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1 Preliminaries

Let N be the set of positive integers. We say that a set is countable if it is
bijective with a subset of N; thus a finite set is countable. In this note I do
not presume unless I say so that any set is countable or that any topological
space is separable. A neighborhood of a point in a topological space is a set that
contains an open set that contains the point; one reason why it can be handy to
speak about neighborhoods of a point rather than just open sets that contain
the point is that the set of all neighborhoods of a point is a filter, whereas it is
unlikely that the set of all open sets that contain a point is a filter.

2 Unordered sums in normed spaces

A partially ordered set is a set J and a binary relation ≤ on J that is reflexive
(α ≤ α), antisymmetric (if both α ≤ β and β ≤ α then α = β), and transitive
(if both α ≤ β and β ≤ γ then α ≤ γ).1 A directed set is a partially ordered
set (J,≤) such that if α, β ∈ J then there is some γ ∈ J such that α ≤ γ and
β ≤ γ. If X is a topological space, a net in X is a function from some directed
set to X. If z : J → X is a net in X and N is a subset of X, we say that z
is eventually in N if there is some α ∈ J such that α ≤ β implies z(β) ∈ N .
We say that the net z converges to x ∈ X if for every neighborhood of x the
net is eventually in that neighborhood. The importance of the notion of a net
is that if X and Y are topological spaces and f is a function X → Y then f
is continuous if and only if for every x ∈ X and for every net z : J → X that
converges to x, the net f ◦ z : J → Y converges to f(x).2

Let X be a normed space, let I be a set, and let F be the set of all finite
subsets of I. F is a directed set ordered by set inclusion. Define S : F → X
by

S(F ) =
∑
i∈F

f(i) ∈ X, F ∈ F .

S is a net in X, and if the net S converges to x ∈ X, we say that the sum∑
i∈I f(i) converges to x, and write

∑
i∈I f(i) = x.

1Paul R. Halmos, Naive Set Theory, §14.
2James R. Munkres, Topology, second ed., p. 188.
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Theorem 1. If X is a normed space, f : I → X is a function, x ∈ X, and I0
is a subset of I such that if i ∈ I \ I0 then f(i) = 0, then

∑
i∈I f(i) converges

to x if and only if
∑

i∈I0
f(i) converges to x.

Proof. Let F be the set of all finite subsets of I, let F0 be the set of all finite
subsets of I0, define S : F → X by S(F ) =

∑
i∈F f(i), and let S0 be the

restriction of S to F0. Suppose that
∑

i∈I f(i) converges to x, and let ϵ > 0.
There is some Fϵ ∈ F such that if Fϵ ⊆ F ∈ F then ∥S(F )− x∥ < ϵ. Let
Gϵ = Fϵ ∩ I0. If Gϵ ⊆ G ∈ F0, then

S0(G)− x =
∑
i∈G

f(i)− x =
∑
i∈F

f(i)− x = S(F )− x,

giving ∥S0(G)− x∥ = ∥S(F )− x∥. HenceGϵ ⊆ G ∈ F0 implies that ∥S0(G)− x∥ <
ϵ, showing that the net S0 converges to x, i.e. that

∑
i∈I0

f(i) converges to x.
Suppose that

∑
i∈I0

f(i) converges to x, and let ϵ > 0. There is some
Gϵ ∈ F0 such that if Gϵ ⊆ G ∈ F0 then ∥S0(G)− x∥ < ϵ. If Gϵ ⊆ F ∈ F ,
then, with G = F ∩ I0,

S(F )− x =
∑
i∈F

f(i)− x =
∑
i∈G

f(i)− x = S0(G)− x,

so Gϵ ⊆ F ∈ F implies that ∥S(F )− x∥ < ϵ. This shows that S converges to
x, that is, that

∑
i∈I f(i) converges to x.

Theorem 2. If X is a normed space, f : I → X is a function, and
∑

i∈I f(i)
converges, then {i ∈ I : f(i) ̸= 0} is countable.

Proof. Suppose that
∑

i∈I f(i) converges to x, let F be the set of all finite
subsets of I, and let S(F ) =

∑
i∈I f(i), F ∈ F . For each n ∈ N, let Fn ∈ F be

such that if Fn ⊆ F ∈ F then

∥S(F )− x∥ <
1

n
.

If G ∈ F and G ∩ Fn = ∅, then

∥S(G)∥ = ∥S(G ∪ Fn)− S(Fn)∥ ≤ ∥S(G ∪ Fn)− x∥+ ∥S(Fn)− x∥ <
2

n
.

