Unbounded operators in a Hilbert space and the Trotter product formula

Jordan Bell

August 25, 2015

1 Unbounded operators

Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$. We do not assume that H is separable. By an operator in H we mean a linear subspace $\mathscr{D}(T)$ of H and a linear map $T: \mathscr{D}(T) \rightarrow H$. We define

$$
\mathscr{R}(T)=\{T x: x \in \mathscr{D}(T)\} .
$$

If $\mathscr{D}(T)$ is dense in H we say that T is densely defined.
Write

$$
\mathscr{G}(T)=\{(x, y) \in H \times H: x \in \mathscr{D}(T), y=T x\}
$$

When $\mathscr{G}(T) \subset \mathscr{G}(S)$, we write

$$
T \subset S
$$

and say that S is an extension of T. If $\mathscr{G}(T)$ is a closed linear subspace of $H \times H$, we say that T is closed.

We say that an operator T in H is closable if there is a closed operator S in H such that $T \subset S$. If T is closable, one proves that there is a unique closed operator \bar{T} in H with $T \subset \bar{T}$ and such that if S is a closed operator satisfying $T \subset S$ then $\bar{T} \subset S$.

Suppose that T is a densely defined operator in H. We define $\mathscr{D}\left(T^{*}\right)$ to be the set of those $y \in H$ for which

$$
x \mapsto\langle T x, y\rangle, \quad x \in \mathscr{D}(T),
$$

is continuous. For $y \in \mathscr{D}\left(T^{*}\right)$, by the Hahn-Banach theorem there is some $\lambda_{y} \in H^{*}$ such that

$$
\lambda_{y} x=\langle T x, y\rangle, \quad x \in \mathscr{D}(T) .
$$

Next, by the Riesz representation theorem, there is a unique $x_{y} \in H$ such that

$$
\lambda_{y} x=\left\langle x, x_{y}\right\rangle, \quad x \in H,
$$

and hence

$$
\left\langle x, x_{y}\right\rangle=\langle T x, y\rangle, \quad x \in \mathscr{D}(T) .
$$

If $v \in H$ satisfies

$$
\langle x, v\rangle=\langle T x, y\rangle, \quad x \in \mathscr{D}(T),
$$

then

$$
\langle x, v\rangle=\left\langle x, x_{y}\right\rangle, \quad x \in \mathscr{D}(T),
$$

and because $\mathscr{D}(T)$ is dense in H this implies that $v=x_{y}$. We define T^{*} : $\mathscr{D}\left(T^{*}\right) \rightarrow H$ by $T^{*} y=x_{y}$, which satisfies

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \quad x \in \mathscr{D}(T) .
$$

T^{*} is called the adjoint of T. One checks that $\mathscr{D}\left(T^{*}\right)$ is a linear subspace of H and that $T^{*}: \mathscr{D}\left(T^{*}\right) \rightarrow H$ is a linear map. We say that T is self-adjoint when $T=T^{*}$.

For operators S and T in H we define

$$
\mathscr{D}(S+T)=\mathscr{D}(S) \cap \mathscr{D}(T)
$$

and

$$
\mathscr{D}(S T)=\{x \in \mathscr{D}(T): T x \in \mathscr{D}(S)\} .
$$

One checks that

$$
(R+S)+T=R+(S+T), \quad(R S) T=R(S T)
$$

and

$$
R T+S T=(R+S) T, \quad T R+T S \subset T(R+S)
$$

We now determine the adjoint of products of densely defined operators. ${ }^{1}$
Theorem 1. If S, T, and $S T$ are densely defined operators in H, then

$$
T^{*} S^{*} \subset(S T)^{*}
$$

If $S \in \mathscr{B}(H)$, then

$$
T^{*} S^{*}=(S T)^{*}
$$

Proof. Let $y \in \mathscr{D}\left(T^{*} S^{*}\right)$ and let $x \in \mathscr{D}(S T)$. Then $S^{*} y \in \mathscr{D}\left(T^{*}\right)$ and $x \in \mathscr{D}(T)$, so

$$
\left\langle T x, S^{*} y\right\rangle=\left\langle x, T^{*} S^{*} y\right\rangle
$$

On the other hand, $y \in \mathscr{D}\left(S^{*}\right)$, so

$$
\langle S T x, y\rangle=\left\langle T x, S^{*} y\right\rangle .
$$

Hence

$$
\langle S T x, y\rangle=\left\langle x, T^{*} S^{*} y\right\rangle,
$$

which implies that $(S T)^{*} y=T^{*} S^{*} y$ for each $y \in \mathscr{D}\left(T^{*} S^{*}\right)$, that is, $T^{*} S^{*} \subset$ $(S T)^{*}$.

[^0]Suppose that $S \in \mathscr{B}(H)$, hence $S^{*} \in \mathscr{B}(H)$, for which $\mathscr{D}\left(S^{*}\right)=H$. Let $y \in \mathscr{D}\left((S T)^{*}\right)$. For $x \in \mathscr{D}(S T)$,

$$
\left\langle T x, S^{*} y\right\rangle=\langle S T x, y\rangle=\left\langle x,(S T)^{*} y\right\rangle
$$

This implies that $S^{*} y \in \mathscr{D}\left(T^{*}\right)$ and hence $y \in \mathscr{D}\left(T^{*} S^{*}\right)$, showing

$$
\mathscr{D}\left((S T)^{*}\right) \subset \mathscr{D}\left(T^{*} S^{*}\right) .
$$

If T is an operator in H, we say that T is symmetric if

$$
\langle T x, y\rangle=\langle x, T y\rangle, \quad x, y \in \mathscr{D}(T) .
$$

Theorem 2. Let T be a densely defined operator in $H . T$ is symmetric if and only if $T \subset T^{*}$.

