Unordered sums in Hilbert spaces

Jordan Bell

April 3, 2014

1 Preliminaries

Let \mathbb{N} be the set of positive integers. We say that a set is countable if it is bijective with a subset of \mathbb{N} ; thus a finite set is countable. In this note I do not presume unless I say so that any set is countable or that any topological space is separable. A neighborhood of a point in a topological space is a set that contains an open set that contains the point; one reason why it can be handy to speak about neighborhoods of a point rather than just open sets that contain the point is that the set of all neighborhoods of a point is a filter, whereas it is unlikely that the set of all open sets that contain a point is a filter.

2 Unordered sums in normed spaces

A partially ordered set is a set J and a binary relation \leq on J that is reflexive $(\alpha \leq \alpha)$, antisymmetric (if both $\alpha \leq \beta$ and $\beta \leq \alpha$ then $\alpha = \beta$), and transitive (if both $\alpha \leq \beta$ and $\beta \leq \gamma$ then $\alpha \leq \gamma$).¹ A directed set is a partially ordered set (J, \leq) such that if $\alpha, \beta \in J$ then there is some $\gamma \in J$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$. If X is a topological space, a net in X is a function from some directed set to X. If $z: J \to X$ is a net in X and N is a subset of X, we say that z is eventually in N if there is some $\alpha \in J$ such that $\alpha \leq \beta$ implies $z(\beta) \in N$. We say that the net z converges to $x \in X$ if for every neighborhood of x the net is eventually in that neighborhood. The importance of the notion of a net is that if X and Y are topological spaces and f is a function $X \to Y$ then f is continuous if and only if for every $x \in X$ and for every net $z: J \to X$ that converges to x, the net $f \circ z: J \to Y$ converges to f(x).²

Let X be a normed space, let I be a set, and let \mathscr{F} be the set of all finite subsets of I. \mathscr{F} is a directed set ordered by set inclusion. Define $S:\mathscr{F}\to X$ by

$$S(F) = \sum_{i \in F} f(i) \in X, \qquad F \in \mathscr{F}.$$

S is a net in X, and if the net S converges to $x \in X$, we say that the sum $\sum_{i \in I} f(i)$ converges to x, and write $\sum_{i \in I} f(i) = x$.

¹Paul R. Halmos, Naive Set Theory, §14.

²James R. Munkres, *Topology*, second ed., p. 188.

Theorem 1. If X is a normed space, $f: I \to X$ is a function, $x \in X$, and I_0 is a subset of I such that if $i \in I \setminus I_0$ then f(i) = 0, then $\sum_{i \in I} f(i)$ converges to x if and only if $\sum_{i \in I_0} f(i)$ converges to x.

Proof. Let \mathscr{F} be the set of all finite subsets of I, let \mathscr{F}_0 be the set of all finite subsets of I_0 , define $S : \mathscr{F} \to X$ by $S(F) = \sum_{i \in F} f(i)$, and let S_0 be the restriction of S to \mathscr{F}_0 . Suppose that $\sum_{i \in I} f(i)$ converges to x, and let $\epsilon > 0$. There is some $F_{\epsilon} \in \mathscr{F}$ such that if $F_{\epsilon} \subseteq F \in \mathscr{F}$ then $||S(F) - x|| < \epsilon$. Let $G_{\epsilon} = F_{\epsilon} \cap I_0$. If $G_{\epsilon} \subseteq G \in \mathscr{F}_0$, then

$$S_0(G) - x = \sum_{i \in G} f(i) - x = \sum_{i \in F} f(i) - x = S(F) - x,$$

giving $||S_0(G) - x|| = ||S(F) - x||$. Hence $G_{\epsilon} \subseteq G \in \mathscr{F}_0$ implies that $||S_0(G) - x|| < \epsilon$, showing that the net S_0 converges to x, i.e. that $\sum_{i \in I_0} f(i)$ converges to x.