Let J =
⋃

n∈N Fn. If i ∈ I \J , then for each n ∈ N, we have {i}∩Fn = ∅, whence
∥S({i})∥ < 2

n . That is, if i ∈ I \ J then for each n ∈ N we have ∥f(i)∥ < 2
n ,

which implies that if i ∈ I \ J then f(i) = 0. Therefore {i ∈ I : f(i) ̸= 0} ⊆ J ,
and as J is countable, the set {i ∈ I : f(i) ̸= 0} is countable.

However, we already have a notion of infinite sums: a series is the limit of a
sequence of partial sums.

Theorem 3. If X is a normed space, xn ∈ X, and
∑

n∈N xn converges to x,

then
∑N

n=1 xn → x as N → ∞.
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Proof. Let ϵ > 0, let F be the set of all finite subsets of N, and let S : F → X
be S(F ) =

∑
n∈F xn. The net S converges to x, so there is some Fϵ ∈ F such

that if Fϵ ⊆ F then ∥S(F )− x∥ < ϵ. Let Nϵ = maxFϵ. If N ≥ Nϵ, then for
F = {1, . . . , N} we have Fϵ ⊆ F and so∥∥∥∥∥

N∑
n=1

xn − x

∥∥∥∥∥ = ∥S(F )− x∥ < ϵ,

showing that
∑N

n=1 xn → x as N → ∞.

When we talk about the sum
∑

i∈I f(i), the set of all finite subsets of I
is ordered by set inclusion, but we don’t care about any ordering of the set
I itself. If the sum

∑
n∈N xn converges then for any bijection σ : N → N,∑∞

n=1 xσ(n) =
∑

n∈N xn. If xn is a sequence in a normed space and for every
bijection σ : N → N the series

∑∞
n=1 xσ(n) converges, we say that the sequence

xn is unconditionally summable. If an unordered sum converges, then it is
unconditionally summable, and if a countable unordered sum is unconditionally
summable the unordered sum converges.

Theorem 4. If X is a Banach space, xn ∈ X, and
∑∞

n=1 ∥xn∥ < ∞, then∑
n∈N xn converges.

Proof. For each k ∈ N there is some K(k) such that

∞∑
n=K(k)+1

∥xn∥ <
1

k
;

suppose that if j < k then K(j) < K(k). Define

vk =

K(k)∑
n=1

xn.

For ϵ > 0, let N > 1
ϵ . If k > j ≥ N , then

∥vk − vj∥ =

∥∥∥∥∥∥
K(k)∑
n=1

xn −
K(j)∑
n=1

xn

∥∥∥∥∥∥ =

∥∥∥∥∥∥
K(k)∑

n=K(j)+1

xn

∥∥∥∥∥∥ ≤
K(k)∑

n=K(j)+1

∥xn∥ ≤
∞∑

n=K(j)+1

∥xn∥ ,

hence if k > j ≥ N , then ∥vk − vj∥ < 1
j ≤ 1

N . This shows that vk is a Cauchy
sequence, and hence vk converges to some x ∈ X.

Let F be the set of all finite subsets of N and define S : F → X by
S(F ) =

∑
n∈F xn. Let ϵ > 0, and as vk → x there is some N1 such that if

k ≥ N1 then ∥vk − x∥ < ϵ. Let N2 > 1
ϵ , put N = max{N1, N2}, and put
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Fϵ = {1, . . . ,K(N)}. If Fϵ ⊆ F ∈ F , then

∥S(F )− x∥ =

∥∥∥∥∥∑
n∈F

xn − x

∥∥∥∥∥
≤

∥∥∥∥∥∑
n∈F

xn −
∑
n∈Fϵ

xn

∥∥∥∥∥+

∥∥∥∥∥∑
n∈Fϵ

xn − x

∥∥∥∥∥
=

∥∥∥∥∥∥
∑

n∈F\Fϵ

xn

∥∥∥∥∥∥+ ∥vN − x∥

<
∑

n∈F\Fϵ

∥xn∥+ ϵ

≤
∞∑

n=K(N)+1

∥xn∥+ ϵ

<
1

N
+ ϵ

< 2ϵ.

Therefore the net S converges to x, i.e.
∑

n∈N xn converges to x.

