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1 Metric topology

If (X, d) is a metric space, a ∈ X, and r > 0, then the open ball with center a
and radius r is

Bd
r (a) = {x ∈ X : d(x, a) < r}.

The set of all open balls is a basis for the metric topology induced by d.
If (X, d) is a metric space, define

d(a, b) = d(a, b) ∧ 1, a, b ∈ X,

where x∧ y = min{x, y}. It is straightforward to check that d is a metric on X,
and one proves that d and d induce the same metric topologies.1 The diameter
of a subset S of a metric space (X, d) is

diam(S, d) = sup
a,b∈S

d(a, b).

The subset S is said to be bounded if its diameter is finite. The metric space
(X, d) might be unbounded, but the diameter of the metric space (X, d) is

diam(X, d) = sup
a,b∈X

d(a, b) = diam(X, d) ∧ 1,

and thus the metric space (X, d) is bounded.

2 Product topology

If J is a set and Xj are topological spaces for each j ∈ J , let X =
∏

j∈J Xj

and let πj : X → Xj be the projection maps. A basis for the product topology
on X are those sets of the form

⋂
j∈J0

π−1
j (Uj), where J0 is a finite subset of

J and Uj is an open subset of Xj , j ∈ J0. Equivalently, the product topology
is the initial topology for the projection maps πj : X → Xj , j ∈ J , i.e. the
coarsest topology on X such that each projection map is continuous. Each of
the projection maps is open.2 The following theorem characterizes convergent
nets in the product topology.3

1James Munkres, Topology, second ed., p. 121, Theorem 20.1.
2John L. Kelley, General Topology, p. 90, Theorem 2.
3John L. Kelley, General Topology, p. 91, Theorem 4.
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Theorem 1. Let J be a set and for each j ∈ J let Xj be a topological space. If
X =

∏
j∈J Xj has the product topology and (xα)α∈I is a net in X, then xα → x

if and only if πj(xα) → πj(x) for each j ∈ J .

Proof. Let (xα)α∈I be a net that converges to x ∈ X. Because each projection
map is continuous, if j ∈ J then πj(xα) → πj(x). On the other hand, suppose
that (xα)α∈I is a net, that x ∈ X, and that πj(xα) → πj(x) for each j ∈ J . Let
Oj be the set of open neighborhoods of πj(x) ∈ Xj . For j ∈ J and U ∈ Oj ,
because πj(xα) → πj(x) we have that πj(xα) is eventually in U . It follows that
if j ∈ J and U ∈ Oj then xα is eventually in π−1

j (U). Therefore, if J0 is a finite

subset of J and Uj ∈ Oj for each j ∈ J0, then xα is eventually in
⋂

j∈J0
π−1
j (Uj).

This means that the net (xα)α∈I is eventually in every basic open neighborhood
of x, which implies that xα → x.

The following theorem states that if J is a countable set and (X, d) is a
metric space, then the product topology on XJ is metrizable.4

Theorem 2. If J is a countable set and (X, d) is a metric space, then

ρ(x, y) = sup
j∈J

d(xj , yj)

j
= sup

j∈J

d(xj , yj) ∧ 1

j

is a metric on XJ that induces the product topology.

A topological space is first-countable if every point has a countable local
basis; a local basis at a point p is a set B of open sets each of which contains
p such that each open set containing p contains an element of B. It is a fact
that a metrizable topological space is first-countable. In the following theorem
we prove that the product topology on an uncountable product of Hausdorff
spaces each of which has at least two points is not first-countable.5 From this
it follows that if (X, d) is a metric space with at least two points and J is an
uncountable set, then the product topology on XJ is not metrizable.

Theorem 3. If J is an uncountable set and for each j ∈ J we have that Xj is a
Hausdorff space with at least two points, then the product topology on

∏
j∈J Xj

is not first-countable.

Proof. Write X =
∏

j∈J Xj , and suppose that x ∈ X and that Un, n ∈ N, are
open subsets of X containing x. Since Un is an open subset of X containing x,
there is a basic open set Bn satisfying x ∈ Bn ⊆ Un: by saying that Bn is a
basic open set we mean that there is a finite subset Fn of J and open subsets
Un,j of Xj , j ∈ Fn, such that

Bn =
⋂

j∈Fn

π−1
j (Un,j).

4James Munkres, Topology, second ed., p. 125, Theorem 20.5.
5cf. John L. Kelley, General Topology, p. 92, Theorem 6.