Proof. Suppose that T is symmetric and let $(y, T y) \in \mathscr{G}(T)$. For $x \in \mathscr{D}(T)$,

$$
|\langle T x, y\rangle|=|\langle x, T y\rangle| \leq\|x\|\|T y\|,
$$

hence $x \mapsto\langle T x, y\rangle$ is continuous on $\mathscr{D}(T)$, i.e. $y \in \mathscr{D}\left(T^{*}\right)$. For $x \in \mathscr{D}(T)$, on the one hand,

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle,
$$

and on the other hand,

$$
\langle T x, y\rangle=\langle x, T y\rangle
$$

Therefore $\left\langle x, T^{*} y\right\rangle=\langle x, T y\rangle$ for all $x \in \mathscr{D}(T)$, and because $\mathscr{D}(T)$ is dense in H we get that $T^{*} y=T y$, i.e. $(y, T y) \in \mathscr{G}\left(T^{*}\right)$. Therefore $\mathscr{G}(T) \subset \mathscr{G}\left(T^{*}\right)$.

Suppose that $\mathscr{G}(T) \subset \mathscr{G}\left(T^{*}\right)$. Let $x, y \in \mathscr{D}(T)$. We have $(y, T y) \in \mathscr{G}\left(T^{*}\right)$, i.e. $y \in \mathscr{D}\left(T^{*}\right)$ and $T^{*} y=T y$. Hence

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\langle x, T y\rangle,
$$

showing that T is symmetric.
One proves that if T is a symmetric operator in H then T is closable and \bar{T} is symmetric. An operator T in H is said to be essentially self-adjoint when T is densely defined, symmetric, and \bar{T} (which is densely defined) is self-adjoint.

2 Graphs

For $(a, b),(c, d) \in H \times H$, we define

$$
\langle(a, b),(c, d)\rangle=\langle a, c\rangle+\langle b, d\rangle .
$$

This is an inner product on $H \times H$ with which $H \times H$ is a Hilbert space. We define $V: H \times H \rightarrow H \times H$ by

$$
V(a, b)=(-b, a), \quad(a, b) \in H \times H,
$$

which belongs to $\mathscr{B}(H \times H)$. It is immediate that $V V^{*}=I$ and $V^{*} V=I$, namely, V is unitary. As well, $V^{2}=-I$, whence if M is a linear subspace of $H \times H$ then $V^{2} M=M$. The following theorem relates the graphs of a densely defined operator and its adjoint. ${ }^{2}$

Theorem 3. Suppose that T is a densely defined operator in H. It holds that

$$
\mathscr{G}\left(T^{*}\right)=(V \mathscr{G}(T))^{\perp}
$$

Theorem 4. If T is a densely defined operator in H, then T^{*} is a closed operator.
Proof. $V \mathscr{G}(T)$ is a linear subspace of $H \times H$. The orthogonal complement of a linear subspace of a Hilbert space is a closed linear subspace of the Hilbert space, and thus Theorem 3 tells us that $\mathscr{G}\left(T^{*}\right)$ is a closed linear subspace of $H \times H$, namely, T^{*} is a closed operator.

Let T be a densely defined operator in H. If T is self-adjoint, then the above theorem tells us that T is itself a closed operator.

Theorem 5. Suppose that T is a closed densely defined operator in H. Then

$$
H \times H=V \mathscr{G}(T) \oplus \mathscr{G}\left(T^{*}\right)
$$

is an orthogonal direct sum.
Proof. Generally, if M is a linear subspace of $H \times H$,

$$
H \times H=\bar{M} \oplus M^{\perp}=\bar{M} \oplus(\bar{M})^{\perp}
$$

is an orthogonal direct sum. For $M=V \mathscr{G}(T)$, because $\mathscr{G}(T)$ is a closed linear subspace of $H \times H$, so is M. Thus

$$
H \times H=V \mathscr{G}(T) \oplus(V \mathscr{G}(T))^{\perp}
$$

By Theorem 3, this is

$$
H \times H=V \mathscr{G}(T) \oplus \mathscr{G}\left(T^{*}\right)
$$

proving the claim.
If T is an operator in H that is one-to-one, we define $\mathscr{D}\left(T^{-1}\right)=\mathscr{R}(T)$, and T^{-1} is a densely defined operator with domain $\mathscr{D}\left(T^{-1}\right)$.

The following theorem establishes several properties of symmetric densely defined operators. ${ }^{3}$ We remind ourselves that if T is an operator in H, the statement $\mathscr{D}(T)=H$ means that T is a linear map $H \rightarrow H$, from which it does not follow that T is continuous.

[^1]Theorem 6. Suppose that T is a densely defined symmetric operator in H. Then the following statements are true:

1. If $\mathscr{D}(T)=H$ then T is self-adjoint and $T \in \mathscr{B}(H)$.
2. If T is self-adjoint and one-to-one, then $\mathscr{R}(T)$ is dense in H and T^{-1} is densely defined and self-adjoint.
3. If $\mathscr{R}(T)$ is dense in H, then T is one-to-one.
4. If $\mathscr{R}(T)=H$, then T is self-adjoint and $T^{-1} \in \mathscr{B}(H)$.

