
Unbounded operators in a Hilbert space and the

Trotter product formula

Jordan Bell

August 25, 2015

1 Unbounded operators

Let H be a Hilbert space with inner product ⟨·, ·⟩. We do not assume that H is
separable. By an operator in H we mean a linear subspace D(T ) of H and a
linear map T : D(T ) → H. We define

R(T ) = {Tx : x ∈ D(T )}.

If D(T ) is dense in H we say that T is densely defined.
Write

G (T ) = {(x, y) ∈ H ×H : x ∈ D(T ), y = Tx}.

When G (T ) ⊂ G (S), we write
T ⊂ S,

and say that S is an extension of T . If G (T ) is a closed linear subspace of
H ×H, we say that T is closed.

We say that an operator T in H is closable if there is a closed operator S
in H such that T ⊂ S. If T is closable, one proves that there is a unique closed
operator T in H with T ⊂ T and such that if S is a closed operator satisfying
T ⊂ S then T ⊂ S.

Suppose that T is a densely defined operator in H. We define D(T ∗) to be
the set of those y ∈ H for which

x 7→ ⟨Tx, y⟩ , x ∈ D(T ),

is continuous. For y ∈ D(T ∗), by the Hahn-Banach theorem there is some
λy ∈ H∗ such that

λyx = ⟨Tx, y⟩ , x ∈ D(T ).

Next, by the Riesz representation theorem, there is a unique xy ∈ H such that

λyx = ⟨x, xy⟩ , x ∈ H,

and hence
⟨x, xy⟩ = ⟨Tx, y⟩ , x ∈ D(T ).
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If v ∈ H satisfies
⟨x, v⟩ = ⟨Tx, y⟩ , x ∈ D(T ),

then
⟨x, v⟩ = ⟨x, xy⟩ , x ∈ D(T ),

and because D(T ) is dense in H this implies that v = xy. We define T ∗ :
D(T ∗) → H by T ∗y = xy, which satisfies

⟨Tx, y⟩ = ⟨x, T ∗y⟩ , x ∈ D(T ).

T ∗ is called the adjoint of T . One checks that D(T ∗) is a linear subspace of
H and that T ∗ : D(T ∗) → H is a linear map. We say that T is self-adjoint
when T = T ∗.

For operators S and T in H we define

D(S + T ) = D(S) ∩ D(T )

and
D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}.

One checks that

(R+ S) + T = R+ (S + T ), (RS)T = R(ST ),

and
RT + ST = (R+ S)T, TR+ TS ⊂ T (R+ S).

We now determine the adjoint of products of densely defined operators.1

Theorem 1. If S, T , and ST are densely defined operators in H, then

T ∗S∗ ⊂ (ST )∗.

If S ∈ B(H), then
T ∗S∗ = (ST )∗.

Proof. Let y ∈ D(T ∗S∗) and let x ∈ D(ST ). Then S∗y ∈ D(T ∗) and x ∈ D(T ),
so

⟨Tx, S∗y⟩ = ⟨x, T ∗S∗y⟩ .

On the other hand, y ∈ D(S∗), so

⟨STx, y⟩ = ⟨Tx, S∗y⟩ .

Hence
⟨STx, y⟩ = ⟨x, T ∗S∗y⟩ ,

which implies that (ST )∗y = T ∗S∗y for each y ∈ D(T ∗S∗), that is, T ∗S∗ ⊂
(ST )∗.

1Walter Rudin, Functional Analysis, second ed., p. 348, Theorem 13.2.
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Suppose that S ∈ B(H), hence S∗ ∈ B(H), for which D(S∗) = H. Let
y ∈ D((ST )∗). For x ∈ D(ST ),

⟨Tx, S∗y⟩ = ⟨STx, y⟩ = ⟨x, (ST )∗y⟩ .

This implies that S∗y ∈ D(T ∗) and hence y ∈ D(T ∗S∗), showing

D((ST )∗) ⊂ D(T ∗S∗).