Suppose that $\sum_{i \in I_0} f(i)$ converges to x, and let $\epsilon > 0$. There is some $G_{\epsilon} \in \mathscr{F}_0$ such that if $G_{\epsilon} \subseteq G \in \mathscr{F}_0$ then $||S_0(G) - x|| < \epsilon$. If $G_{\epsilon} \subseteq F \in \mathscr{F}$, then, with $G = F \cap I_0$,

$$S(F) - x = \sum_{i \in F} f(i) - x = \sum_{i \in G} f(i) - x = S_0(G) - x,$$

so $G_{\epsilon} \subseteq F \in \mathscr{F}$ implies that $||S(F) - x|| < \epsilon$. This shows that S converges to x, that is, that $\sum_{i \in I} f(i)$ converges to x.

Theorem 2. If X is a normed space, $f : I \to X$ is a function, and $\sum_{i \in I} f(i)$ converges, then $\{i \in I : f(i) \neq 0\}$ is countable.

Proof. Suppose that $\sum_{i \in I} f(i)$ converges to x, let \mathscr{F} be the set of all finite subsets of I, and let $S(F) = \sum_{i \in I} f(i), F \in \mathscr{F}$. For each $n \in \mathbb{N}$, let $F_n \in \mathscr{F}$ be such that if $F_n \subseteq F \in \mathscr{F}$ then

$$||S(F) - x|| < \frac{1}{n}.$$

If $G \in \mathscr{F}$ and $G \cap F_n = \emptyset$, then

$$||S(G)|| = ||S(G \cup F_n) - S(F_n)|| \le ||S(G \cup F_n) - x|| + ||S(F_n) - x|| < \frac{2}{n}.$$

Let $J = \bigcup_{n \in \mathbb{N}} F_n$. If $i \in I \setminus J$, then for each $n \in \mathbb{N}$, we have $\{i\} \cap F_n = \emptyset$, whence $||S(\{i\})|| < \frac{2}{n}$. That is, if $i \in I \setminus J$ then for each $n \in \mathbb{N}$ we have $||f(i)|| < \frac{2}{n}$, which implies that if $i \in I \setminus J$ then f(i) = 0. Therefore $\{i \in I : f(i) \neq 0\} \subseteq J$, and as J is countable, the set $\{i \in I : f(i) \neq 0\}$ is countable. \Box

However, we already have a notion of infinite sums: a series is the limit of a sequence of partial sums.

Theorem 3. If X is a normed space, $x_n \in X$, and $\sum_{n \in \mathbb{N}} x_n$ converges to x, then $\sum_{n=1}^{N} x_n \to x$ as $N \to \infty$.

Proof. Let $\epsilon > 0$, let \mathscr{F} be the set of all finite subsets of \mathbb{N} , and let $S : \mathscr{F} \to X$ be $S(F) = \sum_{n \in F} x_n$. The net S converges to x, so there is some $F_{\epsilon} \in \mathscr{F}$ such that if $F_{\epsilon} \subseteq F$ then $||S(F) - x|| < \epsilon$. Let $N_{\epsilon} = \max F_{\epsilon}$. If $N \ge N_{\epsilon}$, then for $F = \{1, \ldots, N\}$ we have $F_{\epsilon} \subseteq F$ and so

$$\left\|\sum_{n=1}^{N} x_n - x\right\| = \|S(F) - x\| < \epsilon,$$

showing that $\sum_{n=1}^{N} x_n \to x$ as $N \to \infty$.

When we talk about the sum $\sum_{i \in I} f(i)$, the set of all finite subsets of I is ordered by set inclusion, but we don't care about any ordering of the set I itself. If the sum $\sum_{n \in \mathbb{N}} x_n$ converges then for any bijection $\sigma : \mathbb{N} \to \mathbb{N}$, $\sum_{n=1}^{\infty} x_{\sigma(n)} = \sum_{n \in \mathbb{N}} x_n$. If x_n is a sequence in a normed space and for every bijection $\sigma : \mathbb{N} \to \mathbb{N}$ the series $\sum_{n=1}^{\infty} x_{\sigma(n)}$ converges, we say that the sequence x_n is unconditionally summable. If an unordered sum converges, then it is unconditionally summable, and if a countable unordered sum is unconditionally summable the unordered sum converges.

