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1 Metric topology

If (X,d) is a metric space, a € X, and r > 0, then the open ball with center a
and radius r is
Bl(a) = {z € X : d(z,a) < r}.
The set of all open balls is a basis for the metric topology induced by d.
If (X,d) is a metric space, define

d(a,b) = d(a,b) A1, a,b € X,
where x Ay = min{z,y}. It is straightforward to check that d is a metric on X,
and one proves that d and d induce the same metric topologies.! The diameter
of a subset S of a metric space (X, d) is
diam(S,d) = sup d(a,b).
a,besS

The subset S is said to be bounded if its diameter is finite. The metric space
(X, d) might be unbounded, but the diameter of the metric space (X,d) is

diam(X,d) = sup d(a,b) = diam(X,d) A1,
a,beX

and thus the metric space (X, d) is bounded.

2 Product topology

If J is a set and X; are topological spaces for each j € J, let X = Hje] X;
and let m; : X — X, be the projection maps. A basis for the product topology
on X are those sets of the form (), ; 7Tj_1(Uj), where Jy is a finite subset of
J and Uj is an open subset of X, j € Jy. Equivalently, the product topology
is the initial topology for the projection maps m; : X — X;, j € J, i.e. the
coarsest topology on X such that each projection map is continuous. Each of
the projection maps is open.? The following theorem characterizes convergent
nets in the product topology.3

L James Munkres, Topology, second ed., p. 121, Theorem 20.1.
2John L. Kelley, General Topology, p. 90, Theorem 2.
3John L. Kelley, General Topology, p. 91, Theorem 4.



Theorem 1. Let J be a set and for each j € J let X; be a topological space. If
X = HjeJ X; has the product topology and (xq)acr is a net in X, then x4 —
if and only if mj(xq) — m;(x) for each j € J.

Proof. Let (z4)acr be a net that converges to z € X. Because each projection
map is continuous, if j € J then 7;(z,) — m;(z). On the other hand, suppose
that (zq)aer is a net, that € X, and that 7j(zs) — 7, (x) for each j € J. Let
O; be the set of open neighborhoods of 7;(x) € X;. For j € J and U € 0},
because 7;(z4) — m;j(x) we have that 7;(z,) is eventually in U. It follows that
if j € Jand U € 0, then z, is eventually in 7Tj_1(U). Therefore, if Jy is a finite
subset of J and U; € 0 for each j € Jo, then z, is eventually in (), w]l(Uj).
This means that the net (z4)aer is eventually in every basic open neighborhood
of x, which implies that z, — x. O

The following theorem states that if J is a countable set and (X,d) is a
metric space, then the product topology on X7 is metrizable.*

Theorem 2. If J is a countable set and (X,d) is a metric space, then
d(z;,y; d(zj,y;) N1
p(x’y) = sup ( J- J) = sup ( J .J)
JjeJ J jeJ J

is a metric on X7 that induces the product topology.

A topological space is first-countable if every point has a countable local
basis; a local basis at a point p is a set Z of open sets each of which contains
p such that each open set containing p contains an element of Z. It is a fact
that a metrizable topological space is first-countable. In the following theorem
we prove that the product topology on an uncountable product of Hausdorff
spaces each of which has at least two points is not first-countable.® From this
it follows that if (X,d) is a metric space with at least two points and J is an
uncountable set, then the product topology on X7 is not metrizable.

Theorem 3. If J is an uncountable set and for each j € J we have that X; is a
Hausdorff space with at least two points, then the product topology on HjeJ X;
s mot first-countable.

Proof. Write X = HjeJXj, and suppose that z € X and that U,,n € N, are
open subsets of X containing x. Since U, is an open subset of X containing =,
there is a basic open set B, satisfying x € B,, C U,: by saying that B, is a
basic open set we mean that there is a finite subset F,, of J and open subsets
Un,j of Xj, j € F),, such that

B, = () 7 (Uny)

JEFn

4James Munkres, Topology, second ed., p. 125, Theorem 20.5.
5¢f. John L. Kelley, General Topology, p. 92, Theorem 6.