If $T \in \mathscr{B}(H)$ then $T^{* *}=T$. The following theorem says that this is true for closed densely defined operators. ${ }^{4}$
Theorem 7. If T is a closed densely defined operator in H, then $\mathscr{D}\left(T^{*}\right)$ is dense in H and $T^{* *}=T$.

The following theorem gives statements about $I+T^{*} T$ when T is a closed densely defined operator. ${ }^{5}$
Theorem 8. Suppose that T is a closed densely defined operator in H and let $Q=I+T^{*} T$, with

$$
\mathscr{D}(Q)=\mathscr{D}\left(T^{*} T\right)=\left\{x \in \mathscr{D}(T): T x \in \mathscr{D}\left(T^{*}\right)\right\} .
$$

The following statements are true:

1. $Q: \mathscr{D}(Q) \rightarrow H$ is a bijection, and there are $B, C \in \mathscr{B}(H)$ with $\|B\| \leq 1$, $B \geq 0,\|C\| \leq 1, C=T B$, and

$$
B\left(I+T^{*} T\right) \subset\left(I+T^{*} T\right) B=I
$$

$T^{*} T$ is self-adjoint.
2. Let T_{0} be the restriction of T to $\mathscr{D}\left(T^{*} T\right)$. Then $\mathscr{G}\left(T_{0}\right)$ is dense in $\mathscr{G}(T)$.

Let T be a symmetric operator in H. We say that T is maximally symmetric if $T \subset S$ and S being symmetric imply that $S=T$. One proves that a self-adjoint operator is maximally symmetric. ${ }^{6}$

The following theorem is about $T+i I$ when T is a symmetric operator in H. ${ }^{7}$

Theorem 9. Suppose that T is a symmetric operator in H and let j be i or $-i$. Then:

1. $\|T x+j x\|^{2}=\|x\|^{2}+\|T x\|^{2}$ for $x \in \mathscr{D}(T)$.
2. T is closed if and only if $\mathscr{R}(T+j I)$ is a closed subset of H.
3. $T+j I$ is one-to-one.
4. If $\mathscr{R}(T+j I)=H$ then T is maximally symmetric.
[^2]
3 The Cayley transform

Let T be a symmetric operator in H and define

$$
\mathscr{D}(U)=\mathscr{R}(T+i I) .
$$

Theorem 9 tells us that $T+i I$ is one-to-one. Because

$$
\mathscr{D}(T-i I)=\mathscr{D}(T)=\mathscr{D}(T-i I)
$$

and $\mathscr{D}\left((T+i I)^{-1}\right)=\mathscr{R}(T+i I)$,

$$
\begin{aligned}
\mathscr{D}\left((T-i I)(T+i I)^{-1}\right) & =\left\{x \in \mathscr{R}(T+i I):(T+i I)^{-1} x \in \mathscr{D}(T)\right\} \\
& =\left\{x \in \mathscr{R}(T+i I):(T+i I)^{-1} x \in \mathscr{D}(T+i I)\right\} \\
& =\mathscr{R}(T+i I) \\
& =\mathscr{D}(U) .
\end{aligned}
$$

We define

$$
U=(T-i I)(T+i I)^{-1}
$$

U is called the Cayley transform of T.
We have

$$
\mathscr{R}(U)=U \mathscr{D}(U)=U \mathscr{R}(T+i I)=(T-i I)(T+i I)^{-1} \mathscr{R}(T+i I)=(T-i I) \mathscr{D}(T+i I),
$$

and $\mathscr{D}(T+i I)=\mathscr{D}(T)=\mathscr{D}(T-i I)$ so

$$
\mathscr{R}(U)=(T-i I) \mathscr{D}(T-i I)=\mathscr{R}(T-i I) .
$$

Also, for $x \in \mathscr{D}(T)$, Theorem 9 tells us

$$
\|(T+i I) x\|^{2}=\|T x+i x\|^{2}=\|x\|^{2}+\|T x\|^{2}=\|T x-i x\|^{2}=\|(T-i I) x\|^{2}
$$

hence for $x \in \mathscr{D}(U)$, for which $(T+i I)^{-1} x \in \mathscr{D}(T+i I)=\mathscr{D}(T)$,

$$
\|U x\|=\left\|(T-i I)(T+i I)^{-1} x\right\|=\left\|(T+i I)(T+i I)^{-1} x\right\|=\|x\|,
$$

showing that U is an isometry in H.
The Cayley transform of a symmetric operator in H (which we do not presume to be densely defined) has the following properties. ${ }^{8}$
Theorem 10. Suppose that T is a symmetric operator in H. Then:

1. U is closed if and only if T is closed.
2. $\mathscr{R}(I-U)=\mathscr{D}(T), I-U$ is one-to-one, and

$$
T=i(I+U)(I-U)^{-1}
$$

3. U is unitary if and only if T is self-adjoint.

If V is an operator in H that is an isometry and $I-V$ is one-to-one, then there is a symmetric operator S in H such that V is the Cayley transform of S.