The following theorem shows us in particular that the converse of Theorem
3 is false. One direction of the following theorem is Theorem 4 with X = C.
The other direction follows from the Riemann rearrangement theorem.3

Theorem 5. If αn ∈ C, then
∑

n∈N αn converges if and only if
∑∞

n=1 |αn| < ∞.

Let X be a normed space and z : J → X a net. We say that z is Cauchy if
for every ϵ > 0 there is some α ∈ J such that α ≤ β and α ≤ γ together imply
that ∥z(β)− z(γ)∥ < ϵ.4

Theorem 6. If X is a Banach space and z : J → X is a Cauchy net, then
there is some x ∈ X such that z converges to x.

Proof. Let α1 ∈ J such that if α1 ≤ α then ∥z(α)− z(α1)∥ < 1, and for n > 1
let αn ∈ J be such that if αn ≤ α then ∥z(α)− z(αn)∥ < 1

n and such that
αn−1 ≤ αn. Define xn = z(αn). For ϵ > 0, let N > 1

ϵ . If n ≥ m ≥ N , then, as
αn ≥ αm,

∥xn − xm∥ = ∥z(αn)− z(αm)∥ <
1

m
≤ 1

N
,

showing that xn is a Cauchy sequence in X. Hence there is some x ∈ X such
that xn → x.

3Walter Rudin, Principles of Mathematical Analysis, third ed., p. 76, Theorem 3.54.
4Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, second ed., p. 3,

Proposition 1.7.
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Let ϵ > 0, let N1 > 1
ϵ , let N2 be such that if n ≥ N2 then ∥xN2 − x∥ < ϵ,

and set N = max{N1, N2}. If αN ≤ α, then, by construction of the sequence
αn,

∥z(α)− x∥ ≤ ∥z(α)− z(αN )∥+ ∥z(αN )− x∥
= ∥z(α)− z(αN )∥+ ∥xN − x∥

<
1

N
+ ϵ

< 2ϵ,

showing that the net z converges to x.

Theorem 7. If H is an infinite dimensional Hilbert space and {en : n ∈ N} is
an orthonormal set in H, then

∑
n∈N

1
nen converges.

Proof. Let F be the set of finite subsets of N and let S(F ) =
∑

n∈F
1
nen,

F ∈ F . Define vN =
∑N

n=1
1
nen. If N1 > N2 ≥ N , then, as en are orthonormal,

∥vN1
− vN2

∥2 =

∥∥∥∥∥
N1∑

n=N2+1

1

n
en

∥∥∥∥∥
2

=

N1∑
n=N2+1

1

n2
<

∞∑
n=N+1

1

n2
<

∞∑
n=N

1

n(n+ 1)
=

1

N
,

so vN is a Cauchy sequence in H and hence converges to some h ∈ H. For
ϵ > 0, let N1 > 1

ϵ , let ∥vN2 − h∥2 < ϵ, put N = max{N1, N2}, and put Fϵ =
{1, . . . , N}. If Fϵ ⊆ F ∈ F , then, using that en are orthonormal and 0 ≤
(a− b)2 = a2 − 2ab+ b2,

∥S(F )− h∥2 ≤ (∥S(F )− S(Fϵ)∥+ ∥S(Fϵ)− h∥)2

≤ 2 ∥S(F )− S(Fϵ)∥2 + 2 ∥S(Fϵ)− h∥2

= 2

∥∥∥∥∥∥
∑

n∈F\Fϵ

1

n
en

∥∥∥∥∥∥
2

+ 2 ∥vN − h∥2

= 2
∑

n∈F\Fϵ

1

n2
+ 2 ∥vN − h∥2

< 4ϵ.

This shows that the net S converges to h, that is, that
∑

n∈N
1
nen converges to

h.

We have proved that if H is an infinite dimensional Hilbert space and
{en : n ∈ N} is an orthonormal set in H, then

∑
n∈N

1
nen converges, although∑∞

n=1

∥∥ 1
nen

∥∥ =
∑∞

n=1
1
n = ∞. This shows that the converse of Theorem 4 is

false. In fact, the Dvoretsky-Rogers theorem states that if X is an infinite di-
mensional Banach space then there is some countable subset {xn : n ∈ N} of X
such that

∑
n∈N xn converges but

∑
n∈N ∥xn∥ = ∞.5

5Joseph Diestel, Sequences and Series in Banach Spaces, p. 59, chapter VI.
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3 Orthogonal projections

If Si, i ∈ I, are subsets of a Hilbert space H, we define
∨

i∈I Si to be the closure
of the span of

⋃
i∈I Si. If i ̸= j implies that Si ⊥ Sj , we say that the sets Si are

mutually orthogonal. To say that {ei : i ∈ I} is an orthonormal basis for H is
to say that {ei : i ∈ I} is an orthonormal set and that H =

∨
i∈I{ei}.