If T is an operator in H, we say that T is symmetric if

⟨Tx, y⟩ = ⟨x, Ty⟩ , x, y ∈ D(T ).

Theorem 2. Let T be a densely defined operator in H. T is symmetric if and
only if T ⊂ T ∗.

Proof. Suppose that T is symmetric and let (y, Ty) ∈ G (T ). For x ∈ D(T ),

| ⟨Tx, y⟩ | = | ⟨x, Ty⟩ | ≤ ∥x∥ ∥Ty∥ ,

hence x 7→ ⟨Tx, y⟩ is continuous on D(T ), i.e. y ∈ D(T ∗). For x ∈ D(T ), on
the one hand,

⟨Tx, y⟩ = ⟨x, T ∗y⟩ ,
and on the other hand,

⟨Tx, y⟩ = ⟨x, Ty⟩ .
Therefore ⟨x, T ∗y⟩ = ⟨x, Ty⟩ for all x ∈ D(T ), and because D(T ) is dense in H
we get that T ∗y = Ty, i.e. (y, Ty) ∈ G (T ∗). Therefore G (T ) ⊂ G (T ∗).

Suppose that G (T ) ⊂ G (T ∗). Let x, y ∈ D(T ). We have (y, Ty) ∈ G (T ∗),
i.e. y ∈ D(T ∗) and T ∗y = Ty. Hence

⟨Tx, y⟩ = ⟨x, T ∗y⟩ = ⟨x, Ty⟩ ,

showing that T is symmetric.

One proves that if T is a symmetric operator in H then T is closable and T
is symmetric. An operator T in H is said to be essentially self-adjoint when
T is densely defined, symmetric, and T (which is densely defined) is self-adjoint.

2 Graphs

For (a, b), (c, d) ∈ H ×H, we define

⟨(a, b), (c, d)⟩ = ⟨a, c⟩+ ⟨b, d⟩ .

This is an inner product on H ×H with which H ×H is a Hilbert space. We
define V : H ×H → H ×H by

V (a, b) = (−b, a), (a, b) ∈ H ×H,
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which belongs to B(H × H). It is immediate that V V ∗ = I and V ∗V = I,
namely, V is unitary. As well, V 2 = −I, whence if M is a linear subspace of
H ×H then V 2M =M . The following theorem relates the graphs of a densely
defined operator and its adjoint.2

Theorem 3. Suppose that T is a densely defined operator in H. It holds that

G (T ∗) = (V G (T ))
⊥
.

Theorem 4. If T is a densely defined operator in H, then T ∗ is a closed
operator.

Proof. V G (T ) is a linear subspace of H × H. The orthogonal complement of
a linear subspace of a Hilbert space is a closed linear subspace of the Hilbert
space, and thus Theorem 3 tells us that G (T ∗) is a closed linear subspace of
H ×H, namely, T ∗ is a closed operator.

Let T be a densely defined operator in H. If T is self-adjoint, then the above
theorem tells us that T is itself a closed operator.

Theorem 5. Suppose that T is a closed densely defined operator in H. Then

H ×H = V G (T )⊕ G (T ∗)

is an orthogonal direct sum.

Proof. Generally, if M is a linear subspace of H ×H,

H ×H =M ⊕M⊥ =M ⊕ (M)⊥

is an orthogonal direct sum. For M = V G (T ), because G (T ) is a closed linear
subspace of H ×H, so is M . Thus

H ×H = V G (T )⊕ (V G (T ))⊥.

By Theorem 3, this is

H ×H = V G (T )⊕ G (T ∗),

proving the claim.

If T is an operator in H that is one-to-one, we define D(T−1) = R(T ), and
T−1 is a densely defined operator with domain D(T−1).

The following theorem establishes several properties of symmetric densely
defined operators.3 We remind ourselves that if T is an operator in H, the
statement D(T ) = H means that T is a linear map H → H, from which it does
not follow that T is continuous.