[^3]
4 Resolvents

Let T be an operator in H. The resolvent set of T, denoted $\rho(T)$, is the set of those $\lambda \in \mathbb{C}$ such that $T-\lambda I: \mathscr{D}(T) \rightarrow H$ is a bijection and $(T-\lambda I)^{-1} \in \mathscr{B}(H)$. That is, $\lambda \in \rho(T)$ if and only if there is some $S \in \mathscr{B}(H)$ such that

$$
S(T-\lambda I) \subset(T-\lambda I) S=I .
$$

We call $R: \rho(T) \rightarrow \mathscr{B}(H)$ defined by

$$
R(\lambda)=(T-\lambda I)^{-1}
$$

the resolvent of T. The spectrum of T is $\sigma(T)=\mathbb{C} \backslash \rho(T)$. It is a fact that $\rho(T)$ is open, that $\sigma(T)$ is closed, and that if $\sigma(T) \neq \mathbb{C}$ then T is a closed operator, that

$$
R(z)-R(w)=(z-w) R(z) R(w), \quad z, w \in \rho(T)
$$

and

$$
\frac{d^{n} R}{d z^{n}}(z)=n!R^{n+1}(z), \quad z \in \rho(T)
$$

If T is a self-adjoint operator in H, one proves that $\sigma(T) \subset \mathbb{R}$.

5 Resolutions of the identity

Let (Ω, \mathscr{S}) be a measurable space. A resolution of the identity is a function

$$
E: \mathscr{S} \rightarrow \mathscr{B}(H)
$$

satisfying:

1. $E(\emptyset)=0, E(\Omega)=I$.
2. For each $a \in \mathscr{S}, E(a)$ is a self-adjoint projection.
3. $E(a \cap b)=E(a) E(b)$.
4. If $a \cap b=\emptyset$, then $E(a \cup b)=E(a)+E(b)$.
5. For each $x, y \in H$, the function $E_{x, y}: \mathscr{S} \rightarrow \mathbb{C}$ defined by

$$
E_{x, y}(a)=\langle E(a) x, y\rangle, \quad a \in \mathscr{S},
$$

is a complex measure on \mathscr{S}.
We check that if $a_{n} \in \mathscr{S}$ and $E\left(a_{n}\right)=0$ for each $n=1,2, \ldots$, then for $a=\bigcup_{n=1}^{\infty} a_{n}, E(a)=0$.

Let $\left\{D_{i}\right\}$ be a countable collection of open discs that is a base for the topology of \mathbb{C}, i.e., $\bigcup D_{i}=\mathbb{C}$ and for each i, j and for $z \in D_{i} \cap D_{j}$, there is some k such that $x \in D_{k} \subset D_{i} \cap D_{j}$. Let $f:(\Omega, \mathscr{S}) \rightarrow\left(\mathbb{C}, \mathscr{B}_{\mathbb{C}}\right)$ be a measurable
function and let V be the union of those D_{i} for which $E\left(f^{-1}\left(D_{i}\right)\right)=0$. Then $E\left(f^{-1}(V)\right)=0$. The essential range of f is $\mathbb{C} \backslash V$, and we say that f is essentially bounded if the essential range of f is a bounded subset of \mathbb{C}. We define the essential supremum of f to be

$$
\|f\|_{\infty}=\sup \{|\lambda|: \lambda \in \mathbb{C} \backslash V\} .
$$

Now define B to be the collection of bounded measurable functions $(\Omega, \mathscr{S}) \rightarrow$ $\left(\mathbb{C}, \mathscr{B}_{\mathbb{C}}\right)$, which is a Banach algebra with the norm

$$
\sup \{\mid f(\omega): \omega \in \Omega\}
$$

for which

$$
N=\left\{f \in B:\|f\|_{\infty}=0\right\}
$$

is a closed ideal. Then B / N is a Banach algebra, denoted $L^{\infty}(E)$, with the norm

$$
\|f+N\|_{\infty}=\|f\|_{\infty}
$$

The unity of $L^{\infty}(E)$ is $1+N$. Because $L^{\infty}(E)$ is a Banach algebra, it makes sense to speak about the spectrum of an element of $L^{\infty}(E)$. For $f+N \in L^{\infty}(E)$, the spectrum of $f+N$ is the set of those $\lambda \in \mathbb{C}$ for which there is no $g+N \in L^{\infty}(E)$ satisfying $(g+N)(f+N-\lambda(1+N))=1+N$. Check that the spectrum of $f+N$ is equal to the essential range of g, for any $g \in f+N$.

A subset A of $\mathscr{B}(H)$ is said to be normal when $S T=T S$ for all $S, T \in A$ and $T \in A$ implies that $T^{*} \in A .{ }^{9}$ (To say that $T \in \mathscr{B}(H)$ is normal means that $T T^{*}=T^{*} T$, and this is equivalent to the statement that the set $\left\{T, T^{*}\right\}$ is normal.)
Theorem 11. If (Ω, \mathscr{S}) is a measurable space and $E: \mathscr{S} \rightarrow H$ is a resolution of the identity, then there is a closed normal subalgebra A of $\mathscr{B}(H)$ and a unique isometric ${ }^{*}$-isomorphism $\Psi: L^{\infty}(E) \rightarrow A$ such that

$$
\langle\Psi(f) x, y\rangle=\int_{\Omega} f d E_{x, y}, \quad f \in L^{\infty}(E), \quad x, y \in H
$$

Furthermore,

$$
\|\Psi(f) x\|^{2}=\int_{\Omega}|f|^{2} d E_{x, x}, \quad f \in L^{\infty}(E), \quad x \in H
$$

For $f \in L^{\infty}(E)$, we define

$$
\int_{\Omega} f d E=\Psi(f)
$$

For $L^{\infty}(E), \sigma(\Psi(f))$ is equal to the essential range of $f .{ }^{10}$

