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1 Introduction

If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps
X → Y . If T : X → Y is a linear map, I take it as known that T is bounded
if and only if it is continuous if and only if E ⊆ X being bounded implies that
T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space
with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach
space, that if X is a Banach space then B(X) = B(X,X) is a Banach algebra,
and that if H is a Hilbert space then B(H) is a C∗-algebra. An ideal I of a
Banach algebra is an ideal of the algebra: to say that I is an ideal does not
demand that I is a Banach subalgebra, i.e. does not demand that I is a closed
subset of the Banach algebra. I is a ∗-ideal of a C∗-algebra if I is an ideal of
the algebra and if A ∈ I implies that A∗ ∈ I.

If X and Y are normed spaces, we take as known that the strong operator
topology on B(X,Y ) is coarser than the norm topology on B(X,Y ), and thus
if Tn → T in the operator norm, then Tn → T in the strong operator topology.

If X is a normed space, M is a dense subspace of X, Y is a Banach space
and T : M → Y is a bounded linear operator, then there is a unique element of
B(X,Y ) whose restriction to M is equal to T , and we also denote this by T .1

If X is a normed space, define ⟨·, ·⟩ : X ×X∗ → C by

⟨x, λ⟩ = λ(x), x ∈ X,λ ∈ X∗.

This is called the dual pairing. If X and Y are normed spaces and T ∈ B(X,Y ),
it can be proved that there is a unique T ∗ ∈ B(Y ∗, X∗) such that

⟨Tx, λ⟩ = ⟨x, T ∗λ⟩, x ∈ X,λ ∈ Y ∗,

called the adjoint of T , and that the adjoint satisfies ∥T∥ = ∥T ∗∥.2
I give precise statements of any statement that I want to use without proof.

If a fact is not straightforward to prove and is not easy to look up (perhaps

1This is an instance of a result about topological vector spaces and Fréchet spaces. See
Walter Rudin, Functional Analysis, second ed., p. 40, chapter 1, ex. 19.

2Walter Rudin, Functional Analysis, second ed., p. 98, Theorem 4.10.
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because it does not have a standardized name), I give a citation to a statement
that is the precise version I use. I am making a point to write out full proofs
of some tedious but essential arguments about Hilbert-Schmidt operators and
trace class operators.3

2 Finite rank operators

In this section, X and Y denote Banach spaces. We say that a linear map
T : X → Y has finite rank if T (X) is a finite dimensional subspace of Y . A
finite rank operator need not be bounded: If X is infinite dimensional, let E be a
Hamel basis forX and let {en : n ∈ N} be a subset of this basis. Defining a linear
map on a Hamel basis determines it on the vector space. Define T : X → C
by Ten = n∥en∥ and Te = 0 if e is not in the countable subset. Then T is
not bounded; but its range has dimension 1, so T has finite rank. We define
B00(X,Y ) to be the set of T ∈ B(X,Y ) that have finite rank. It is apparent
that B00(X,Y ) is a vector space.

If f ∈ X∗ and y ∈ Y , we define y ⊗ f : X → Y by

y ⊗ f(x) = f(x)y.

y ⊗ f : X → Y is linear, and

∥y⊗f∥ = sup
∥x∥≤1

∥(y⊗f)(x)∥ = sup
∥x∥≤1

∥f(x)y∥ = ∥y∥ sup
∥x∥≤1

|f(x)| ≤ ∥y∥ sup
∥x∥≤1

∥f∥∥x∥,

so ∥y ⊗ f∥ ≤ ∥f∥∥y∥, so y ⊗ f is bounded. (y ⊗ f)(H) ⊆ span{y}, so y ⊗ f has
finite rank. Therefore y ⊗ f ∈ B00(X,Y ).

The following theorem gives a representation for bounded finite rank oper-
ators.4

Theorem 1. If T ∈ B00(X,Y ) and w1, . . . , wk is a basis for T (X), then there
are unique f1, . . . , fk ∈ X∗ such that

T =

k∑
j=1

wj ⊗ fj .

For y ∈ Y , define Fy : Y ∗ → C by Fy(λ) = λ(y). One checks that Fy ∈
(Y ∗)∗. Often one writes y = Fy, which is fine as long as we keep in mind
whether we are using y as an element of Y or as an element of (Y ∗)∗.