2Walter Rudin, Functional Analysis, second ed., p. 352, Theorem 13.8.
3Walter Rudin, Functional Analysis, second ed., p. 353, Theorem 13.11.
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Theorem 6. Suppose that T is a densely defined symmetric operator in H.
Then the following statements are true:

1. If D(T ) = H then T is self-adjoint and T ∈ B(H).

2. If T is self-adjoint and one-to-one, then R(T ) is dense in H and T−1 is
densely defined and self-adjoint.

3. If R(T ) is dense in H, then T is one-to-one.

4. If R(T ) = H, then T is self-adjoint and T−1 ∈ B(H).

If T ∈ B(H) then T ∗∗ = T . The following theorem says that this is true for
closed densely defined operators.4

Theorem 7. If T is a closed densely defined operator in H, then D(T ∗) is
dense in H and T ∗∗ = T .

The following theorem gives statements about I + T ∗T when T is a closed
densely defined operator.5

Theorem 8. Suppose that T is a closed densely defined operator in H and let
Q = I + T ∗T , with

D(Q) = D(T ∗T ) = {x ∈ D(T ) : Tx ∈ D(T ∗)}.

The following statements are true:

1. Q : D(Q) → H is a bijection, and there are B,C ∈ B(H) with ∥B∥ ≤ 1,
B ≥ 0, ∥C∥ ≤ 1, C = TB, and

B(I + T ∗T ) ⊂ (I + T ∗T )B = I.

T ∗T is self-adjoint.

2. Let T0 be the restriction of T to D(T ∗T ). Then G (T0) is dense in G (T ).

Let T be a symmetric operator in H. We say that T is maximally sym-
metric if T ⊂ S and S being symmetric imply that S = T . One proves that a
self-adjoint operator is maximally symmetric.6

The following theorem is about T + iI when T is a symmetric operator in
H.7

Theorem 9. Suppose that T is a symmetric operator in H and let j be i or
−i. Then:

1. ∥Tx+ jx∥2 = ∥x∥2 + ∥Tx∥2 for x ∈ D(T ).

2. T is closed if and only if R(T + jI) is a closed subset of H.

3. T + jI is one-to-one.

4. If R(T + jI) = H then T is maximally symmetric.

4Walter Rudin, Functional Analysis, second ed., p. 354, Theorem 13.12.
5Walter Rudin, Functional Analysis, second ed., p. 354, Theorem 13.13.
6Walter Rudin, Functional Analysis, second ed., p. 356, Theorem 13.15.
7Walter Rudin, Functional Analysis, second ed., p. 356, Theorem 13.16.
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3 The Cayley transform

Let T be a symmetric operator in H and define

D(U) = R(T + iI).

Theorem 9 tells us that T + iI is one-to-one. Because

D(T − iI) = D(T ) = D(T − iI)

and D((T + iI)−1) = R(T + iI),

D((T − iI)(T + iI)−1) = {x ∈ R(T + iI) : (T + iI)−1x ∈ D(T )}
= {x ∈ R(T + iI) : (T + iI)−1x ∈ D(T + iI)}
= R(T + iI)

= D(U).

We define
U = (T − iI)(T + iI)−1.

U is called the Cayley transform of T .
We have

R(U) = UD(U) = UR(T+iI) = (T−iI)(T+iI)−1R(T+iI) = (T−iI)D(T+iI),

and D(T + iI) = D(T ) = D(T − iI) so

R(U) = (T − iI)D(T − iI) = R(T − iI).

Also, for x ∈ D(T ), Theorem 9 tells us

∥(T + iI)x∥2 = ∥Tx+ ix∥2 = ∥x∥2 + ∥Tx∥2 = ∥Tx− ix∥2 = ∥(T − iI)x∥2 ,

hence for x ∈ D(U), for which (T + iI)−1x ∈ D(T + iI) = D(T ),

∥Ux∥ =
∥∥(T − iI)(T + iI)−1x

∥∥ =
∥∥(T + iI)(T + iI)−1x

∥∥ = ∥x∥ ,

showing that U is an isometry in H.
The Cayley transform of a symmetric operator in H (which we do not pre-

sume to be densely defined) has the following properties.8

Theorem 10. Suppose that T is a symmetric operator in H. Then:

1. U is closed if and only if T is closed.

2. R(I − U) = D(T ), I − U is one-to-one, and

T = i(I + U)(I − U)−1.