[^4]
6 The spectral theorem

The following is the spectral theorem for self-adjoint operators. ${ }^{11}$
Theorem 12. If T is a self-adjoint operator in H, then there is a unique resolution of the identity

$$
E: \mathscr{B}_{\mathbb{R}} \rightarrow \mathscr{B}(H)
$$

such that

$$
\langle T x, y\rangle=\int_{\mathbb{R}} \lambda d E_{x, y}(\lambda), \quad x \in \mathscr{D}(T), \quad y \in H
$$

This resolution of the identity satisfies $E(\sigma(T))=I$.
If T is a self-adjoint operator in H applying the spectral theorem and then Theorem 11, we get that there is a closed normal subalgebra A of $\mathscr{B}(H)$ and a unique isometric ${ }^{*}$-isomorphism $\Psi: L^{\infty}(E) \rightarrow A$ such that

$$
\langle\Psi(f) x, y\rangle=\int_{\sigma(T)} f(\lambda) d E_{x, y}(\lambda), \quad f \in L^{\infty}(E), \quad x, y \in H
$$

For $t \in \mathbb{R}$ and $f_{t}: \sigma(T) \rightarrow \mathbb{C}$ defined by $f_{t}(\lambda)=e^{i t \lambda}$, this defines

$$
e^{i t T}=\Psi\left(f_{t}\right)=\int_{\sigma(T)} e^{i t \lambda} d E(\lambda)
$$

Because Ψ is a ${ }^{*}$-homomorphism, for $t \in \mathbb{R}$ we have

$$
\Psi\left(f_{t}\right)^{*} \Psi\left(f_{t}\right)=\Psi\left(\overline{f_{t}}\right) \Psi\left(f_{t}\right)=\Psi\left(f_{-t}\right) \Psi\left(f_{t}\right)=\Psi\left(f_{-t} f_{t}\right)=\Psi\left(f_{0}\right)=I
$$

and likewise $\Psi\left(f_{t}\right) \Psi\left(f_{t}\right)^{*}=I$, showing that $e^{i t T}=\Psi\left(f_{t}\right)$ is unitary. We denote by $\mathscr{U}(H)$ the collection of unitary elements of $\mathscr{B}(H) . \mathscr{U}(H)$ is a subgroup of the group of invertible elements of $\mathscr{B}(H)$.

Furthermore, because Ψ is a ${ }^{*}$-homomorphism, for $t \in \mathbb{R}$ we have

$$
I=\Psi\left(f_{0}\right)=\Psi\left(f_{t} f_{-t}\right)=\Psi\left(f_{t}\right) \Psi\left(f_{-t}\right)=e^{i t T} e^{i(-t) T}
$$

and for $s, t \in \mathbb{R}$ we have

$$
e^{i s T} e^{i t T}=\Psi\left(f_{s}\right) \Psi\left(f_{t}\right)=\Psi\left(f_{s} f_{t}\right)=\Psi\left(f_{s+t}\right)=e^{i(s+t) T}
$$

showing that $t \mapsto e^{i t T}$ is a one-parameter group $\mathbb{R} \rightarrow \mathscr{B}(H)$.
For $t \in \mathbb{R}$ and $x \in H$, by Theorem 11 we have
$\left\|\Psi_{t} x-x\right\|^{2}=\left\|\Psi\left(f_{t}-1\right) x\right\|^{2}=\int_{\sigma(T)}\left|f_{t}-1\right|^{2} d E_{x, x}=\int_{\sigma(T)}\left|e^{i t \lambda}-1\right|^{2} d E_{x, x}(\lambda)$.
For each $\lambda \in \sigma(T),\left|e^{i t \lambda}-1\right|^{2} \rightarrow 0$ as $t \rightarrow 0$, and thus we get by the dominated convergence theorem

$$
\int_{\sigma(T)}\left|e^{i t \lambda}-1\right|^{2} d E_{x, x}(\lambda) \rightarrow 0, \quad t \rightarrow 0 .
$$

[^5]That is, for each $x \in H$,

$$
\left\|e^{i t T} x-x\right\| \rightarrow 0
$$

as $t \rightarrow 0$, showing that $t \mapsto e^{i t T}$ is strongly continuous, i.e. $t \mapsto e^{i t T}$ is continuous $\mathbb{R} \rightarrow \mathscr{B}(H)$ where $\mathscr{B}(H)$ has the strong operator topology.

Conversely, Stone's theorem on one-parameter unitary groups ${ }^{12}$ states that if $\left\{U_{t}: t \in \mathbb{R}\right\}$ is a strongly continuous one-parameter group of bounded unitary operators on H, then there is a unique self-adjoint operator A in H such that $U_{t}=e^{i t A}$ for each $t \in \mathbb{R}$.

For $t \neq 0$, define $g_{t}: \sigma(T) \rightarrow \mathbb{C}$ by $g_{t}(\lambda)=\frac{e^{i t \lambda}-1}{t}$. By Theorem 12, for $x \in \mathscr{D}(T)$ and $y \in H$,

$$
\langle i T x, y\rangle=i\langle T x, y\rangle=i \int_{\mathbb{R}} \lambda d E_{x, y}(\lambda)
$$

and by Theorem 11,

$$
\left\langle\Psi\left(g_{t}\right) x, y\right\rangle=\int_{\sigma(T)} g_{t} d E_{x, y}=\int_{\sigma(T)} \frac{e^{i t \lambda}-1}{t} d E_{x, y}(\lambda)
$$

so

$$
\left\langle\Psi\left(g_{t}\right) x-i T x, y\right\rangle=\int_{\sigma(T)}\left(\frac{e^{i t \lambda}-1}{t}-i \lambda\right) d E_{x, y}(\lambda)
$$