Let F' = |, en Fn, and because J is uncountable there is some k € J \ F; this
is the only place in the proof at which we use that J is uncountable. As Xj
has at least two points and x(k) € Xy, there is some a € X with z(k) # a.
Since X}, is a Hausdorff space, there are disjoint open subsets Ny, No of X} with
z(k) € Ny and a € Na. Define

N | =
v=3e ol
X; J#k

and let V' = []..;V;. We have z € V. But for each n € N, there is some
Yn € B, with y,(k) = a € Na, hence y, (k) € N1 and so y,, € V. Thus none
of the sets B,, is contained in V', and hence none of the sets U, is contained
in V. Therefore {U, : n € N} is not a local basis at x, and as this was an
arbitrary countable set of open sets containing x, there is no countable local
basis at x, showing that X is not first-countable. (In fact, we have proved there
is no countable local basis at any point in X; not to be first-countable merely
requires that there be at least one point at which there is no countable local
basis.) O

3 Uniform metric

If J is a set and (X,d) is a metric space, we define the uniform metric on X“
by
dj(z,y) =supd(x;,y;) =supd(z;,y;) A 1.
jeJ jeJ
Tt is apparent that dj(z,y) = 0 if and only if = y and that d;(z,y) = d;(y, z).
If z,y,z € X then,

dJ(:E7Z) = supa(mj,zj)
jeJ
< supd(zj,y;) +d(y;s, %)
jeJ
< supa(a:j,yj) + supa(yj,zj)
jeJ jeJ
= d](xay)+dJ(yaz)7

showing that d; satisfies the triangle inequality and thus that it is indeed a
metric on X”. The uniform topology on X is the metric topology induced by
the uniform metric.

If (X,d) is a metric space, then X is a topological space with the metric
topology, and thus X7 =[] jed X is a topological space with the product topol-
ogy. The following theorem shows that the uniform topology on X7 is finer
than the product topology on X 7.

6James Munkres, Topology, second ed., p. 124, Theorem 20.4.



Theorem 4. If J is a set and (X, d) is a metric space, then the uniform topology
on X7 is finer than the product topology on X .

Proof. If x € X7, let U = Hje] U; be a basic open set in the product topology
with « € U. Thus, there is a finite subset Jy of J such that if j € J\ Jy
then U; = X. If j € Jy, then because Uj is an open subset of (X, d) with the
metric topology and z; € Uy, there is some 0 < ¢; < 1 such that ij (xz;) C U;.
Let € = minjey, ;. If dj(z,y) < € then d(z;,y;) < € for all j € J and hence
d(z;,y;) < €j for all j € Jy, which implies that y; € ng (z;) CU;j forall j € Jp.
If j € J\ Jo then U; = X and of course y; € U;. Therefore, if y € B3’ (x) then
y € U, i.e. BY(x) C U. Tt follows that the uniform topology on X7 is finer
than the product topology on X. O

The following theorem shows that if we take the product of a complete metric
space with itself, then the uniform metric on this product space is complete.”

Theorem 5. If J is a set and (X,d) is a complete metric space, then X7 with
the uniform metric is a complete metric space.

Proof. Tt is straightforward to check that (X, d) being a complete metric space
implies that (X, d) is a complete metric space. Let f,, be a Cauchy sequence in
(X7,dy): if € > 0 then there is some N such that n,m > N implies that

d](frufm) <€

Thus, if € > 0, then there is some NN such that n,m > N and j € J implies
that d(fn(4), fm(J)) < dj(fn, fm) < € Thus, if j € J then f,(j) is a Cauchy

sequence in (X, d), which therefore converges to some f(j) € X, and thus f €
X7 . If n,m > N and j € J, then

d(fa(3), £(5)) < d(fa(5), fn(5)) + d(fim(5), £(5))
<e+d(fm(5), F(5))-

As the left-hand side does not depend on m and d(f,,(j), f(5)) — 0, we get that
if n> N and j € J then

d(fa (), f(5)) < e
Therefore, if n > N then
dJ(fna f) <e

This means that f,, converges to f in the uniform metric, showing that (X7, d )
is a complete metric space. O

7James Munkres, Topology, second ed., p. 267, Theorem 43.5.