3. U is unitary if and only if T is self-adjoint.

If V is an operator in H that is an isometry and I − V is one-to-one, then
there is a symmetric operator S in H such that V is the Cayley transform of S.

8Walter Rudin, Functional Analysis, second ed., p. 385, Theorem 13.19.
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4 Resolvents

Let T be an operator in H. The resolvent set of T , denoted ρ(T ), is the set of
those λ ∈ C such that T−λI : D(T ) → H is a bijection and (T−λI)−1 ∈ B(H).
That is, λ ∈ ρ(T ) if and only if there is some S ∈ B(H) such that

S(T − λI) ⊂ (T − λI)S = I.

We call R : ρ(T ) → B(H) defined by

R(λ) = (T − λI)−1

the resolvent of T . The spectrum of T is σ(T ) = C \ ρ(T ). It is a fact
that ρ(T ) is open, that σ(T ) is closed, and that if σ(T ) ̸= C then T is a closed
operator, that

R(z)−R(w) = (z − w)R(z)R(w), z, w ∈ ρ(T ),

and
dnR

dzn
(z) = n!Rn+1(z), z ∈ ρ(T ).

If T is a self-adjoint operator in H, one proves that σ(T ) ⊂ R.

5 Resolutions of the identity

Let (Ω,S ) be a measurable space. A resolution of the identity is a function

E : S → B(H)

satisfying:

1. E(∅) = 0, E(Ω) = I.

2. For each a ∈ S , E(a) is a self-adjoint projection.

3. E(a ∩ b) = E(a)E(b).

4. If a ∩ b = ∅, then E(a ∪ b) = E(a) + E(b).

5. For each x, y ∈ H, the function Ex,y : S → C defined by

Ex,y(a) = ⟨E(a)x, y⟩ , a ∈ S ,

is a complex measure on S .

We check that if an ∈ S and E(an) = 0 for each n = 1, 2, . . ., then for
a =

⋃∞
n=1 an, E(a) = 0.

Let {Di} be a countable collection of open discs that is a base for the topol-
ogy of C, i.e.,

⋃
Di = C and for each i, j and for z ∈ Di ∩ Dj , there is some

k such that x ∈ Dk ⊂ Di ∩ Dj . Let f : (Ω,S ) → (C,BC) be a measurable
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function and let V be the union of those Di for which E(f−1(Di)) = 0. Then
E(f−1(V )) = 0. The essential range of f is C \ V , and we say that f is
essentially bounded if the essential range of f is a bounded subset of C. We
define the essential supremum of f to be

∥f∥∞ = sup{|λ| : λ ∈ C \ V }.

Now define B to be the collection of bounded measurable functions (Ω,S ) →
(C,BC), which is a Banach algebra with the norm

sup{|f(ω) : ω ∈ Ω},

for which
N = {f ∈ B : ∥f∥∞ = 0}

is a closed ideal. Then B/N is a Banach algebra, denoted L∞(E), with the
norm

∥f +N∥∞ = ∥f∥∞ .

The unity of L∞(E) is 1+N . Because L∞(E) is a Banach algebra, it makes sense
to speak about the spectrum of an element of L∞(E). For f +N ∈ L∞(E), the
spectrum of f+N is the set of those λ ∈ C for which there is no g+N ∈ L∞(E)
satisfying (g + N)(f + N − λ(1 + N)) = 1 + N . Check that the spectrum of
f +N is equal to the essential range of g, for any g ∈ f +N .