For each $\lambda \in \sigma(T), \frac{e^{i t \lambda}-1}{t}-i \lambda \rightarrow 0$ as $t \rightarrow 0$, and for each t,

$$
\left|\frac{e^{i t \lambda}-1}{t}-i \lambda\right| \leq\left|\frac{e^{i t \lambda}-1}{t}\right|+|\lambda| \leq 2|\lambda|
$$

and as $x \in \mathscr{D}(T)$, by Theorem 12 we have that $\lambda \mapsto|\lambda|$ belongs to $L^{1}\left(E_{x, y}\right)$. Thus by the dominated convergence theorem,

$$
\left\langle\Psi\left(g_{t}\right) x-i T x, y\right\rangle=\int_{\sigma(T)}\left(\frac{e^{i t \lambda}-1}{t}-i \lambda\right) d E_{x, y}(\lambda) \rightarrow 0
$$

as $t \rightarrow 0$. In particular,

$$
\left\|\Psi\left(g_{t}\right) x-i T x\right\|^{2} \rightarrow 0
$$

as $t \rightarrow 0$. That is, for each $x \in \mathscr{D}(T)$,

$$
\frac{e^{i t T} x-x}{t} \rightarrow i T x
$$

as $t \rightarrow 0$. In other words, $i T$ is the infinitesimal generator of the oneparameter group $e^{i t T} .{ }^{13}$ We remark that because $T^{*}=T$, the adjoint of $i T$ is $(i T)^{*}=\bar{i} T^{*}=-i T^{*}=-i T=-(i T)$.

[^6]
7 Trotter product formula

We remind ourselves that for an operator T in H to be closed means that $\mathscr{G}(T)$ is a closed linear subspace of $H \times H$.

Theorem 13. Let T be an operator in $H . T$ is closed if and only if the linear space $\mathscr{D}(T)$ with the norm

$$
\|x\|_{T}=\|x\|+\|T x\| .
$$

is a Banach space.
The following is the Trotter product formula, which shows that if A, B, and $A+B$ are self-adjoint operators in a Hilbert space, then for each t, $\left(e^{i t A / n} e^{i t B / n}\right)^{n}$ converges strongly to $e^{i t(A+B)}$ as $n \rightarrow \infty .{ }^{14}$

Theorem 14. Let H be a Hilbert space, not necessarily separable. If A and B are self-adjoint operators in H such that $A+B$ is a self-adjoint operator in H, then for each $t \in \mathbb{R}$ and for each $\psi \in H$,

$$
e^{i t(A+B)} \psi=\lim _{n \rightarrow \infty}\left(\left(e^{i t A / n} e^{i t b / n}\right)^{n} \psi\right) .
$$

Proof. The claim is immediate for $t=0$, and we prove the claim for $t>0$; it is straightforward to obtain the claim for $t<0$ using the truth of the claim for $t>0$. Let $D=\mathscr{D}(A+B)=\mathscr{D}(A) \cap \mathscr{D}(B)$. Because $A+B$ is self-adjoint, $A+B$ is closed (Theorem 4), so by Theorem 13, the linear space D with the norm $\|\phi\|_{A+B}=\|\phi\|+\|(A+B) \phi\|$ is a Banach space. Because D is a Banach space, the uniform boundedness principle ${ }^{15}$ tells us that if Γ is a collection of bounded linear maps $D \rightarrow H$ and if for each $\phi \in D$ the set $\{\gamma \phi: \gamma \in \Gamma\}$ is bounded in H, then the set $\{\|\gamma\|: \gamma \in \Gamma\}$ is bounded, i.e. there is some C such that $\|\gamma \phi\| \leq C\|\phi\|_{A+B}$ for all $\gamma \in \Gamma$ and all $\phi \in D$.

For $s \in \mathbb{R}$, let $S_{s}=e^{i s(A+B)}, V_{s}=e^{i s A}, W_{s}=e^{i s B}, U_{s}=V_{s} W_{s}$, which each belong to $\mathscr{B}(H)$. For $n \geq 1$,

$$
\sum_{j=0}^{n-1} U_{t / n}^{j}\left(S_{t / n}-U_{t / n}\right) S_{t / n}^{n-j-1}=U_{t / n}^{n}-S_{t / n}^{n}=U_{t / n}^{n}-S_{t}
$$

so, because a product of unitary operators is a unitary operator and a unitary operator has operator norm 1 and also using the fact that $S_{t / n}^{n-j-1}=S_{t-\frac{j+1}{n}}$,

[^7]for $\xi \in H$ we have
\[

$$
\begin{aligned}
\left\|\left(S_{t}-U_{t / n}^{n}\right) \xi\right\| & =\left\|\sum_{j=0}^{n-1} U_{t / n}^{j}\left(S_{t / n}-U_{t / n}\right) S_{t / n}^{n-j-1} \xi\right\| \\
& \leq \sum_{j=0}^{n-1}\left\|\left(S_{t / n}-U_{t / n}\right) S_{t / n}^{n-j-1} \xi\right\| \\
& =\sum_{j=0}^{n-1}\left\|\left(S_{t / n}-U_{t / n}\right) S_{t-\frac{j+1}{n}} \xi\right\| \\
& \leq \sum_{j=0}^{n-1} \sup _{0 \leq s \leq t}\left\|\left(S_{t / n}-U_{t / n}\right) S_{s} \xi\right\|
\end{aligned}
$$
\]