Theorem 4. If X is a Banach space, $x_n \in X$, and $\sum_{n=1}^{\infty} ||x_n|| < \infty$, then $\sum_{n \in \mathbb{N}} x_n$ converges.

Proof. For each $k \in \mathbb{N}$ there is some K(k) such that

$$\sum_{n=K(k)+1}^{\infty} \|x_n\| < \frac{1}{k};$$

suppose that if j < k then K(j) < K(k). Define

$$v_k = \sum_{n=1}^{K(k)} x_n.$$

For $\epsilon > 0$, let $N > \frac{1}{\epsilon}$. If $k > j \ge N$, then

$$\|v_k - v_j\| = \left\|\sum_{n=1}^{K(k)} x_n - \sum_{n=1}^{K(j)} x_n\right\| = \left\|\sum_{n=K(j)+1}^{K(k)} x_n\right\| \le \sum_{n=K(j)+1}^{K(k)} \|x_n\| \le \sum_{n=K(j)+1}^{\infty} \|x_n\|,$$

hence if $k > j \ge N$, then $||v_k - v_j|| < \frac{1}{j} \le \frac{1}{N}$. This shows that v_k is a Cauchy sequence, and hence v_k converges to some $x \in X$.

Let \mathscr{F} be the set of all finite subsets of \mathbb{N} and define $S : \mathscr{F} \to X$ by $S(F) = \sum_{n \in F} x_n$. Let $\epsilon > 0$, and as $v_k \to x$ there is some N_1 such that if $k \ge N_1$ then $||v_k - x|| < \epsilon$. Let $N_2 > \frac{1}{\epsilon}$, put $N = \max\{N_1, N_2\}$, and put

 $F_{\epsilon} = \{1, \ldots, K(N)\}$. If $F_{\epsilon} \subseteq F \in \mathscr{F}$, then

$$||S(F) - x|| = \left\| \sum_{n \in F} x_n - x \right\|$$

$$\leq \left\| \sum_{n \in F} x_n - \sum_{n \in F_{\epsilon}} x_n \right\| + \left\| \sum_{n \in F_{\epsilon}} x_n - x \right\|$$

$$= \left\| \sum_{n \in F \setminus F_{\epsilon}} x_n \right\| + ||v_N - x||$$

$$< \sum_{n \in F \setminus F_{\epsilon}} ||x_n|| + \epsilon$$

$$\leq \sum_{n = K(N) + 1}^{\infty} ||x_n|| + \epsilon$$

$$< \frac{1}{N} + \epsilon$$

$$< 2\epsilon.$$

Therefore the net S converges to x, i.e. $\sum_{n \in \mathbb{N}} x_n$ converges to x.

The following theorem shows us in particular that the converse of Theorem 3 is false. One direction of the following theorem is Theorem 4 with $X = \mathbb{C}$. The other direction follows from the Riemann rearrangement theorem.³

Theorem 5. If $\alpha_n \in \mathbb{C}$, then $\sum_{n \in \mathbb{N}} \alpha_n$ converges if and only if $\sum_{n=1}^{\infty} |\alpha_n| < \infty$.

Let X be a normed space and $z: J \to X$ a net. We say that z is *Cauchy* if for every $\epsilon > 0$ there is some $\alpha \in J$ such that $\alpha \leq \beta$ and $\alpha \leq \gamma$ together imply that $||z(\beta) - z(\gamma)|| < \epsilon^4$

Theorem 6. If X is a Banach space and $z : J \to X$ is a Cauchy net, then there is some $x \in X$ such that z converges to x.