If Mn, n ∈ N, are mutually orthogonal closed subspaces of M , we denote⊕
n∈N

Mn =
∨
n∈N

Mn,

which we call an orthogonal direct sum.
If H is a Hilbert space and M is a closed subspace of H, then for every

h ∈ H there is a unique vh ∈ M such that

∥h− vh∥ = inf
v∈M

∥h− v∥ ,

and h− vh ∈ M⊥.6 This gives

H = M ⊕M⊥.

The orthogonal projection of H onto M is the map P : H → H defined by

P (h1 + h2) = h1, h1 ∈ M,h2 ∈ M⊥.

It is straightforward to check that P is linear, ∥P∥ ≤ 1 (∥P∥ = 1 if and only if M
is nonzero), P 2 = P , and kerP = M⊥ and P (H) = M .7 Rather than specifying
a closed subspace of H and talking about the orthogonal projection onto M , we
can talk about an orthogonal projection inH, which is the orthogonal projection
onto its image.

Bessel’s inequality8 states that if {en : n ∈ N} is an orthonormal set in a
Hilbert space H and h ∈ H, then

∞∑
n=1

|⟨h, en⟩|2 ≤ ∥h∥2 . (1)

Theorem 8. If H is a Hilbert space, E is an orthonormal set in H, and h ∈ H,
then there are only countably many e ∈ E such that ⟨h, e⟩ ≠ 0.

Proof. Let

En =

{
e ∈ E : |⟨h, e⟩| ≥ 1

n

}
.

If En were infinite, let {ej : j ∈ N} be a subset of it, and this gives us a
contradiction by (1). Therefore each En is finite. But if ⟨h, e⟩ ≠ 0 then there is

6John B. Conway, A Course in Functional Analysis, second ed., p. 9, Theorem 2.6.
7John B. Conway, A Course in Functional Analysis, second ed., p. 10, Theorem 2.7.
8John B. Conway, A Course in Functional Analysis, second ed., p. 15, Theorem 4.8.
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some n such that |⟨h, e⟩| ≥ 1
n , so

E =

∞⋃
n=1

En.

Therefore E is countable.

Bessel’s inequality makes sense for an orthonormal set of any cardinality in
a Hilbert space, rather than just for a countable orthonormal set.

Theorem 9 (Bessel’s inequality). If H is a Hilbert space, E is an orthonormal
set in H, and h ∈ H, then ∑

e∈E

|⟨h, e⟩|2 ≤ ∥h∥2 .

Proof. By Theorem 8, there are only countably many e ∈ E such that ⟨h, e⟩ ≠ 0;
let them be {en : n ∈ N}. {en : n ∈ N} is an orthonormal set, so by (1) we have

∞∑
n=1

|⟨h, en⟩|2 ≤ ∥h∥2 .

Theorem 4 states that if X is a Banach space, xn ∈ X,n ∈ N, and
∑∞

n=1 ∥xn∥ <
∞, then the unordered sum

∑
n∈N xn converges. Thus, with X = C and

xn = |⟨h, en⟩|2, the unordered sum
∑

n∈N |⟨h, en⟩|2 converges, say to S. Be-
cause

∑
n∈N |⟨h, en⟩|2 converges to S, by Theorem 3 the series

∑∞
n=1 |⟨h, en⟩|2

converges to S. But we already know that this series is ≤ ∥h∥2, so∑
n∈N

|⟨h, en⟩|2 ≤ ∥h∥2 .

By Theorem 1, the unordered sum
∑

e∈E |⟨h, e⟩|2 converges if and only if the
unordered sum

∑
n∈N |⟨h, en⟩|2 converges, and if they converge they have the

same value. Therefore, the unordered sum
∑

e∈E |⟨h, e⟩|2 indeed converges, and

it is ≤ ∥h∥2.

