The uniform metric on product spaces

Jordan Bell

April 3, 2014

1 Metric topology

If (X, d) is a metric space, $a \in X$, and r > 0, then the open ball with center a and radius r is

$$B_r^d(a) = \{ x \in X : d(x, a) < r \}.$$

The set of all open balls is a basis for the *metric topology induced by d*.

If (X, d) is a metric space, define

$$\overline{d}(a,b) = d(a,b) \wedge 1, \qquad a,b \in X,$$

where $x \wedge y = \min\{x, y\}$. It is straightforward to check that \overline{d} is a metric on X, and one proves that d and \overline{d} induce the same metric topologies.¹ The *diameter* of a subset S of a metric space (X, d) is

$$\operatorname{diam}(S,d) = \sup_{a,b \in S} d(a,b).$$

The subset S is said to be *bounded* if its diameter is finite. The metric space (X, d) might be unbounded, but the diameter of the metric space (X, \overline{d}) is

$$\operatorname{diam}(X,\overline{d}) = \sup_{a,b \in X} \overline{d}(a,b) = \operatorname{diam}(X,d) \wedge 1,$$

and thus the metric space (X, \overline{d}) is bounded.

2 Product topology

If J is a set and X_j are topological spaces for each $j \in J$, let $X = \prod_{j \in J} X_j$ and let $\pi_j : X \to X_j$ be the projection maps. A basis for the *product topology* on X are those sets of the form $\bigcap_{j \in J_0} \pi_j^{-1}(U_j)$, where J_0 is a finite subset of J and U_j is an open subset of X_j , $j \in J_0$. Equivalently, the product topology is the initial topology for the projection maps $\pi_j : X \to X_j$, $j \in J$, i.e. the coarsest topology on X such that each projection map is continuous. Each of the projection maps is open.² The following theorem characterizes convergent nets in the product topology.³

¹James Munkres, *Topology*, second ed., p. 121, Theorem 20.1.

²John L. Kelley, *General Topology*, p. 90, Theorem 2.

³John L. Kelley, *General Topology*, p. 91, Theorem 4.

Theorem 1. Let J be a set and for each $j \in J$ let X_j be a topological space. If $X = \prod_{j \in J} X_j$ has the product topology and $(x_\alpha)_{\alpha \in I}$ is a net in X, then $x_\alpha \to x$ if and only if $\pi_j(x_\alpha) \to \pi_j(x)$ for each $j \in J$.

Proof. Let $(x_{\alpha})_{\alpha \in I}$ be a net that converges to $x \in X$. Because each projection map is continuous, if $j \in J$ then $\pi_j(x_{\alpha}) \to \pi_j(x)$. On the other hand, suppose that $(x_{\alpha})_{\alpha \in I}$ is a net, that $x \in X$, and that $\pi_j(x_{\alpha}) \to \pi_j(x)$ for each $j \in J$. Let \mathscr{O}_j be the set of open neighborhoods of $\pi_j(x) \in X_j$. For $j \in J$ and $U \in \mathscr{O}_j$, because $\pi_j(x_{\alpha}) \to \pi_j(x)$ we have that $\pi_j(x_{\alpha})$ is eventually in U. It follows that if $j \in J$ and $U \in \mathscr{O}_j$ then x_{α} is eventually in $\pi_j^{-1}(U)$. Therefore, if J_0 is a finite subset of J and $U_j \in \mathscr{O}_j$ for each $j \in J_0$, then x_{α} is eventually in $\bigcap_{j \in J_0} \pi_j^{-1}(U_j)$. This means that the net $(x_{\alpha})_{\alpha \in I}$ is eventually in every basic open neighborhood of x, which implies that $x_{\alpha} \to x$.

The following theorem states that if J is a countable set and (X, d) is a metric space, then the product topology on X^J is metrizable.⁴

Theorem 2. If J is a countable set and (X, d) is a metric space, then

$$\rho(x,y) = \sup_{j \in J} \frac{\overline{d}(x_j, y_j)}{j} = \sup_{j \in J} \frac{d(x_j, y_j) \wedge 1}{j}$$

is a metric on X^J that induces the product topology.