A subset A of B(H) is said to be normal when ST = TS for all S, T ∈ A
and T ∈ A implies that T ∗ ∈ A.9 (To say that T ∈ B(H) is normal means
that TT ∗ = T ∗T , and this is equivalent to the statement that the set {T, T ∗}
is normal.)

Theorem 11. If (Ω,S ) is a measurable space and E : S → H is a resolution
of the identity, then there is a closed normal subalgebra A of B(H) and a unique
isometric ∗-isomorphism Ψ : L∞(E) → A such that

⟨Ψ(f)x, y⟩ =
∫
Ω

fdEx,y, f ∈ L∞(E), x, y ∈ H.

Furthermore,

∥Ψ(f)x∥2 =

∫
Ω

|f |2dEx,x, f ∈ L∞(E), x ∈ H.

For f ∈ L∞(E), we define ∫
Ω

fdE = Ψ(f).

For L∞(E), σ(Ψ(f)) is equal to the essential range of f .10

9Walter Rudin, Functional Analysis, second ed., p. 319, Theorem 12.21.
10Walter Rudin, Functional Analysis, second ed., p. 366, Theorem 13.27.
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6 The spectral theorem

The following is the spectral theorem for self-adjoint operators.11

Theorem 12. If T is a self-adjoint operator in H, then there is a unique
resolution of the identity

E : BR → B(H)

such that

⟨Tx, y⟩ =
∫
R
λdEx,y(λ), x ∈ D(T ), y ∈ H.

This resolution of the identity satisfies E(σ(T )) = I.

If T is a self-adjoint operator in H applying the spectral theorem and then
Theorem 11, we get that there is a closed normal subalgebra A of B(H) and a
unique isometric ∗-isomorphism Ψ : L∞(E) → A such that

⟨Ψ(f)x, y⟩ =
∫
σ(T )

f(λ)dEx,y(λ), f ∈ L∞(E), x, y ∈ H.

For t ∈ R and ft : σ(T ) → C defined by ft(λ) = eitλ, this defines

eitT = Ψ(ft) =

∫
σ(T )

eitλdE(λ).

Because Ψ is a ∗-homomorphism, for t ∈ R we have

Ψ(ft)
∗Ψ(ft) = Ψ(ft)Ψ(ft) = Ψ(f−t)Ψ(ft) = Ψ(f−tft) = Ψ(f0) = I,

and likewise Ψ(ft)Ψ(ft)
∗ = I, showing that eitT = Ψ(ft) is unitary. We denote

by U (H) the collection of unitary elements of B(H). U (H) is a subgroup of
the group of invertible elements of B(H).

Furthermore, because Ψ is a ∗-homomorphism, for t ∈ R we have

I = Ψ(f0) = Ψ(ftf−t) = Ψ(ft)Ψ(f−t) = eitT ei(−t)T ,

and for s, t ∈ R we have

eisT eitT = Ψ(fs)Ψ(ft) = Ψ(fsft) = Ψ(fs+t) = ei(s+t)T ,

showing that t 7→ eitT is a one-parameter group R → B(H).
For t ∈ R and x ∈ H, by Theorem 11 we have

∥Ψtx− x∥2 = ∥Ψ(ft − 1)x∥2 =

∫
σ(T )

|ft − 1|2dEx,x =

∫
σ(T )

|eitλ − 1|2dEx,x(λ).

For each λ ∈ σ(T ), |eitλ − 1|2 → 0 as t→ 0, and thus we get by the dominated
convergence theorem∫

σ(T )

|eitλ − 1|2dEx,x(λ) → 0, t→ 0.

11Walter Rudin, Functional Analysis, second ed., p. 368, Theorem 13.30.
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That is, for each x ∈ H, ∥∥eitTx− x
∥∥ → 0

as t → 0, showing that t 7→ eitT is strongly continuous, i.e. t 7→ eitT is
continuous R → B(H) where B(H) has the strong operator topology.