Proof. Let $\alpha_1 \in J$ such that if $\alpha_1 \leq \alpha$ then $||z(\alpha) - z(\alpha_1)|| < 1$, and for n > 1 let $\alpha_n \in J$ be such that if $\alpha_n \leq \alpha$ then $||z(\alpha) - z(\alpha_n)|| < \frac{1}{n}$ and such that $\alpha_{n-1} \leq \alpha_n$. Define $x_n = z(\alpha_n)$. For $\epsilon > 0$, let $N > \frac{1}{\epsilon}$. If $n \geq m \geq N$, then, as $\alpha_n \geq \alpha_m$,

$$||x_n - x_m|| = ||z(\alpha_n) - z(\alpha_m)|| < \frac{1}{m} \le \frac{1}{N}$$

showing that x_n is a Cauchy sequence in X. Hence there is some $x \in X$ such that $x_n \to x$.

³Walter Rudin, *Principles of Mathematical Analysis*, third ed., p. 76, Theorem 3.54.

⁴Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, second ed., p. 3, Proposition 1.7.

Let $\epsilon > 0$, let $N_1 > \frac{1}{\epsilon}$, let N_2 be such that if $n \ge N_2$ then $||x_{N_2} - x|| < \epsilon$, and set $N = \max\{N_1, N_2\}$. If $\alpha_N \le \alpha$, then, by construction of the sequence α_n ,

$$\begin{aligned} \|z(\alpha) - x\| &\leq \|z(\alpha) - z(\alpha_N)\| + \|z(\alpha_N) - x\| \\ &= \|z(\alpha) - z(\alpha_N)\| + \|x_N - x\| \\ &< \frac{1}{N} + \epsilon \\ &< 2\epsilon, \end{aligned}$$

showing that the net z converges to x.

Theorem 7. If H is an infinite dimensional Hilbert space and $\{e_n : n \in \mathbb{N}\}$ is an orthonormal set in H, then $\sum_{n \in \mathbb{N}} \frac{1}{n} e_n$ converges.

Proof. Let \mathscr{F} be the set of finite subsets of \mathbb{N} and let $S(F) = \sum_{n \in F} \frac{1}{n} e_n$, $F \in \mathscr{F}$. Define $v_N = \sum_{n=1}^N \frac{1}{n} e_n$. If $N_1 > N_2 \ge N$, then, as e_n are orthonormal,

$$\|v_{N_1} - v_{N_2}\|^2 = \left\|\sum_{n=N_2+1}^{N_1} \frac{1}{n} e_n\right\|^2 = \sum_{n=N_2+1}^{N_1} \frac{1}{n^2} < \sum_{n=N+1}^{\infty} \frac{1}{n^2} < \sum_{n=N}^{\infty} \frac{1}{n(n+1)} = \frac{1}{N}$$

so v_N is a Cauchy sequence in H and hence converges to some $h \in H$. For $\epsilon > 0$, let $N_1 > \frac{1}{\epsilon}$, let $||v_{N_2} - h||^2 < \epsilon$, put $N = \max\{N_1, N_2\}$, and put $F_{\epsilon} = \{1, \ldots, N\}$. If $F_{\epsilon} \subseteq F \in \mathscr{F}$, then, using that e_n are orthonormal and $0 \leq (a-b)^2 = a^2 - 2ab + b^2$,

$$\begin{aligned} |S(F) - h||^2 &\leq (||S(F) - S(F_{\epsilon})|| + ||S(F_{\epsilon}) - h||)^2 \\ &\leq 2 ||S(F) - S(F_{\epsilon})||^2 + 2 ||S(F_{\epsilon}) - h||^2 \\ &= 2 \left\| \sum_{n \in F \setminus F_{\epsilon}} \frac{1}{n} e_n \right\|^2 + 2 ||v_N - h||^2 \\ &= 2 \sum_{n \in F \setminus F_{\epsilon}} \frac{1}{n^2} + 2 ||v_N - h||^2 \\ &\leq 4\epsilon. \end{aligned}$$

This shows that the net S converges to h, that is, that $\sum_{n \in \mathbb{N}} \frac{1}{n} e_n$ converges to h.

