \le 1$, $\phi = 1$ on K, and supp $\phi \subset U$. Moreover, if K is invariant under SO(d) then the function ϕ constructed here is radial.

Proof. Let

$$\delta = d(K, U^c),$$

which is positive because K is compact and U^c is closed. Let

$$V = \left\{ x \in \mathbb{R}^d : d(x, K) < \frac{\delta}{3} \right\} = K + B_{\delta/3},$$

and define f on \mathbb{R}^d by

$$f = \left(\int_{\mathbb{R}^d} \psi(x) dx\right)^{-1} \psi_{\delta/3},$$

¹The following construction of a bump function follows Gerald B. Folland, *Real Analysis: Modern Techniques and Their Applications*, second ed., p. 245, Lemma 8.18.

whose support is

$$\operatorname{supp} f = \operatorname{supp} \psi_{\delta/3} = \overline{B_{\delta/3}}.$$

Finally define ϕ on \mathbb{R}^d by

$$\phi = 1_V * f.$$

Because V is bounded and f is C^{∞} , the function ϕ is C^{∞} . The support of ϕ is

$$\operatorname{supp} \phi = \operatorname{supp} \left(1_V * f \right) \subset \overline{\operatorname{supp} 1_V + \operatorname{supp} f} = \overline{V + \overline{B_{\delta/3}}} = K + \overline{B_{2\delta/3}} \subset U.$$

Because 1_V and f are nonnegative, so is their convolution ϕ . For any x,

$$\phi(x) = \int_{\mathbb{R}^d} 1_V(x-y)f(y)dy \le \int_{\mathbb{R}^d} f(y)dy = 1,$$

so $0 \le \phi \le 1$. For $x \in K$, if $y \in V^c$ then $|x - y| \ge \delta/3$. But f(u) = 0 for $|u| \ge \delta/3$, so in this case f(x - y) = 0. This implies that for $x \in K$ the functions $y \mapsto 1_V(y)f(x - y)$ and $y \mapsto f(x - y)$ are equal, hence

$$\phi(x) = \int_{\mathbb{R}^d} 1_V(y) f(x-y) dy = \int_{\mathbb{R}^d} f(x-y) dy = \int_{\mathbb{R}^d} f(y) dy = 1.$$

This shows that $\phi = 1$ on K, verifying all the assertions made about ϕ .

The function ψ is radial and so f is too. If V is invariant under SO(d), then the indicator function 1_V is radial. Thus, if K is invariant under SO(d) then 1_V is radial, and the convolution of two radial functions is also radial, which means that ϕ is radial in this case.

For example, take d = 1, take K to be the closed ball of radius 1, and take U to be the open ball of radius 2. Then $\delta = d(K, U^c) = 1$ and $V = B_{4/3}$. In Figure 1 we plot the bump function ϕ constructed in the above theorem.

Figure 1: The bump function ϕ , for d = 1, K = [-1, 1], U = (-2, 2); $\delta = 1$ and V = (-4/3, 4/3)