A topological space is *first-countable* if every point has a countable local basis; a *local basis* at a point p is a set \mathscr{B} of open sets each of which contains p such that each open set containing p contains an element of \mathscr{B} . It is a fact that a metrizable topological space is first-countable. In the following theorem we prove that the product topology on an uncountable product of Hausdorff spaces each of which has at least two points is not first-countable.⁵ From this it follows that if (X, d) is a metric space with at least two points and J is an uncountable set, then the product topology on X^J is not metrizable.

Theorem 3. If J is an uncountable set and for each $j \in J$ we have that X_j is a Hausdorff space with at least two points, then the product topology on $\prod_{j \in J} X_j$ is not first-countable.

Proof. Write $X = \prod_{j \in J} X_j$, and suppose that $x \in X$ and that $U_n, n \in \mathbb{N}$, are open subsets of X containing x. Since U_n is an open subset of X containing x, there is a basic open set B_n satisfying $x \in B_n \subseteq U_n$: by saying that B_n is a basic open set we mean that there is a finite subset F_n of J and open subsets $U_{n,j}$ of $X_j, j \in F_n$, such that

$$B_n = \bigcap_{j \in F_n} \pi_j^{-1}(U_{n,j}).$$

⁴James Munkres, *Topology*, second ed., p. 125, Theorem 20.5.

⁵cf. John L. Kelley, *General Topology*, p. 92, Theorem 6.

Let $F = \bigcup_{n \in \mathbb{N}} F_n$, and because J is uncountable there is some $k \in J \setminus F$; this is the only place in the proof at which we use that J is uncountable. As X_k has at least two points and $x(k) \in X_k$, there is some $a \in X_k$ with $x(k) \neq a$. Since X_k is a Hausdorff space, there are disjoint open subsets N_1, N_2 of X_k with $x(k) \in N_1$ and $a \in N_2$. Define

$$V_j = \begin{cases} N_1 & j = k\\ X_j & j \neq k \end{cases}$$

and let $V = \prod_{j \in J} V_j$. We have $x \in V$. But for each $n \in \mathbb{N}$, there is some $y_n \in B_n$ with $y_n(k) = a \in N_2$, hence $y_n(k) \notin N_1$ and so $y_n \notin V$. Thus none of the sets B_n is contained in V, and hence none of the sets U_n is contained in V. Therefore $\{U_n : n \in \mathbb{N}\}$ is not a local basis at x, and as this was an arbitrary countable set of open sets containing x, there is no countable local basis at x, showing that X is not first-countable. (In fact, we have proved there is no countable local basis at any point in X; not to be first-countable merely requires that there be at least one point at which there is no countable local basis.)

3 Uniform metric

If J is a set and (X, d) is a metric space, we define the *uniform metric* on X^J by

$$d_J(x,y) = \sup_{j \in J} \overline{d}(x_j, y_j) = \sup_{j \in J} d(x_j, y_j) \wedge 1.$$

It is apparent that $d_J(x, y) = 0$ if and only if x = y and that $d_J(x, y) = d_J(y, x)$. If $x, y, z \in X$ then,

$$d_J(x,z) = \sup_{j \in J} \overline{d}(x_j, z_j)$$

$$\leq \sup_{j \in J} \overline{d}(x_j, y_j) + \overline{d}(y_j, z_j)$$

$$\leq \sup_{j \in J} \overline{d}(x_j, y_j) + \sup_{j \in J} \overline{d}(y_j, z_j)$$

$$= d_J(x, y) + d_J(y, z),$$

showing that d_J satisfies the triangle inequality and thus that it is indeed a metric on X^J . The *uniform topology* on X^J is the metric topology induced by the uniform metric.

If (X, d) is a metric space, then X is a topological space with the metric topology, and thus $X^J = \prod_{j \in J} X$ is a topological space with the product topology. The following theorem shows that the uniform topology on X^J is finer than the product topology on X^{J} .⁶

⁶James Munkres, *Topology*, second ed., p. 124, Theorem 20.4.