That is,

$$
\begin{equation*}
\left\|\left(S_{t}-U_{t / n}^{n}\right) \xi\right\| \leq n \sup _{0 \leq s \leq t}\left\|\left(S_{t / n}-U_{t / n}\right) S_{s} \xi\right\|, \quad \xi \in H, \quad n \geq 1 \tag{1}
\end{equation*}
$$

Let $\phi \in D$. On the one hand, because $i(A+B)$ is the infinitesimal generator of $\left\{S_{s}: s \in \mathbb{R}\right\}$, we have

$$
\begin{equation*}
\frac{S_{s}-I}{s} \phi \rightarrow i(A+B) \phi, \quad s \downarrow 0 \tag{2}
\end{equation*}
$$

On the other hand, for $s \neq 0$ we have, because an infinitesimal generator of a one-parameter group commutes with each element of the one-parameter group,

$$
V_{s}(i B \phi)+V_{s}\left(\frac{W_{s}-I}{s}-i B\right) \phi+\frac{V_{s}-I}{s} \phi=\frac{U_{s}-I}{s} \phi
$$

and as V_{s} converges strongly to I as $s \downarrow 0$ and as $i B$ is the infinitesimal generator of the one-parameter group $\left\{W_{s}: s \in \mathbb{R}\right\}$ and $i A$ is the infinitesimal generator of the one-parameter group $\left\{V_{s}: s \in \mathbb{R}\right\}$,

$$
V_{s}(i B \phi)+V_{s}\left(\frac{W_{s}-I}{s}-i B\right) \phi+\frac{V_{s}-I}{s} \phi \rightarrow i B \phi+i A \phi
$$

as $s \downarrow 0$, i.e.

$$
\begin{equation*}
\frac{U_{s}-I}{s} \phi \rightarrow i(A+B) \phi, \quad s \downarrow 0 \tag{3}
\end{equation*}
$$

Using (2) and (3), we get that for each $\phi \in D$,

$$
\frac{S_{s}-U_{s}}{s} \phi \rightarrow 0, \quad s \downarrow 0
$$

Therefore, for each $\phi \in D$, with $s=t / n$ we have

$$
\frac{n}{t}\left(S_{t / n}-U_{t / n}\right) \phi \rightarrow 0, \quad n \rightarrow \infty
$$

equivalently (t is fixed for this whole theorem),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|n\left(S_{t / n}-U_{t / n}\right) \phi\right\|=0, \quad \phi \in D \tag{4}
\end{equation*}
$$

For each $n \geq 1$, define $\gamma_{n}: D \rightarrow H$ by $\gamma_{n}=n\left(S_{t / n}-U_{t / n}\right)$. Each γ_{n} is a linear map, and for $\phi \in D$,

$$
\left\|\gamma_{n} \phi\right\| \leq n\left\|S_{t / n} \phi\right\|+n\left\|U_{t / n} \phi\right\| \leq n\|\phi\|+n\|\phi\| \leq 2 n\|\phi\|_{A+B}
$$

showing that each γ_{n} is a bounded linear map $D \rightarrow H$, where D is a Banach space with the norm $\|\phi\|_{A+B}=\|\phi\|+\|(A+B) \phi\|$. Moreover, (4) shows that for each $\phi \in D$, there is some C_{ϕ} such that

$$
\left\|\gamma_{n} \phi\right\| \leq C_{\phi}, \quad n \geq 1
$$

Then applying the uniform boundedness principle, we get that there is some $C>0$ such that for all $n \geq 1$ and for all $\phi \in D$,

$$
\left\|\gamma_{n} \phi\right\| \leq C\|\phi\|_{A+B},
$$

i.e.

$$
\begin{equation*}
\left\|n\left(S_{t / n}-U_{t / n}\right) \phi\right\| \leq C\|\phi\|_{A+B}, \quad n \geq 1, \quad \phi \in D \tag{5}
\end{equation*}
$$

Let K be a compact subset of D, where D is a Banach space with the norm $\|\phi\|_{A+B}=\|\phi\|+\|(A+B) \phi\|$. Then K is totally bounded, so for any $\epsilon>0$, there are $\phi_{1}, \ldots, \phi_{M} \in K$ such that $K \subset \bigcup_{m=1}^{M} B_{\epsilon / C}\left(\phi_{m}\right)$. By (4), for each m, $1 \leq m \leq M$, there is some n_{m} such that when $n \geq n_{m}$,

$$
\left\|n\left(S_{t / n}-U_{t / n}\right) \phi_{m}\right\| \leq \epsilon
$$

Let $N=\max \left\{n_{1}, \ldots, n_{M}\right\}$. For $n \geq N$ and for $\phi \in D$, there is some m for which $\left\|\phi-\phi_{m}\right\|_{A+B}<\frac{\epsilon}{C}$, and using (5), as $\phi-\phi_{m} \in D$, we get

$$
\begin{aligned}
\left\|n\left(S_{t / n}-U_{t / n}\right) \phi\right\| & \leq\left\|n\left(S_{t / n}-U_{t / n}\right)\left(\phi-\phi_{m}\right)\right\|+\left\|n\left(S_{t / n}-U_{t / n}\right) \phi_{m}\right\| \\
& \leq C\left\|\phi-\phi_{m}\right\|_{A+B}+\epsilon \\
& <\epsilon+\epsilon .
\end{aligned}
$$

This shows that any compact subset K of D and $\epsilon>0$, there is some n_{ϵ} such that if $n \geq n_{\epsilon}$ and $\phi \in K$, then

$$
\begin{equation*}
\left\|n\left(S_{t / n}-U_{t / n}\right) \phi\right\|<\epsilon \tag{6}
\end{equation*}
$$