3Many of the proofs that I give are vastly expanded from what is written in the references I
used; I simply decided to write down every step that I did, and thus a reader should be able to
read this note without needing having to work out calculations on paper or without realizing
partway through that I was tacitly identifying things or that what I said is true only under
conditions I left unstated because I thought them too obvious. Indeed there is no royal road
through mathematics, but we do not need to break up the asphalt and destroy the signage to
make travelling what roads there are a trial of one’s skill.

4Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, p. 124, Lemma
4.2. In this reference, what we write as y ⊗ f they write as f ⊗ y.
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Theorem 2. If there are w1, . . . , wk ∈ Y and f1, . . . , fk ∈ X∗ such that

T =

k∑
j=1

wj ⊗ fj ,

then

T ∗ =

k∑
j=1

fj ⊗ wj .

Proof. Let y ∈ Y and f ∈ X∗. If x ∈ X and g ∈ Y ∗, then

⟨(y ⊗ f)x, g⟩ = ⟨f(x)y, g⟩ = f(x)⟨y, g⟩ = f(x)g(y),

where ⟨·, ·⟩ : Y × Y ∗ → C is the dual pairing. But

f(x)g(y) = ⟨x, g(y)f⟩ = ⟨x, Fy(g)f⟩ = ⟨x, (Fy ⊗ f)(g)⟩.

where ⟨·, ·⟩ : X ×X∗ → C is the dual pairing. We have Fy ⊗ f ∈ B(Y ∗, X∗),
and hence

(y ⊗ f)∗ = Fy ⊗ f = y ⊗ f.

This shows that the adjoint of each term wj⊗fj in T is fj⊗wj , and the adjoint
of a sum is the sum of the adjoints of the terms, completing the proof.

The above two theorems together show that if T ∈ B00(X,Y ) then T ∗ ∈
B00(Y

∗, X∗).

Theorem 3. If X is a Banach space, then B00(X) is a two sided ideal in the
Banach algebra B(X).

Proof. We have stated already that B00(X,Y ) is a vector space, and here Y =
X. If A ∈ B00(X) and T ∈ B(X), then AT ∈ B(X), and

A(T (X)) ⊆ A(X),

which is finite dimensional, so AT ∈ B00(X). TA ∈ B(X), and T (A(X))
is the image of a finite dimensional subspace under T , and so is itself finite
dimensional. Hence TA ∈ B00(X).

3 Compact operators

We say that a metric space M is totally bounded if for every ϵ there are finitely
many balls of radius ϵ whose union equals M . The Heine-Borel theorem states
that a metric space is compact if and only if it is complete and totally bounded.
If S is a subset of a complete metric space M and S is compact, then by the
Heine-Borel theorem it is totally bounded, and any subset of a totally bounded
metric space is itself a totally bounded metric space, so S is totally bounded.
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On the other hand, if S ⊆ M is totally bounded, then one proves that S is also
totally bounded. As S is a closed subset of the complete metric space M , S is
a complete metric space, and hence by the Heine-Borel theorem it is compact.
We say that a subset of a metric space is precompact if its closure is compact,
and thus a subset of a complete metric space is precompact if and only if it is
totally bounded.

Let X and Y be Banach spaces. If T : X → Y is a linear map and U is the
open unit ball in X, we say that T is compact if the closure of T (U) in Y is
compact. Therefore, to say that a linear map T : X → Y is compact is to say
that T (U) is totally bounded.

It doesn’t take long to show that if T : X → Y is linear and compact then it
is bounded, so there is no difference between stating that something is a bounded
compact operator and stating that it is a compact operator. The following is
often a convenient characterization of a compact operator.

Theorem 4. A linear map T : X → Y is compact if and only if for every
bounded sequence xn ∈ X there is a subsequence xa(n) such that Txa(n) converges
in Y .

We denote the set of compact operators X → Y by B0(X,Y ). It is apparent
that B0(X,Y ) is a vector space. For T ∈ B(X,Y ), it is a fact that T ∈
B0(X,Y ) if and only if T ∗ ∈ B0(Y

∗, X∗).5

The following theorem states if a sequence of compact operators converges
to a bounded operator, then that operator is compact.6 Since B(X,Y ) is a
Banach space, this implies that B0(X,Y ) is a Banach space with the operator
norm.