Theorem 4. If J is a set and (X, d) is a metric space, then the uniform topology on X^J is finer than the product topology on X^J .

Proof. If $x \in X^J$, let $U = \prod_{j \in J} U_j$ be a basic open set in the product topology with $x \in U$. Thus, there is a finite subset J_0 of J such that if $j \in J \setminus J_0$ then $U_j = X$. If $j \in J_0$, then because U_j is an open subset of (X, d) with the metric topology and $x_j \in U_j$, there is some $0 < \epsilon_j < 1$ such that $B^d_{\epsilon_j}(x_j) \subseteq U_j$. Let $\epsilon = \min_{j \in J_0} \epsilon_j$. If $d_J(x, y) < \epsilon$ then $d(x_j, y_j) < \epsilon$ for all $j \in J$ and hence $d(x_j, y_j) < \epsilon_j$ for all $j \in J_0$, which implies that $y_j \in B^d_{\epsilon_j}(x_j) \subseteq U_j$ for all $j \in J_0$. If $j \in J \setminus J_0$ then $U_j = X$ and of course $y_j \in U_j$. Therefore, if $y \in B^{d_J}_{\epsilon}(x)$ then $y \in U$, i.e. $B^{d_J}_{\epsilon}(x) \subseteq U$. It follows that the uniform topology on X^J is finer than the product topology on X^J .

The following theorem shows that if we take the product of a complete metric space with itself, then the uniform metric on this product space is complete.⁷

Theorem 5. If J is a set and (X, d) is a complete metric space, then X^J with the uniform metric is a complete metric space.

Proof. It is straightforward to check that (X, d) being a complete metric space implies that (X, \overline{d}) is a complete metric space. Let f_n be a Cauchy sequence in (X^J, d_J) : if $\epsilon > 0$ then there is some N such that $n, m \ge N$ implies that

$$d_J(f_n, f_m) < \epsilon$$

Thus, if $\epsilon > 0$, then there is some N such that $n, m \ge N$ and $j \in J$ implies that $\overline{d}(f_n(j), f_m(j)) \le d_J(f_n, f_m) < \epsilon$. Thus, if $j \in J$ then $f_n(j)$ is a Cauchy sequence in (X, \overline{d}) , which therefore converges to some $f(j) \in X$, and thus $f \in X^J$. If $n, m \ge N$ and $j \in J$, then

$$d(f_n(j), f(j)) \le d(f_n(j), f_m(j)) + d(f_m(j), f(j))$$

$$\le d_J(f_n, f_m) + \overline{d}(f_m(j), f(j))$$

$$< \epsilon + \overline{d}(f_m(j), f(j)).$$

As the left-hand side does not depend on m and $\overline{d}(f_m(j), f(j)) \to 0$, we get that if $n \ge N$ and $j \in J$ then

$$d(f_n(j), f(j)) \le \epsilon.$$

Therefore, if $n \ge N$ then

$$d_J(f_n, f) \le \epsilon.$$

This means that f_n converges to f in the uniform metric, showing that (X^J, d_J) is a complete metric space.

⁷James Munkres, *Topology*, second ed., p. 267, Theorem 43.5.

4 Bounded functions and continuous functions

If J is a set and (X,d) is a metric space, a function $f: J \to X$ is said to be bounded if its image is a bounded subset of X, i.e. f(J) has a finite diameter. Let B(J,X) be the set of bounded functions $J \to (X,d)$; B(J,X) is a subset of X^J . Since the diameter of (X,\overline{d}) is ≤ 1 , any function $J \to (X,\overline{d})$ is bounded, but there might be unbounded functions $J \to (X,d)$. We prove in the following theorem that B(J,X) is a closed subset of X^J with the uniform topology.⁸

Theorem 6. If J is a set and (X, d) is a metric space, then B(J, X) is a closed subset of X^J with the uniform topology.