4 Bounded functions and continuous functions

If J is a set and (X,d) is a metric space, a function f : J — X is said to be
bounded if its image is a bounded subset of X, i.e. f(J) has a finite diameter.
Let B(J, X) be the set of bounded functions J — (X, d); B(J, X) is a subset of
X7, Since the diameter of (X,d) is < 1, any function J — (X, d) is bounded,
but there might be unbounded functions J — (X, d). We prove in the following
theorem that B(J, X) is a closed subset of X” with the uniform topology.®

Theorem 6. If J is a set and (X, d) is a metric space, then B(J, X) is a closed
subset of X7 with the uniform topology.

Proof. If f, € B(J,Y) and f, converges to f € X7 in the uniform topology,
then there is some N such that d;(fn, f) < % Thus, for all j € J we have
d(fn(4), f(j)) < 3, which implies that

A ), FG) = Afn (), ) < 5.
If 4,5 € J, then
d(f(i), £(5)) < d(f(i), fn (@) + d(fn (i), fn(5)) + d(fn(5), £(5))

-+ diamn(f (). d) + 5.

fn € B(J, X) means that diam(fn(J),d) < oo, and it follows that diam(f(J), d) <
diam(fn(J),d) + 1 < oo, showing that f € B(J,X). Therefore if a sequence
of elements in B(J, X) converges to an element of X7, that limit is contained
in B(J,X). This implies that B(J, X) is a closed subset of X7 in the uniform
topology, as in a metrizable space the closure of a set is the set of limits of
sequences of points in the set. O

<

If J is a set and Y is a complete metric space, we have shown in Theorem
5 that Y7 is a complete metric space with the uniform metric. If X and Y
are topological spaces, we denote by C(X,Y") the set of continuous functions
X =Y. C(X,Y) is a subset of YX, and we show in the following theorem
that if Y is a metric space then C'(X,Y) is a closed subset of Y in the uniform
topology.? Thus, if Y is a complete metric space then C'(X,Y) is a closed subset
of the complete metric space YX, and is therefore itself a complete metric space
with the uniform metric.

Theorem 7. If X is a topological space and let (Y,d) is a metric space, then
C(X,Y) is a closed subset of Y with the uniform topology.

Proof. Suppose that f,, € C(X,Y) and f, — f € YX in the uniform topology.
Thus, if € > 0 then there is some N such that n > N implies that d;(f,, f) <€,
and so if n > N and z € X then

d(fo(2), f(2)) < dj(fn, f) <e

8James Munkres, Topology, second ed., p. 267, Theorem 43.6.
9James Munkres, Topology, second ed., p. 267, Theorem 43.6.




This means that the sequence f,, converges uniformly in X to f in the uniform
metric, and as each f,, is continuous this implies that f is continuous.'® We have
shown that if f, € C(X,Y) and f, — f € YX in the uniform topology then
f € C(X,Y), and therefore C(X,Y) is a closed subset of Y in the uniform
topology. O

5 Topology of compact convergence

Let X be a topological space and (Y,d) be a metric space. If f € YX, C is a
compact subset of X, and € > 0, we denote by B¢ (f, €) the set of those g € Y X
such that

sup{d(f(x),g(z)):z € C} <e.

A basis for the topology of compact convergence on YX are those sets of the form
Be(f,e), f € YX, C a compact subset of X, and € > 0. It can be proved that
the uniform topology on Y is finer than the topology of compact convergence
on YX and that the topology of compact convergence on Y X is finer than the
product topology on YX .11 Indeed, we have already shown in Theorem 4 that
the uniform topology on Y is finer than the product topology on Y. The
significance of the topology of compact convergence on Y is that a sequence
of functions f,, : X — Y converges in the topology of compact convergence
to a function f : X — Y if and only if for each compact subset C' of X the
sequence of functions f,|C : C = Y converges uniformly in C' to the function
flIC:C =Y.

10See James Munkres, Topology, second ed., p. 132, Theorem 21.6.
11 James Munkres, Topology, second ed., p. 285, Theorem 46.7.