Theorem 5. If X and Y are Banach spaces, then B0(X,Y ) is a closed subspace
of the Banach space B(X,Y ).

The following theorem shows that a bounded finite rank operator is a com-
pact operator. Since a limit of compact operators is a compact operator, it
follows from this that a limit of bounded finite rank operators is a compact
operator.

Theorem 6. If T ∈ B00(X,Y ) then T ∈ B0(X,Y ).

Proof. Let U be the open unit ball in X. Since T is bounded and U is a bounded
set in X, T (U) is a bounded set in Y . But T (X) is finite dimensional, so T (U) is
a bounded set in a finite dimensional vector space and hence by the Heine-Borel
theorem, the closure of T (U) in T (X) is a compact subset of T (X). T (X) is
finite dimensional so is a closed subset of Y , and hence the closure of T (U) in
T (X) is equal to the closure of T (U) in Y . Hence the closure of T (U) in Y is
a compact subset of Y . (If E is a topological space and C ⊆ D ⊆ E, then the
subspace topology C inherits from E is the same as the subspace topology it
inherits from D, so if K ⊆ T (X) ⊆ Y then to say that K is compact in T (X)
is equivalent to saying that K is compact in Y .)

5Walter Rudin, Functional Analysis, second ed., p. 105, Theorem 4.19.
6Walter Rudin, Functional Analysis, second ed., p. 104, Theorem 4.18 (c).
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Theorem 7. If X is a Banach space, then B0(X) is a two sided ideal in the
Banach algebra B(X).

Proof. We have stated already that B0(X,Y ) is a closed subspace of B(X,Y ),
and here Y = X. Let K ∈ B0(X) and T ∈ B(X). On the one hand, if xn is a
bounded sequence in X, then ∥Txn∥ ≤ ∥T∥∥xn∥, so Txn is a bounded sequence
in X. Hence there is a subsequence Txa(n) such that K(Txa(n)) = (KT )xa(n)

converges, showing that KT is compact.
On the other hand, if xn is a bounded sequence in X, then there is a sub-

sequence xa(n) such that Kxa(n) converges to some x. T is continuous, so
T (Kxa(n)) converges to Tx, showing that TK is compact.

IfX is not separable, then the image of the identity map idX is not separable,
so the image of a bounded linear operator need not be separable. However,
the following theorem shows that the image of a compact operator is separable.
Check that if a subset of a metric space is separable then its closure is separable.
From this and Theorem 8 we get that the closure of the image of a compact
operator is separable.

Theorem 8. If K ∈ B0(X,Y ), then K(X) with the subspace topology from Y
is separable.

Proof. Let Un = {x ∈ X : ∥x∥ < n}. Then K(Un) is compact. It is a fact that
a compact metric space is separable, hence K(Un) is separable. A subset of a
separable metric space is itself separable with the subspace topology, so let Ln

be a countable dense subset of K(Un). Let L =
⋃∞

n=1 Ln, which is countable.
It is straightforward to verify that L is a dense subset of

K(X) =

∞⋃
n=1

K(Un).

Therefore, K(X) is separable.

4 Hilbert spaces

We showed that if X is a Banach space then both B00(X) and B0(X) are two
sided ideals in the Banach algebra B(X). We also showed that if A ∈ B00(X)
then A∗ ∈ B00(X

∗), and that if A ∈ B0(X) then A∗ ∈ B0(X
∗). If H is a

Hilbert space then B(H) is a C∗-algebra (as the adjoint of A ∈ B(H) is not
just an element of B(H∗), but can be identified with an element of B(H)) and
what we have shown implies that B00(H) and B0(H) are two sided ∗-ideals in
the C∗-algebra B(H).