4 Convergence of unordered sums in the strong
operator topology

Let H be a Hilbert space and let B(H) be the set of bounded linear maps
H → H. It is straightforward to check that B(H) is a normed space with the
operator norm ∥T∥ = sup∥h∥≤1 ∥Th∥. (In fact it is a Banach space, actually
a Banach algebra, actually a C∗-algebra; each of these statements implies the
previous one.) The strong operator topology on B(H) can be characterized in
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the following way: a net f : I → B(H) converges to T ∈ B(H) in the strong
operator topology if for all h ∈ H the net f(i)h converges to Th in H.9

If I is a set, F is the set of all finite subsets of I, and f : I → B(H) is a
function, define S : F → B(H) by

S(F ) =
∑
i∈I

f(i) ∈ B(H).

S is a net in B(H), and if the net converges to T ∈ B(H) in the strong operator
topology we say that the unordered sum

∑
i∈I f(i) converges strongly to T . To

say that the net S converges to T in the strong operator topology is to say that
if h ∈ H then

∑
i∈I f(i)h converges to Th in H.

If f, g ∈ H, we define f ⊗ g : H → H by

f ⊗ g(h) = ⟨h, g⟩f.

It is apparent that f ⊗ g is linear, and

∥f ⊗ g(h)∥ = ∥⟨h, g⟩f∥ = |⟨h, g⟩| ∥f∥ ≤ ∥h∥ ∥g∥ ∥f∥ ,

so ∥f ⊗ g∥ ≤ ∥f∥ ∥g∥, giving f ⊗ g ∈ B(H). Additionally,

⟨f⊗g(h1), h2⟩ = ⟨⟨h1, g⟩f, h2⟩ = ⟨h1, g⟩⟨f, h2⟩ = ⟨h1, ⟨h2, f⟩g⟩ = ⟨h1, g⊗f(h2)⟩,

showing that (f ⊗ g)∗ = g ⊗ f .

Theorem 10. If H is a Hilbert space, E is an orthonormal set in H, and P is
the orthogonal projection onto

∨
E , then

∑
e∈E e⊗ e converges strongly to P .

Proof. Let h ∈ H. By Theorem 8 there are only countably many e ∈ E such
that ⟨h, e⟩ ≠ 0, and we denote these by {en : n ∈ N}. By Bessel’s inequality,

∑
e∈E

|⟨h, e⟩|2 =
∑
n∈N

|⟨h, en⟩|2 =

∞∑
n=1

|⟨h, en⟩|2 ≤ ∥h∥2 . (2)

Let F be the set of all finite subsets of N and for F ∈ F let

S(F ) =
∑
n∈F

⟨h, en⟩en ∈ H.

If ϵ > 0, then by (2) there is some N such that
∑∞

n=N+1 |⟨h, en⟩|2 < ϵ2. If
Fϵ = {1, . . . , N} and F,G ∈ F both contain Fϵ, then, because the en are

9For the strong operator topology see John B. Conway, A Course in Functional Analysis,
second ed., p. 256.
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orthonormal,

∥S(F )− S(G)∥2 =

∥∥∥∥∥∑
n∈F

⟨h, en⟩en −
∑
n∈G

⟨h, en⟩en

∥∥∥∥∥
2

=
∑

n∈(F∪G)\(F∩G)

∥⟨h, en⟩en∥2

=
∑

n∈(F∪G)\(F∩G)

|⟨h, en⟩|2

≤
∞∑

n=N+1

|⟨h, en⟩|2

< ϵ2.

Therefore, if F,G ∈ F both contain Fϵ then ∥S(F )− S(G)∥ < ϵ. This means
that S is a Cauchy net, and hence, by Theorem 6, has a limit v ∈ H. That is,
the unordered sum

∑
n∈N⟨h, en⟩en converges to v.

As the unordered sum
∑

n∈N⟨h, en⟩en converges to v we have

lim
N→∞

N∑
n=1

⟨h, en⟩en = v.

If m ∈ N then it follows that

lim
N→∞

N∑
n=1

⟨h, en⟩⟨en, em⟩ = ⟨v, em⟩,

which is
⟨h, em⟩ = ⟨v, em⟩.

Let Q be the orthogonal projection onto
∨

n∈N{en}. On the one hand, because
⟨h, e⟩ = 0 for e ̸∈ {en : n ∈ N}, we check that Ph = Qh. On the other hand, we
check that Qh = v. Therefore, v = Ph, i.e.∑

e∈E

e⊗ e(h) =
∑
e∈E

⟨h, e⟩e =
∑
n∈N

⟨h, en⟩en = Ph,

showing that the unordered sum
∑

e∈E e⊗ e converges strongly to P .

In particular, if E is an orthonormal basis for H, then
∑

e∈E e⊗ e converges
strongly to idH .
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