Conversely, Stone’s theorem on one-parameter unitary groups12 states
that if {Ut : t ∈ R} is a strongly continuous one-parameter group of bounded
unitary operators on H, then there is a unique self-adjoint operator A in H such
that Ut = eitA for each t ∈ R.

For t ̸= 0, define gt : σ(T ) → C by gt(λ) = eitλ−1
t . By Theorem 12, for

x ∈ D(T ) and y ∈ H,

⟨iTx, y⟩ = i ⟨Tx, y⟩ = i

∫
R
λdEx,y(λ)

and by Theorem 11,

⟨Ψ(gt)x, y⟩ =
∫
σ(T )

gtdEx,y =

∫
σ(T )

eitλ − 1

t
dEx,y(λ),

so

⟨Ψ(gt)x− iTx, y⟩ =
∫
σ(T )

(
eitλ − 1

t
− iλ

)
dEx,y(λ).

For each λ ∈ σ(T ), eitλ−1
t − iλ→ 0 as t→ 0, and for each t,∣∣∣∣eitλ − 1

t
− iλ

∣∣∣∣ ≤ ∣∣∣∣eitλ − 1

t

∣∣∣∣+ |λ| ≤ 2|λ|,

and as x ∈ D(T ), by Theorem 12 we have that λ 7→ |λ| belongs to L1(Ex,y).
Thus by the dominated convergence theorem,

⟨Ψ(gt)x− iTx, y⟩ =
∫
σ(T )

(
eitλ − 1

t
− iλ

)
dEx,y(λ) → 0

as t→ 0. In particular,
∥Ψ(gt)x− iTx∥2 → 0

as t→ 0. That is, for each x ∈ D(T ),

eitTx− x

t
→ iTx

as t → 0. In other words, iT is the infinitesimal generator of the one-
parameter group eitT .13 We remark that because T ∗ = T , the adjoint of iT is
(iT )∗ = iT ∗ = −iT ∗ = −iT = −(iT ).

12cf. Walter Rudin, Functional Analysis, second ed., p. 382, Theorem 38.
13cf. Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.
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7 Trotter product formula

We remind ourselves that for an operator T in H to be closed means that G (T )
is a closed linear subspace of H ×H.

Theorem 13. Let T be an operator in H. T is closed if and only if the linear
space D(T ) with the norm

∥x∥T = ∥x∥+ ∥Tx∥ .

is a Banach space.

The following is the Trotter product formula, which shows that if A,
B, and A + B are self-adjoint operators in a Hilbert space, then for each t,
(eitA/neitB/n)n converges strongly to eit(A+B) as n→ ∞.14

Theorem 14. Let H be a Hilbert space, not necessarily separable. If A and B
are self-adjoint operators in H such that A+B is a self-adjoint operator in H,
then for each t ∈ R and for each ψ ∈ H,

eit(A+B)ψ = lim
n→∞

(
(eitA/neitb/n)nψ

)
.

Proof. The claim is immediate for t = 0, and we prove the claim for t > 0; it
is straightforward to obtain the claim for t < 0 using the truth of the claim for
t > 0. Let D = D(A + B) = D(A) ∩ D(B). Because A + B is self-adjoint,
A + B is closed (Theorem 4), so by Theorem 13, the linear space D with the
norm ∥ϕ∥A+B = ∥ϕ∥+ ∥(A+B)ϕ∥ is a Banach space. Because D is a Banach
space, the uniform boundedness principle15 tells us that if Γ is a collection of
bounded linear maps D → H and if for each ϕ ∈ D the set {γϕ : γ ∈ Γ} is
bounded in H, then the set {∥γ∥ : γ ∈ Γ} is bounded, i.e. there is some C such
that ∥γϕ∥ ≤ C ∥ϕ∥A+B for all γ ∈ Γ and all ϕ ∈ D.