Let $\phi \in D$, let $s_{0} \in \mathbb{R}$, and let $\epsilon>0$. Because $s \mapsto S_{s}$ is strongly continuous $\mathbb{R} \rightarrow \mathscr{B}(H)$, there is some $\delta_{1}>0$ such that when $\left|s-s_{0}\right|<\delta_{1}$, $\left\|S_{s} \phi-S_{s_{0}} \phi\right\|<\epsilon$, and there is some $\delta_{2}>0$ such that when $\left|s-s_{0}\right|<\delta_{2}$, $\left\|S_{s}(A+B) \phi-S_{s_{0}}(A+B) \phi\right\|<\epsilon$, and hence with $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, when $\left|s-s_{0}\right|<\delta$ we have

$$
\begin{aligned}
\left\|S_{s} \phi-S_{s_{0}} \phi\right\|_{A+B} & =\left\|S_{s} \phi-S_{s_{0}} \phi\right\|+\left\|(A+B)\left(S_{s} \phi-S_{s_{0}} \phi\right)\right\| \\
& \left.=\left\|S_{s} \phi-S_{s_{0}} \phi\right\|+\| S_{s}(A+B) \phi-S_{s_{0}}(A+B) \phi\right) \| \\
& <\epsilon+\epsilon,
\end{aligned}
$$

showing that $s \mapsto S_{s} \phi$ is continuous $\mathbb{R} \rightarrow D$. Therefore $\left\{S_{s} \phi: 0 \leq s \leq t\right\}$ is a compact subset of D, so applying (6) we get that for any $\epsilon>0$, there is some n_{ϵ} such that if $n \geq n_{\epsilon}$ and $0 \leq s \leq t$, then

$$
\left\|n\left(S_{t / n}-U_{t / n}\right) S_{s} \phi\right\|<\epsilon,
$$

and therefore if $n \geq n_{\epsilon}$ then

$$
\begin{equation*}
\sup _{0 \leq s \leq t}\left\|n\left(S_{t / n}-U_{t / n}\right) S_{s} \phi\right\| \leq \epsilon . \tag{7}
\end{equation*}
$$

Finally, let $\epsilon>0$. The statement that $A+B$ is self-adjoint in H entails the statement that D is dense in H, so there is some $\phi \in D$ such that $\|\phi-\psi\|<\epsilon$. For $n \geq 1$,

$$
\begin{aligned}
\left\|\left(S_{t}-U_{t / n}^{n}\right) \psi\right\| & \leq\left\|\left(S_{t}-U_{t / n}^{n}\right)(\psi-\phi)\right\|+\left\|\left(S_{t}-U_{t / n}^{n}\right) \phi\right\| \\
& \leq 2\|\psi-\phi\|+\left\|\left(S_{t}-U_{t / n}^{n}\right) \phi\right\| \\
& <\epsilon+\left\|\left(S_{t}-U_{t / n}^{n}\right) \phi\right\| .
\end{aligned}
$$

Using (1) with $\xi=\phi$ and then using (7), there is some n_{ϵ} such that when $n \geq n_{\epsilon}$,

$$
\left\|\left(S_{t}-U_{t / n}^{n}\right) \phi\right\| \leq n \sup _{0 \leq s \leq t}\left\|\left(S_{t / n}-U_{t / n}\right) S_{s} \phi\right\| \leq \epsilon
$$

Therefore for $n \geq n_{\epsilon}$,

$$
\left\|\left(S_{t}-U_{t / n}^{n}\right) \psi\right\|<2 \epsilon
$$

proving the claim.

[^0]: ${ }^{1}$ Walter Rudin, Functional Analysis, second ed., p. 348, Theorem 13.2.

[^1]: ${ }^{2}$ Walter Rudin, Functional Analysis, second ed., p. 352, Theorem 13.8.
 ${ }^{3}$ Walter Rudin, Functional Analysis, second ed., p. 353, Theorem 13.11.

[^2]: ${ }^{4}$ Walter Rudin, Functional Analysis, second ed., p. 354, Theorem 13.12.
 ${ }^{5}$ Walter Rudin, Functional Analysis, second ed., p. 354, Theorem 13.13.
 ${ }^{6}$ Walter Rudin, Functional Analysis, second ed., p. 356, Theorem 13.15.
 ${ }^{7}$ Walter Rudin, Functional Analysis, second ed., p. 356, Theorem 13.16.

[^3]: ${ }^{8}$ Walter Rudin, Functional Analysis, second ed., p. 385, Theorem 13.19.

[^4]: ${ }^{9}$ Walter Rudin, Functional Analysis, second ed., p. 319, Theorem 12.21.
 ${ }^{10}$ Walter Rudin, Functional Analysis, second ed., p. 366, Theorem 13.27.

[^5]: ${ }^{11}$ Walter Rudin, Functional Analysis, second ed., p. 368, Theorem 13.30.

[^6]: ${ }^{12}$ cf. Walter Rudin, Functional Analysis, second ed., p. 382, Theorem 38.
 ${ }^{13}$ cf. Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.

[^7]: ${ }^{14}$ Barry Simon, Functional Integration and Quantum Physics, p. 4, Theorem 1.1; Konrad Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, p. 122, Theorem 6.4.
 ${ }^{15}$ Walter Rudin, Functional Analysis, second ed., p. 45, Theorem 2.6.