If Sα, α ∈ I are subsets of a Hilbert space H, we denote by
∨

α∈I Sα the
closure of the span of

⋃
α∈I Sα. If S1, S2 are subsets of H, we write S1 ⊥ S2 if

for every s1 ∈ S1 and s2 ∈ S2 we have ⟨s1, s2⟩ = 0. If V is a closed subspace
of H, then H = V ⊕ V ⊥, and the orthogonal projection onto V is the map
P : H → H defined by P (v + w) = v for v ∈ V,w ∈ V ⊥. P (H) = V , so
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rather than first fixing a closed subspace and then talking about the orthogonal
projection onto that subspace, one often speaks about an orthogonal projection,
which is the orthogonal projection onto its image. It is straightforward to check
that if an orthogonal projection is nonzero then it has norm 1, and that an
orthogonal projection is a positive operator.

The following theorem is an explicit version of Theorem 1 for orthogonal
projections.

Theorem 9. Let {e1, . . . , en} be orthonormal in H and let M =
∨n

k=1{ej}. If
P is the orthogonal projection onto M , then

P =

n∑
k=1

ek ⊗ ek, Ph =

n∑
k=1

⟨h, ek⟩ek, h ∈ H.

Proof. As M is finite dimensional it is closed, and hence H = M ⊕ M⊥. Let
h = h1 + h2, h1 ∈ M,h2 ∈ M⊥; as P is the orthogonal projection onto M , we
have Ph = h1.

Let Qh =
∑n

k=1⟨h, ek⟩ek. We have to show that Qh = Ph. For each
1 ≤ j ≤ n, using that ⟨ek, ej⟩ = δk,j we get

⟨Qh, ej⟩ =
n∑

k=1

⟨h, ek⟩⟨ek, ej⟩ = ⟨h, ej⟩.

Hence, if 1 ≤ j ≤ n then ⟨h − Qh, ej⟩ = 0. As {ej} are an orthonormal basis
for M , this implies that h−Qh ⊥ M , and so h−Qh ∈ M⊥. That is,

h1 + h2 −Qh ∈ M⊥,

and as h2 ∈ M⊥ it follows that h1 −Qh ∈ M⊥. But h1 −Qh ∈ M (h1 ∈ M by
definition, and Qh is a sum of elements in M), so h1 − Qh = 0. As Ph = h1,
this means that Ph = Qh, completing the proof.

We say that a Banach space X has the approximation property if for each
A ∈ B0(X) there is a sequence An ∈ B00(X) such that An → A. A result of Per
Enflo shows that there are Banach spaces that do not have the approximation
property. However, in the following theorem we show that every Hilbert space
has the approximation property.

Theorem 10. If H is a Hilbert space and A ∈ B0(H), then there is a sequence
An ∈ B00(H) such that An → A.

Proof. By Theorem 8, V = A(H) is separable. V is a closed subspace of the
Hilbert space H, so is itself a Hilbert space. If V has finite dimension then A
is itself finite rank. Otherwise, let {en : n ≥ 1} be an orthonormal basis for
V , and let Pn be the orthogonal projection onto

∨n
j=1{ej}. Pn ∈ B00(H), and

define An = PnA ∈ B00(H).
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In any Hilbert space, if vα is an orthonormal basis then idH =
∑

α vα ⊗ vα,
where the series converges in the strong operator topology (see §5). Thus, for
any h ∈ V we have

Ah =

∞∑
k=1

⟨Ah, ek⟩ek,

where the series converges in H. By Theorem 9,

Anh = PnAh =

n∑
k=1

⟨Ah, ek⟩ek,

and therefore ∥Anh−Ah∥ → 0 as n → ∞. What we have shown is that An → A
in the strong operator topology.

Let B be the closed unit ball in H. Because A is a compact operator, by
the Heine-Borel theorem A(B) is totally bounded: If ϵ > 0, then there is some
m and h1, . . . , hm ∈ H such that

A(B) ⊆
m⋃
j=1

Bϵ(Ahj).

If h ∈ B, there is some 1 ≤ j ≤ m with Ah ∈ Bϵ(Ahj), i.e. ∥Ah−Ahj∥ < ϵ. If
n ≥ 1, then, as ∥Pn∥ ≤ 1,

∥Ah−Anh∥ ≤ ∥Ah−Ahj∥+ ∥Ahj −Anhj∥+ ∥Anhj −Anh∥
= ∥Ah−Ahj∥+ ∥Ahj −Anhj∥+ ∥Pn(Ahj −Ah)∥
≤ 2∥Ah−Ahj∥+ ∥Ahj −Anhj∥
≤ 2ϵ+ ∥Ahj −Anhj∥.