For s ∈ R, let Ss = eis(A+B), Vs = eisA, Ws = eisB , Us = VsWs, which each
belong to B(H). For n ≥ 1,

n−1∑
j=0

U j
t/n(St/n − Ut/n)S

n−j−1
t/n = Un

t/n − Sn
t/n = Un

t/n − St,

so, because a product of unitary operators is a unitary operator and a unitary
operator has operator norm 1 and also using the fact that Sn−j−1

t/n = St− j+1
n
,

14Barry Simon, Functional Integration and Quantum Physics, p. 4, Theorem 1.1; Konrad
Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, p. 122, Theorem 6.4.

15Walter Rudin, Functional Analysis, second ed., p. 45, Theorem 2.6.
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for ξ ∈ H we have

∥∥∥(St − Un
t/n)ξ

∥∥∥ =

∥∥∥∥∥∥
n−1∑
j=0

U j
t/n(St/n − Ut/n)S

n−j−1
t/n ξ

∥∥∥∥∥∥
≤

n−1∑
j=0

∥∥∥(St/n − Ut/n)S
n−j−1
t/n ξ

∥∥∥
=

n−1∑
j=0

∥∥∥(St/n − Ut/n)St− j+1
n
ξ
∥∥∥

≤
n−1∑
j=0

sup
0≤s≤t

∥∥(St/n − Ut/n)Ssξ
∥∥ .

That is,∥∥∥(St − Un
t/n)ξ

∥∥∥ ≤ n sup
0≤s≤t

∥∥(St/n − Ut/n)Ssξ
∥∥ , ξ ∈ H, n ≥ 1. (1)

Let ϕ ∈ D. On the one hand, because i(A+B) is the infinitesimal generator
of {Ss : s ∈ R}, we have

Ss − I

s
ϕ→ i(A+B)ϕ, s ↓ 0. (2)

On the other hand, for s ̸= 0 we have, because an infinitesimal generator of a
one-parameter group commutes with each element of the one-parameter group,

Vs(iBϕ) + Vs

(
Ws − I

s
− iB

)
ϕ+

Vs − I

s
ϕ =

Us − I

s
ϕ,

and as Vs converges strongly to I as s ↓ 0 and as iB is the infinitesimal generator
of the one-parameter group {Ws : s ∈ R} and iA is the infinitesimal generator
of the one-parameter group {Vs : s ∈ R},

Vs(iBϕ) + Vs

(
Ws − I

s
− iB

)
ϕ+

Vs − I

s
ϕ→ iBϕ+ iAϕ

as s ↓ 0, i.e.
Us − I

s
ϕ→ i(A+B)ϕ, s ↓ 0. (3)

Using (2) and (3), we get that for each ϕ ∈ D,

Ss − Us

s
ϕ→ 0, s ↓ 0.

Therefore, for each ϕ ∈ D, with s = t/n we have

n

t
(St/n − Ut/n)ϕ→ 0, n→ ∞,
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equivalently (t is fixed for this whole theorem),

lim
n→∞

∥∥n(St/n − Ut/n)ϕ
∥∥ = 0, ϕ ∈ D. (4)

For each n ≥ 1, define γn : D → H by γn = n(St/n − Ut/n). Each γn is a
linear map, and for ϕ ∈ D,

∥γnϕ∥ ≤ n
∥∥St/nϕ

∥∥+ n
∥∥Ut/nϕ

∥∥ ≤ n ∥ϕ∥+ n ∥ϕ∥ ≤ 2n ∥ϕ∥A+B ,

showing that each γn is a bounded linear map D → H, where D is a Banach
space with the norm ∥ϕ∥A+B = ∥ϕ∥ + ∥(A+B)ϕ∥. Moreover, (4) shows that
for each ϕ ∈ D, there is some Cϕ such that

∥γnϕ∥ ≤ Cϕ, n ≥ 1.

