The C^{∞} Urysohn lemma

Jordan Bell

September 11, 2015

Define $\eta: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\eta(t)=e^{-1 / t} 1_{(0, \infty)}(t) .
$$

It is a fact that η is C^{∞}. This is proved by showing that for each $k \geq 1$ there is a polynomial P_{k} of degree $2 k$ such that $\eta^{(k)}(t)=P_{k}\left(t^{-1}\right) e^{-1 / t}$ for $t>0$, and that $\eta^{(k)}(0)=0$, which together imply that $\eta \in C^{k}$.

Define $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\psi(x)=\eta\left(1-|x|^{2}\right)= \begin{cases}e^{\frac{1}{|x|^{2}}-1} & |x|<1 \\ 0 & |x| \geq 1\end{cases}
$$

Because $x \mapsto 1-|x|^{2}$ is $C^{\infty}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the chain rule tells us that ψ is C^{∞}.
For a function ϕ on \mathbb{R}^{d} and for $t>0$, we define

$$
\phi_{t}(x)=t^{-d} \phi\left(t^{-1} x\right) .
$$

We now construct bump functions. ${ }^{1}$
Theorem 1 (C^{∞} Urysohn lemma). If K is a compact subset of \mathbb{R}^{d} and U is an open set containing K, then there exists $\phi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ with $0 \leq \phi \leq 1, \phi=1$ on K, and $\operatorname{supp} \phi \subset U$. Moreover, if K is invariant under $S O(d)$ then the function ϕ constructed here is radial.

Proof. Let

$$
\delta=d\left(K, U^{c}\right),
$$

which is positive because K is compact and U^{c} is closed. Let

$$
V=\left\{x \in \mathbb{R}^{d}: d(x, K)<\frac{\delta}{3}\right\}=K+B_{\delta / 3},
$$

and define f on \mathbb{R}^{d} by

$$
f=\left(\int_{\mathbb{R}^{d}} \psi(x) d x\right)^{-1} \psi_{\delta / 3},
$$

[^0]whose support is
$$
\operatorname{supp} f=\operatorname{supp} \psi_{\delta / 3}=\overline{B_{\delta / 3}}
$$

Finally define ϕ on \mathbb{R}^{d} by

$$
\phi=1_{V} * f
$$

Because V is bounded and f is C^{∞}, the function ϕ is C^{∞}. The support of ϕ is

$$
\operatorname{supp} \phi=\operatorname{supp}\left(1_{V} * f\right) \subset \overline{\operatorname{supp} 1_{V}+\operatorname{supp} f}=\overline{V+\overline{B_{\delta / 3}}}=K+\overline{B_{2 \delta / 3}} \subset U
$$

Because 1_{V} and f are nonnegative, so is their convolution ϕ. For any x,

$$
\phi(x)=\int_{\mathbb{R}^{d}} 1_{V}(x-y) f(y) d y \leq \int_{\mathbb{R}^{d}} f(y) d y=1
$$

so $0 \leq \phi \leq 1$. For $x \in K$, if $y \in V^{c}$ then $|x-y| \geq \delta / 3$. But $f(u)=0$ for $|u| \geq \delta / 3$, so in this case $f(x-y)=0$. This implies that for $x \in K$ the functions $y \mapsto 1_{V}(y) f(x-y)$ and $y \mapsto f(x-y)$ are equal, hence

$$
\phi(x)=\int_{\mathbb{R}^{d}} 1_{V}(y) f(x-y) d y=\int_{\mathbb{R}^{d}} f(x-y) d y=\int_{\mathbb{R}^{d}} f(y) d y=1
$$

This shows that $\phi=1$ on K, verifying all the assertions made about ϕ.
The function ψ is radial and so f is too. If V is invariant under $S O(d)$, then the indicator function 1_{V} is radial. Thus, if K is invariant under $S O(d)$ then 1_{V} is radial, and the convolution of two radial functions is also radial, which means that ϕ is radial in this case.

For example, take $d=1$, take K to be the closed ball of radius 1 , and take U to be the open ball of radius 2 . Then $\delta=d\left(K, U^{c}\right)=1$ and $V=B_{4 / 3}$. In Figure 1 we plot the bump function ϕ constructed in the above theorem.

Figure 1: The bump function ϕ, for $d=1, K=[-1,1], U=(-2,2) ; \delta=1$ and $V=(-4 / 3,4 / 3)$

[^0]: ${ }^{1}$ The following construction of a bump function follows Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 245, Lemma 8.18.