As An → A in the strong operator topology, for each 1 ≤ j ≤ m there is some
N(j) such that if n ≥ N(j) then ∥Ahj −Anhj∥ < ϵ and so, if n ≥ N(j),

∥Ah−Anh∥ < 3ϵ.

Let N = max1≤j≤m N(j), whence for all h ∈ B, if n ≥ N then

∥Ah−Anh∥ < 3ϵ.

But
∥A−An∥ = sup

∥h∥≤1

∥(A−An)h∥,

so if n ≥ N then
∥A−An∥ < 3ϵ,

showing that An → A.

7



5 Diagonalizable operators

If E is an orthonormal set in a Hilbert space H, which we do not demand be
separable, then E is an orthonormal basis for H if and only if for every h ∈ H
we have h =

∑
e∈E ⟨h, e⟩e.7 In other words, if E is an orthonormal set in H,

then E is an orthonormal basis for H if and only if

idH =
∑
e∈E

e⊗ e,

where the series converges in the strong operator topology.
We say that a linear map A : H → H is diagonalizable if there is an or-

thonormal basis of H each element of which is an eigenvector of A. If A is a
bounded linear operator on H, A is diagonalizable if and only if there is an
orthonormal basis ei, i ∈ I, of H and λi ∈ C such that the series∑

i∈I

λiei ⊗ ei

converges to A in the strong operator topology. One checks that the series∑
i∈I λiei ⊗ ei converges to A∗ in the strong operator topology.
If A ∈ B(H) is diagonalizable with eigenvalues {λi : i ∈ I}, it is a fact that

∥A∥ = sup
i∈I

|λi|. (1)

Theorem 11. Let H be a Hilbert space with orthonormal basis {ei : i ∈ I}, let
λi ∈ C, and define a linear map A : span{ei : i ∈ I} → span{ei : i ∈ I} by
Aei = λiei. If supi∈I |λi| < ∞, then A extends to a unique element of B(H).

Proof. Let M = supi∈I |λi| < ∞. If J is a finite subset of I and x =
∑

i∈J αiei,
then, as the ei are orthonormal,

∥Ax∥2 = ∥
∑
i∈J

αiAei∥2 = ∥
∑
i∈J

αiλiei∥2 =
∑
i∈J

∥αiλiei∥2 ≤ M2
∑
i∈J

|αi|2.

But
∥x∥2 = ∥

∑
i∈J

αiei∥2 =
∑
i∈J

∥αiei∥2 =
∑
i∈J

|αi|2.

So
∥Ax∥ ≤ M∥x∥.

It follows that A is a bounded operator on span{ei : i ∈ I}, which is dense in H.
Then there is a unique element of B(H) whose restriction to span{ei : i ∈ I} is
equal to A, and we denote this element of B(H) by A.

In Theorem 8 we proved that the image of a compact operator is separable.
Hence if a compact operator is diagonalizable then it has only countably many
nonzero eigenvalues.

7John B. Conway, A Course in Functional Analysis, second ed., p. 16, Theorem 4.13.
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Theorem 12. If H is a separable Hilbert space with orthonormal basis en, n ≥
1, and if A : H → H is linear and Aen = λnen for all n, then A ∈ B0(H) if
and only if λn → 0 as n → ∞.

Proof. Suppose that A is compact. Then A∗ is compact, and as A is diago-
nalizable so is A∗. The proof of Theorem 10 wasn’t generally useful enough
to be worth putting into a lemma, but to understand the following it will be
necessary to read that proof. Let λa(n) be the nonzero eigenvalues of A, and
let µn = λa(n), fn = ea(n). Check that fn, n ≥ 1 is an orthonormal basis for

A∗(H), Pn be the projection onto
∨n

j=1{fj}. Then using the argument in the
proof of Theorem 10 we get PnA

∗ → A∗; this completes our trip back to that
proof. Let An = A−APn. As ∥PnA

∗ −A∗∥ → 0 as n → ∞,

∥An∥ = ∥(A−APn)
∗∥

= ∥A∗ − P ∗
nA

∗∥
= ∥A∗ − PnA

∗∥
→ 0.