Then applying the uniform boundedness principle, we get that there is some
C > 0 such that for all n ≥ 1 and for all ϕ ∈ D,

∥γnϕ∥ ≤ C ∥ϕ∥A+B ,

i.e. ∥∥n(St/n − Ut/n)ϕ
∥∥ ≤ C ∥ϕ∥A+B , n ≥ 1, ϕ ∈ D. (5)

Let K be a compact subset of D, where D is a Banach space with the norm
∥ϕ∥A+B = ∥ϕ∥ + ∥(A+B)ϕ∥. Then K is totally bounded, so for any ϵ > 0,

there are ϕ1, . . . , ϕM ∈ K such that K ⊂
⋃M

m=1Bϵ/C(ϕm). By (4), for each m,
1 ≤ m ≤M , there is some nm such that when n ≥ nm,∥∥n(St/n − Ut/n)ϕm

∥∥ ≤ ϵ.

Let N = max{n1, . . . , nM}. For n ≥ N and for ϕ ∈ D, there is some m for
which ∥ϕ− ϕm∥A+B < ϵ

C , and using (5), as ϕ− ϕm ∈ D, we get∥∥n(St/n − Ut/n)ϕ
∥∥ ≤

∥∥n(St/n − Ut/n)(ϕ− ϕm)
∥∥+

∥∥n(St/n − Ut/n)ϕm
∥∥

≤ C ∥ϕ− ϕm∥A+B + ϵ

< ϵ+ ϵ.

This shows that any compact subset K of D and ϵ > 0, there is some nϵ such
that if n ≥ nϵ and ϕ ∈ K, then∥∥n(St/n − Ut/n)ϕ

∥∥ < ϵ. (6)

Let ϕ ∈ D, let s0 ∈ R, and let ϵ > 0. Because s 7→ Ss is strongly con-
tinuous R → B(H), there is some δ1 > 0 such that when |s − s0| < δ1,
∥Ssϕ− Ss0ϕ∥ < ϵ, and there is some δ2 > 0 such that when |s − s0| < δ2,
∥Ss(A+B)ϕ− Ss0(A+B)ϕ∥ < ϵ, and hence with δ = min{δ1, δ2}, when
|s− s0| < δ we have

∥Ssϕ− Ss0ϕ∥A+B = ∥Ssϕ− Ss0ϕ∥+ ∥(A+B)(Ssϕ− Ss0ϕ)∥
= ∥Ssϕ− Ss0ϕ∥+ ∥Ss(A+B)ϕ− Ss0(A+B)ϕ)∥
< ϵ+ ϵ,
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showing that s 7→ Ssϕ is continuous R → D. Therefore {Ssϕ : 0 ≤ s ≤ t} is a
compact subset of D, so applying (6) we get that for any ϵ > 0, there is some
nϵ such that if n ≥ nϵ and 0 ≤ s ≤ t, then∥∥n(St/n − Ut/n)Ssϕ

∥∥ < ϵ,

and therefore if n ≥ nϵ then

sup
0≤s≤t

∥∥n(St/n − Ut/n)Ssϕ
∥∥ ≤ ϵ. (7)

Finally, let ϵ > 0. The statement that A+B is self-adjoint in H entails the
statement that D is dense in H, so there is some ϕ ∈ D such that ∥ϕ− ψ∥ < ϵ.
For n ≥ 1,∥∥∥(St − Un

t/n)ψ
∥∥∥ ≤

∥∥∥(St − Un
t/n)(ψ − ϕ)

∥∥∥+
∥∥∥(St − Un

t/n)ϕ
∥∥∥

≤ 2 ∥ψ − ϕ∥+
∥∥∥(St − Un

t/n)ϕ
∥∥∥

< ϵ+
∥∥∥(St − Un

t/n)ϕ
∥∥∥ .

Using (1) with ξ = ϕ and then using (7), there is some nϵ such that when
n ≥ nϵ, ∥∥∥(St − Un

t/n)ϕ
∥∥∥ ≤ n sup

0≤s≤t

∥∥(St/n − Ut/n)Ssϕ
∥∥ ≤ ϵ.

Therefore for n ≥ nϵ, ∥∥∥(St − Un
t/n)ψ

∥∥∥ < 2ϵ,

proving the claim.
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