Proof. If $f_n \in B(J,Y)$ and f_n converges to $f \in X^J$ in the uniform topology, then there is some N such that $d_J(f_N, f) < \frac{1}{2}$. Thus, for all $j \in J$ we have $\overline{d}(f_N(j), f(j)) < \frac{1}{2}$, which implies that

$$d(f_N(j), f(j)) = \overline{d}(f_N(j), f(j)) < \frac{1}{2}.$$

If $i, j \in J$, then

$$d(f(i), f(j)) \le d(f(i), f_N(i)) + d(f_N(i), f_N(j)) + d(f_N(j), f(j))$$

$$\le \frac{1}{2} + \operatorname{diam}(f_N(J), d) + \frac{1}{2}.$$

 $f_N \in B(J, X)$ means that diam $(f_N(J), d) < \infty$, and it follows that diam $(f(J), d) \leq diam(f_N(J), d) + 1 < \infty$, showing that $f \in B(J, X)$. Therefore if a sequence of elements in B(J, X) converges to an element of X^J , that limit is contained in B(J, X). This implies that B(J, X) is a closed subset of X^J in the uniform topology, as in a metrizable space the closure of a set is the set of limits of sequences of points in the set. \Box

If J is a set and Y is a complete metric space, we have shown in Theorem 5 that Y^J is a complete metric space with the uniform metric. If X and Y are topological spaces, we denote by C(X,Y) the set of continuous functions $X \to Y$. C(X,Y) is a subset of Y^X , and we show in the following theorem that if Y is a metric space then C(X,Y) is a closed subset of Y^X in the uniform topology.⁹ Thus, if Y is a complete metric space then C(X,Y) is a closed subset of the complete metric space Y^X , and is therefore itself a complete metric space with the uniform metric.

Theorem 7. If X is a topological space and let (Y,d) is a metric space, then C(X,Y) is a closed subset of Y^X with the uniform topology.

Proof. Suppose that $f_n \in C(X, Y)$ and $f_n \to f \in Y^X$ in the uniform topology. Thus, if $\epsilon > 0$ then there is some N such that $n \ge N$ implies that $d_J(f_n, f) < \epsilon$, and so if $n \ge N$ and $x \in X$ then

$$d(f_n(x), f(x)) \le d_J(f_n, f) < \epsilon.$$

⁸James Munkres, *Topology*, second ed., p. 267, Theorem 43.6.

⁹James Munkres, *Topology*, second ed., p. 267, Theorem 43.6.

This means that the sequence f_n converges uniformly in X to f in the uniform metric, and as each f_n is continuous this implies that f is continuous.¹⁰ We have shown that if $f_n \in C(X, Y)$ and $f_n \to f \in Y^X$ in the uniform topology then $f \in C(X, Y)$, and therefore C(X, Y) is a closed subset of Y^X in the uniform topology.

5 Topology of compact convergence

Let X be a topological space and (Y,d) be a metric space. If $f \in Y^X$, C is a compact subset of X, and $\epsilon > 0$, we denote by $B_C(f,\epsilon)$ the set of those $g \in Y^X$ such that

$$\sup\{d(f(x), g(x)) : x \in C\} < \epsilon.$$

A basis for the topology of compact convergence on Y^X are those sets of the form $B_C(f,\epsilon), f \in Y^X, C$ a compact subset of X, and $\epsilon > 0$. It can be proved that the uniform topology on Y^X is finer than the topology of compact convergence on Y^X , and that the topology of compact convergence on Y^X , and that the topology of compact convergence on Y^X is finer than the product topology on Y^X .¹¹ Indeed, we have already shown in Theorem 4 that the uniform topology on Y^X is finer than the product topology on Y^X . The significance of the topology of compact convergence on Y^X is that a sequence of functions $f_n : X \to Y$ converges in the topology of compact convergence to a function $f : X \to Y$ if and only if for each compact subset C of X the sequence of functions $f_n | C : C \to Y$ converges uniformly in C to the function $f | C : C \to Y$.

¹⁰See James Munkres, *Topology*, second ed., p. 132, Theorem 21.6.

¹¹James Munkres, *Topology*, second ed., p. 285, Theorem 46.7.