2



Let F =
⋃

n∈N Fn, and because J is uncountable there is some k ∈ J \ F ; this
is the only place in the proof at which we use that J is uncountable. As Xk

has at least two points and x(k) ∈ Xk, there is some a ∈ Xk with x(k) ̸= a.
Since Xk is a Hausdorff space, there are disjoint open subsets N1, N2 of Xk with
x(k) ∈ N1 and a ∈ N2. Define

Vj =

{
N1 j = k

Xj j ̸= k

and let V =
∏

j∈J Vj . We have x ∈ V . But for each n ∈ N, there is some
yn ∈ Bn with yn(k) = a ∈ N2, hence yn(k) ̸∈ N1 and so yn ̸∈ V . Thus none
of the sets Bn is contained in V , and hence none of the sets Un is contained
in V . Therefore {Un : n ∈ N} is not a local basis at x, and as this was an
arbitrary countable set of open sets containing x, there is no countable local
basis at x, showing that X is not first-countable. (In fact, we have proved there
is no countable local basis at any point in X; not to be first-countable merely
requires that there be at least one point at which there is no countable local
basis.)

3 Uniform metric

If J is a set and (X, d) is a metric space, we define the uniform metric on XJ

by
dJ(x, y) = sup

j∈J
d(xj , yj) = sup

j∈J
d(xj , yj) ∧ 1.

It is apparent that dJ(x, y) = 0 if and only if x = y and that dJ(x, y) = dJ(y, x).
If x, y, z ∈ X then,

dJ(x, z) = sup
j∈J

d(xj , zj)

≤ sup
j∈J

d(xj , yj) + d(yj , zj)

≤ sup
j∈J

d(xj , yj) + sup
j∈J

d(yj , zj)

= dJ(x, y) + dJ(y, z),

showing that dJ satisfies the triangle inequality and thus that it is indeed a
metric on XJ . The uniform topology on XJ is the metric topology induced by
the uniform metric.

If (X, d) is a metric space, then X is a topological space with the metric
topology, and thus XJ =

∏
j∈J X is a topological space with the product topol-

ogy. The following theorem shows that the uniform topology on XJ is finer
than the product topology on XJ .6

6James Munkres, Topology, second ed., p. 124, Theorem 20.4.
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Theorem 4. If J is a set and (X, d) is a metric space, then the uniform topology
on XJ is finer than the product topology on XJ .

Proof. If x ∈ XJ , let U =
∏

j∈J Uj be a basic open set in the product topology
with x ∈ U . Thus, there is a finite subset J0 of J such that if j ∈ J \ J0
then Uj = X. If j ∈ J0, then because Uj is an open subset of (X, d) with the
metric topology and xj ∈ Uj , there is some 0 < ϵj < 1 such that Bd

ϵj (xj) ⊆ Uj .
Let ϵ = minj∈J0 ϵj . If dJ(x, y) < ϵ then d(xj , yj) < ϵ for all j ∈ J and hence
d(xj , yj) < ϵj for all j ∈ J0, which implies that yj ∈ Bd

ϵj (xj) ⊆ Uj for all j ∈ J0.

If j ∈ J \ J0 then Uj = X and of course yj ∈ Uj . Therefore, if y ∈ BdJ
ϵ (x) then

y ∈ U , i.e. BdJ
ϵ (x) ⊆ U . It follows that the uniform topology on XJ is finer

than the product topology on XJ .

The following theorem shows that if we take the product of a complete metric
space with itself, then the uniform metric on this product space is complete.7

Theorem 5. If J is a set and (X, d) is a complete metric space, then XJ with
the uniform metric is a complete metric space.

Proof. It is straightforward to check that (X, d) being a complete metric space
implies that (X, d) is a complete metric space. Let fn be a Cauchy sequence in
(XJ , dJ): if ϵ > 0 then there is some N such that n,m ≥ N implies that

dJ(fn, fm) < ϵ.

Thus, if ϵ > 0, then there is some N such that n,m ≥ N and j ∈ J implies
that d(fn(j), fm(j)) ≤ dJ(fn, fm) < ϵ. Thus, if j ∈ J then fn(j) is a Cauchy
sequence in (X, d), which therefore converges to some f(j) ∈ X, and thus f ∈
XJ . If n,m ≥ N and j ∈ J , then

d(fn(j), f(j)) ≤ d(fn(j), fm(j)) + d(fm(j), f(j))

≤ dJ(fn, fm) + d(fm(j), f(j))

< ϵ+ d(fm(j), f(j)).

As the left-hand side does not depend on m and d(fm(j), f(j)) → 0, we get that
if n ≥ N and j ∈ J then

d(fn(j), f(j)) ≤ ϵ.

Therefore, if n ≥ N then
dJ(fn, f) ≤ ϵ.