If 1 ≤ j ≤ n then Anfj = Afj −Afj = 0, and if j > n then Anfj = Afj = µjfj .
Hence An is a diagonalizable operator, and by (1) we get ∥An∥ = supj>n |µj |.
Together with ∥An∥ → 0 as n → ∞, this means that lim supn→∞ |µn| = 0. As
µn are precisely the nonzero λn, we obtain from this that limn→∞ |λn| = 0.

On the other hand, suppose that λn → 0 as n → ∞. Because λn → 0, the
absolute values of the eigenvalues of A are bounded and hence A ∈ B(H). Let
Pn be the projection onto

∨n
j=1{ej}. If 1 ≤ j ≤ n then APnej = Aej = λjej ,

and if j > n then APnej = 0. Therefore APn ∈ B00(H). For An = A − APn,
we have ∥An∥ = supj>n |λj |, from which it follows that

lim
n→∞

∥An∥ = 0.

Hence APn → A, and as APn are bounded finite rank operators, A is a compact
operator.

If A ∈ B(H) is diagonalizable, say Aei = λiei, i ∈ I, then A∗ei = λiei,
i ∈ I, and for j ∈ I,

AA∗ej = A
∑
i∈I

λi⟨ej , ei⟩ei = A
(
λjej

)
= λjλjej = |λj |2ej .

Likewise we get A∗Aej = |λj |2ej , so AA∗ = A∗A, that is, a bounded diagonal-
izable operator is normal. The following theorem states an implication in the
other direction.8 This is an instance of the spectral theorem.

Theorem 13. If H is a Hilbert space over C and T is a normal compact operator
on H, then T is diagonalizable.

8Gert K. Pedersen, Analysis Now, revised printing, p. 108, Theorem 3.3.8.

9



6 Polar decomposition

It is a fact that A ∈ B(H) is self-adjoint if and only if ⟨Ax, x⟩ ∈ R for all x ∈ H.
A ∈ B(H) is said to be positive if A is self-adjoint and ⟨Ax, x⟩ ≥ 0 for all x ∈ H.
It is a fact that if A ∈ B(H) is positive then there is a unique positive element of
B(H), call it A1/2, such that (A1/2)2 = A; namely, a bounded positive operator
has a unique positive square root in B(H).9 It is straightforward to check that if
A ∈ B(H) then A∗A is positive, and hence has a square root (A∗A)1/2 ∈ B(H),
which we denote by |A|. |A| satisfies ∥Ax∥ = ∥|A|x∥ for all x ∈ H.

An isometry from one Hilbert space to another is a linear map A : H1 → H2

such that if x ∈ H1 then ∥Ax∥ = ∥x∥. If A : H → H is linear and the restriction
of A to (kerA)⊥ is an isometry, then we say that A is a partial isometry. One
checks that a partial isometry is an element of B(H), if it is not the zero map
then it has norm 1, and that its image is closed. We call (kerA)⊥ the initial
space of A, and A(H) the final space of A. We can prove that if A is a partial
isometry then A∗ is a partial isometry whose initial space is the final space of
A and whose final space is the initial space of A. For example, an orthogonal
projection is a partial isometry whose initial space is the image of the orthogonal
projection and whose final space is equal to its initial space.

It is a fact that if A ∈ B(H) then there is a partial isometry U with kerU =
kerA satisfying A = U |A|, and that if V is a partial isometry with kerV =
kerA that satisfies A = V |A|, then V = U .10 A = U |A| is called the polar
decomposition of A. The polar decomposition satisfies

U∗U |A| = |A|, U∗A = |A|, UU∗A = A, A∗ = |A|U∗, |A∗| = U |A|U∗.
(2)

We will use these formulas repeatedly when we are working with trace class
operators, and we have numbered the above equation to refer to it and also to
draw the eye to it.

If I is an ideal of B(H) and A ∈ I then |A| = U∗A ∈ I. In particular, if
A ∈ B00(H) then |A| ∈ B00(H) and if A ∈ B0(H) then |A| ∈ B0(H).

7 Hilbert-Schmidt operators

Let H be a Hilbert space, and {ei : i ∈ I} an orthonormal basis of H. We say
that A ∈ B(H) is a Hilbert-Schmidt operator if∑

i∈I

∥Aei∥2 < ∞.