We have proved that if H is an infinite dimensional Hilbert space and $\{e_n : n \in \mathbb{N}\}$ is an orthonormal set in H, then $\sum_{n \in \mathbb{N}} \frac{1}{n} e_n$ converges, although $\sum_{n=1}^{\infty} \left\| \frac{1}{n} e_n \right\| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$. This shows that the converse of Theorem 4 is false. In fact, the Dvoretsky-Rogers theorem states that if X is an infinite dimensional Banach space then there is some countable subset $\{x_n : n \in \mathbb{N}\}$ of X such that $\sum_{n \in \mathbb{N}} x_n$ converges but $\sum_{n \in \mathbb{N}} \|x_n\| = \infty$.⁵

⁵Joseph Diestel, Sequences and Series in Banach Spaces, p. 59, chapter VI.

3 Orthogonal projections

If $S_i, i \in I$, are subsets of a Hilbert space H, we define $\bigvee_{i \in I} S_i$ to be the closure of the span of $\bigcup_{i \in I} S_i$. If $i \neq j$ implies that $S_i \perp S_j$, we say that the sets S_i are *mutually orthogonal*. To say that $\{e_i : i \in I\}$ is an orthonormal basis for H is to say that $\{e_i : i \in I\}$ is an orthonormal set and that $H = \bigvee_{i \in I} \{e_i\}$.

If $M_n, n \in \mathbb{N}$, are mutually orthogonal closed subspaces of M, we denote

$$\bigoplus_{n\in\mathbb{N}}M_n=\bigvee_{n\in\mathbb{N}}M_n$$

which we call an *orthogonal direct sum*.

If H is a Hilbert space and M is a closed subspace of H, then for every $h \in H$ there is a unique $v_h \in M$ such that

$$||h - v_h|| = \inf_{v \in M} ||h - v||,$$

and $h - v_h \in M^{\perp}$.⁶ This gives

$$H = M \oplus M^{\perp}.$$

The orthogonal projection of H onto M is the map $P: H \to H$ defined by

$$P(h_1 + h_2) = h_1, \qquad h_1 \in M, h_2 \in M^{\perp}.$$

It is straightforward to check that P is linear, $||P|| \leq 1$ (||P|| = 1 if and only if M is nonzero), $P^2 = P$, and ker $P = M^{\perp}$ and P(H) = M.⁷ Rather than specifying a closed subspace of H and talking about the orthogonal projection onto M, we can talk about an orthogonal projection in H, which is the orthogonal projection onto its image.

Bessel's inequality⁸ states that if $\{e_n : n \in \mathbb{N}\}$ is an orthonormal set in a Hilbert space H and $h \in H$, then

$$\sum_{n=1}^{\infty} |\langle h, e_n \rangle|^2 \le \|h\|^2 \,. \tag{1}$$

Theorem 8. If H is a Hilbert space, \mathscr{E} is an orthonormal set in H, and $h \in H$, then there are only countably many $e \in \mathscr{E}$ such that $\langle h, e \rangle \neq 0$.

Proof. Let

$$\mathscr{E}_n = \left\{ e \in \mathscr{E} : |\langle h, e \rangle| \ge \frac{1}{n} \right\}.$$

If \mathscr{E}_n were infinite, let $\{e_j : j \in \mathbb{N}\}$ be a subset of it, and this gives us a contradiction by (1). Therefore each \mathscr{E}_n is finite. But if $\langle h, e \rangle \neq 0$ then there is

⁶John B. Conway, A Course in Functional Analysis, second ed., p. 9, Theorem 2.6.

⁷John B. Conway, A Course in Functional Analysis, second ed., p. 10, Theorem 2.7.

⁸John B. Conway, A Course in Functional Analysis, second ed., p. 15, Theorem 4.8.

some *n* such that $|\langle h, e \rangle| \ge \frac{1}{n}$, so

$$\mathscr{E} = \bigcup_{n=1}^{\infty} \mathscr{E}_n.$$

Therefore ${\mathscr E}$ is countable.

Bessel's inequality makes sense for an orthonormal set of any cardinality in a Hilbert space, rather than just for a countable orthonormal set.