This means that fn converges to f in the uniform metric, showing that (XJ , dJ)
is a complete metric space.

7James Munkres, Topology, second ed., p. 267, Theorem 43.5.
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4 Bounded functions and continuous functions

If J is a set and (X, d) is a metric space, a function f : J → X is said to be
bounded if its image is a bounded subset of X, i.e. f(J) has a finite diameter.
Let B(J,X) be the set of bounded functions J → (X, d); B(J,X) is a subset of
XJ . Since the diameter of (X, d) is ≤ 1, any function J → (X, d) is bounded,
but there might be unbounded functions J → (X, d). We prove in the following
theorem that B(J,X) is a closed subset of XJ with the uniform topology.8

Theorem 6. If J is a set and (X, d) is a metric space, then B(J,X) is a closed
subset of XJ with the uniform topology.

Proof. If fn ∈ B(J, Y ) and fn converges to f ∈ XJ in the uniform topology,
then there is some N such that dJ(fN , f) < 1

2 . Thus, for all j ∈ J we have

d(fN (j), f(j)) < 1
2 , which implies that

d(fN (j), f(j)) = d(fN (j), f(j)) <
1

2
.

If i, j ∈ J , then

d(f(i), f(j)) ≤ d(f(i), fN (i)) + d(fN (i), fN (j)) + d(fN (j), f(j))

≤ 1

2
+ diam(fN (J), d) +

1

2
.

fN ∈ B(J,X) means that diam(fN (J), d) < ∞, and it follows that diam(f(J), d) ≤
diam(fN (J), d) + 1 < ∞, showing that f ∈ B(J,X). Therefore if a sequence
of elements in B(J,X) converges to an element of XJ , that limit is contained
in B(J,X). This implies that B(J,X) is a closed subset of XJ in the uniform
topology, as in a metrizable space the closure of a set is the set of limits of
sequences of points in the set.

If J is a set and Y is a complete metric space, we have shown in Theorem
5 that Y J is a complete metric space with the uniform metric. If X and Y
are topological spaces, we denote by C(X,Y ) the set of continuous functions
X → Y . C(X,Y ) is a subset of Y X , and we show in the following theorem
that if Y is a metric space then C(X,Y ) is a closed subset of Y X in the uniform
topology.9 Thus, if Y is a complete metric space then C(X,Y ) is a closed subset
of the complete metric space Y X , and is therefore itself a complete metric space
with the uniform metric.

Theorem 7. If X is a topological space and let (Y, d) is a metric space, then
C(X,Y ) is a closed subset of Y X with the uniform topology.

Proof. Suppose that fn ∈ C(X,Y ) and fn → f ∈ Y X in the uniform topology.
Thus, if ϵ > 0 then there is some N such that n ≥ N implies that dJ(fn, f) < ϵ,
and so if n ≥ N and x ∈ X then

d(fn(x), f(x)) ≤ dJ(fn, f) < ϵ.

8James Munkres, Topology, second ed., p. 267, Theorem 43.6.
9James Munkres, Topology, second ed., p. 267, Theorem 43.6.
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This means that the sequence fn converges uniformly in X to f in the uniform
metric, and as each fn is continuous this implies that f is continuous.10 We have
shown that if fn ∈ C(X,Y ) and fn → f ∈ Y X in the uniform topology then
f ∈ C(X,Y ), and therefore C(X,Y ) is a closed subset of Y X in the uniform
topology.

5 Topology of compact convergence

Let X be a topological space and (Y, d) be a metric space. If f ∈ Y X , C is a
compact subset of X, and ϵ > 0, we denote by BC(f, ϵ) the set of those g ∈ Y X

such that
sup{d(f(x), g(x)) : x ∈ C} < ϵ.

A basis for the topology of compact convergence on Y X are those sets of the form
BC(f, ϵ), f ∈ Y X , C a compact subset of X, and ϵ > 0. It can be proved that
the uniform topology on Y X is finer than the topology of compact convergence
on Y X , and that the topology of compact convergence on Y X is finer than the
product topology on Y X .11 Indeed, we have already shown in Theorem 4 that
the uniform topology on Y X is finer than the product topology on Y X . The
significance of the topology of compact convergence on Y X is that a sequence
of functions fn : X → Y converges in the topology of compact convergence
to a function f : X → Y if and only if for each compact subset C of X the
sequence of functions fn|C : C → Y converges uniformly in C to the function
f |C : C → Y .

10See James Munkres, Topology, second ed., p. 132, Theorem 21.6.
11James Munkres, Topology, second ed., p. 285, Theorem 46.7.
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