Theorem 9 (Bessel's inequality). If H is a Hilbert space, \mathscr{E} is an orthonormal set in H, and $h \in H$, then

$$\sum_{e \in \mathscr{E}} |\langle h, e \rangle|^2 \le \|h\|^2 \,.$$

Proof. By Theorem 8, there are only countably many $e \in \mathscr{E}$ such that $\langle h, e \rangle \neq 0$; let them be $\{e_n : n \in \mathbb{N}\}$. $\{e_n : n \in \mathbb{N}\}$ is an orthonormal set, so by (1) we have

$$\sum_{n=1}^{\infty} |\langle h, e_n \rangle|^2 \le ||h||^2$$

Theorem 4 states that if X is a Banach space, $x_n \in X, n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} ||x_n|| < \infty$, then the unordered sum $\sum_{n \in \mathbb{N}} x_n$ converges. Thus, with $X = \mathbb{C}$ and $x_n = |\langle h, e_n \rangle|^2$, the unordered sum $\sum_{n \in \mathbb{N}} |\langle h, e_n \rangle|^2$ converges, say to S. Because $\sum_{n \in \mathbb{N}} |\langle h, e_n \rangle|^2$ converges to S, by Theorem 3 the series $\sum_{n=1}^{\infty} |\langle h, e_n \rangle|^2$ converges to S. But we already know that this series is $\leq ||h||^2$, so

$$\sum_{n \in \mathbb{N}} |\langle h, e_n \rangle|^2 \le \|h\|^2$$

By Theorem 1, the unordered sum $\sum_{e \in \mathscr{E}} |\langle h, e \rangle|^2$ converges if and only if the unordered sum $\sum_{n \in \mathbb{N}} |\langle h, e_n \rangle|^2$ converges, and if they converge they have the same value. Therefore, the unordered sum $\sum_{e \in \mathscr{E}} |\langle h, e \rangle|^2$ indeed converges, and it is $\leq ||h||^2$.

4 Convergence of unordered sums in the strong operator topology

Let H be a Hilbert space and let $\mathscr{B}(H)$ be the set of bounded linear maps $H \to H$. It is straightforward to check that $\mathscr{B}(H)$ is a normed space with the operator norm $||T|| = \sup_{\|h\| \le 1} ||Th||$. (In fact it is a Banach space, actually a Banach algebra, actually a C^* -algebra; each of these statements implies the previous one.) The strong operator topology on $\mathscr{B}(H)$ can be characterized in

the following way: a net $f: I \to \mathscr{B}(H)$ converges to $T \in \mathscr{B}(H)$ in the strong operator topology if for all $h \in H$ the net f(i)h converges to Th in H.⁹

If I is a set, \mathscr{F} is the set of all finite subsets of I, and $f: I \to \mathscr{B}(H)$ is a function, define $S: \mathscr{F} \to \mathscr{B}(H)$ by

$$S(F) = \sum_{i \in I} f(i) \in \mathscr{B}(H).$$

S is a net in $\mathscr{B}(H)$, and if the net converges to $T \in \mathscr{B}(H)$ in the strong operator topology we say that the unordered sum $\sum_{i \in I} f(i)$ converges strongly to T. To say that the net S converges to T in the strong operator topology is to say that if $h \in H$ then $\sum_{i \in I} f(i)h$ converges to Th in H.

If $f, g \in H$, we define $f \otimes g : H \to H$ by

$$f \otimes g(h) = \langle h, g \rangle f.$$

It is apparent that $f \otimes g$ is linear, and

$$\|f \otimes g(h)\| = \|\langle h, g \rangle f\| = |\langle h, g \rangle| \, \|f\| \le \|h\| \, \|g\| \, \|f\| \, ,$$

so $||f \otimes g|| \leq ||f|| ||g||$, giving $f \otimes g \in \mathscr{B}(H)$. Additionally,

$$\langle f \otimes g(h_1), h_2 \rangle = \langle \langle h_1, g \rangle f, h_2 \rangle = \langle h_1, g \rangle \langle f, h_2 \rangle = \langle h_1, \langle h_2, f \rangle g \rangle = \langle h_1, g \otimes f(h_2) \rangle$$

showing that $(f \otimes g)^* = g \otimes f$.

Theorem 10. If H is a Hilbert space, \mathscr{E} is an orthonormal set in H, and P is the orthogonal projection onto $\bigvee \mathscr{E}$, then $\sum_{e \in \mathscr{E}} e \otimes e$ converges strongly to P.

Proof. Let $h \in H$. By Theorem 8 there are only countably many $e \in \mathscr{E}$ such that $\langle h, e \rangle \neq 0$, and we denote these by $\{e_n : n \in \mathbb{N}\}$. By Bessel's inequality,

$$\sum_{e \in \mathscr{E}} |\langle h, e \rangle|^2 = \sum_{n \in \mathbb{N}} |\langle h, e_n \rangle|^2 = \sum_{n=1}^{\infty} |\langle h, e_n \rangle|^2 \le ||h||^2.$$
⁽²⁾

Let \mathscr{F} be the set of all finite subsets of \mathbb{N} and for $F \in \mathscr{F}$ let

$$S(F) = \sum_{n \in F} \langle h, e_n \rangle e_n \in H.$$

If $\epsilon > 0$, then by (2) there is some N such that $\sum_{n=N+1}^{\infty} |\langle h, e_n \rangle|^2 < \epsilon^2$. If $F_{\epsilon} = \{1, \ldots, N\}$ and $F, G \in \mathscr{F}$ both contain F_{ϵ} , then, because the e_n are

 $^{^9{\}rm For}$ the strong operator topology see John B. Conway, A Course in Functional Analysis, second ed., p. 256.

orthonormal,

$$\begin{split} \|S(F) - S(G)\|^2 &= \left\| \sum_{n \in F} \langle h, e_n \rangle e_n - \sum_{n \in G} \langle h, e_n \rangle e_n \right\|^2 \\ &= \left\| \sum_{n \in (F \cup G) \setminus (F \cap G)} \|\langle h, e_n \rangle e_n \|^2 \\ &= \left\| \sum_{n \in (F \cup G) \setminus (F \cap G)} |\langle h, e_n \rangle|^2 \right\| \\ &\leq \left\| \sum_{n = N+1}^{\infty} |\langle h, e_n \rangle|^2 \\ &< \epsilon^2. \end{split}$$

Therefore, if $F, G \in \mathscr{F}$ both contain F_{ϵ} then $||S(F) - S(G)|| < \epsilon$. This means that S is a Cauchy net, and hence, by Theorem 6, has a limit $v \in H$. That is, the unordered sum $\sum_{n \in \mathbb{N}} \langle h, e_n \rangle e_n$ converges to v. As the unordered sum $\sum_{n \in \mathbb{N}} \langle h, e_n \rangle e_n$ converges to v we have

$$\lim_{N \to \infty} \sum_{n=1}^{N} \langle h, e_n \rangle e_n = v.$$

If $m \in \mathbb{N}$ then it follows that

$$\lim_{N \to \infty} \sum_{n=1}^{N} \langle h, e_n \rangle \langle e_n, e_m \rangle = \langle v, e_m \rangle$$

which is

$$\langle h, e_m \rangle = \langle v, e_m \rangle$$

Let Q be the orthogonal projection onto $\bigvee_{n \in \mathbb{N}} \{e_n\}$. On the one hand, because $\langle h, e \rangle = 0$ for $e \notin \{e_n : n \in \mathbb{N}\}$, we check that Ph = Qh. On the other hand, we check that Qh = v. Therefore, v = Ph, i.e.

$$\sum_{e \in \mathscr{E}} e \otimes e(h) = \sum_{e \in \mathscr{E}} \langle h, e \rangle e = \sum_{n \in \mathbb{N}} \langle h, e_n \rangle e_n = Ph,$$

showing that the unordered sum $\sum_{e \in \mathscr{E}} e \otimes e$ converges strongly to P.

In particular, if \mathscr{E} is an orthonormal basis for H, then $\sum_{e \in \mathscr{E}} e \otimes e$ converges strongly to id_H .