The following theorem shows that if A ∈ B(H) is a Hilbert-Schmidt operator
using one basis it will also be one using any other basis, that if A is not a Hilbert-
Schmidt operator using one basis it will not be one using any other basis, and
that A is Hilbert-Schmidt if and only if its adjoint A∗ is Hilbert-Schmidt.

9Gert K. Pedersen, Analysis Now, revised printing, p. 92, Proposition 3.2.11.
10Gert K. Pedersen, Analysis Now, revised printing, p. 96, Theorem 3.2.17.
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Theorem 14. Let H be a Hilbert space. If {eα : α ∈ I} and {fα : α ∈ J} are
orthonormal bases for H and A ∈ B(H), then∑

α∈I

∥Aeα∥2 =
∑
α∈J

∥A∗fα∥2 =
∑
α∈J

∥Afα∥2.

Proof. For each β ∈ J , using Parseval’s identity we have

Afβ =
∑
α∈J

⟨Afβ , fα⟩fα, ∥Afβ∥2 =
∑
α∈J

|⟨Afβ , fα⟩|2.

Using this we get ∑
β∈J

∥Afβ∥2 =
∑
β∈J

∑
α∈J

|⟨Afβ , fα⟩|2

=
∑
α∈J

∑
β∈J

|⟨Afβ , fα⟩|2

=
∑
α∈J

∑
β∈J

|⟨fβ , A∗fα⟩|2

=
∑
α∈J

∑
β∈J

|⟨A∗fα, fβ⟩|2

=
∑
α∈J

∥A∗fα∥2.

For each β ∈ I, Parseval’s identity gives us

∥Aeβ∥2 =
∑
α∈J

|⟨Aeβ , fα⟩|2,

and using this we obtain∑
β∈I

∥Aeβ∥2 =
∑
β∈I

∑
α∈J

|⟨Aeβ , fα⟩|2

=
∑
α∈J

∑
β∈I

|⟨Aeβ , fα⟩|2

=
∑
α∈J

∑
β∈I

|⟨eβ , A∗fα⟩|2

=
∑
α∈J

∑
β∈I

|⟨A∗fα, eβ⟩|2

=
∑
α∈J

∥A∗fα∥2.

11



Let B2(H) be the set of Hilbert-Schmidt operators in B(H). If {ei : i ∈ I}
is an orthonormal basis for H and A ∈ B(H), we define

∥A∥2 =

(∑
i∈I

∥Aei∥2
)1/2

.

To say that A ∈ B2(H) is to say that A ∈ B(H) and ∥A∥2 < ∞. Using the
triangle inequality in ℓ2(I), one checks that B2(H) is a vector space and that
∥ · ∥2 is a norm on B2(H), which we call the Hilbert-Schmidt norm.

Because ∥|A|x∥ = ∥Ax∥ for all x ∈ H, A is Hilbert-Schmidt if and only if
|A| is Hilbert-Schmidt, and ∥A∥2 = ∥|A|∥2. From Theorem 14 we obtain that if
A ∈ B2(H) then A∗ ∈ B2(H), and ∥A∥2 = ∥A∗∥2.

Theorem 15. B2(H) is a two sided ∗-ideal in the C∗-algebra B(H), and if
A ∈ B2(H) and T ∈ B(H) then

∥AT∥2 ≤ ∥A∥2 · ∥T∥, ∥TA∥2 ≤ ∥T∥ · ∥A∥2.

Proof. Let E be an orthonormal basis for H. If A ∈ B2(H) and T ∈ B(H),
then

∥TA∥22 =
∑
e∈E

∥TAe∥2 ≤
∑
e∈E

(∥T∥∥Ae∥)2 = ∥T∥2∥A∥22 < ∞.

On the other hand, using the above and the fact that if A is Hilbert-Schmidt
then A∗ is Hilbert-Schmidt,

∥AT∥22 = ∥(AT )∗∥22 = ∥T ∗A∗∥22 = ∥T ∗∥2∥A∗∥22 < ∞.

The following theorem shows that the operator norm is dominated by the
Hilbert-Schmidt norm, and therefore that the topology on the normed space
B2(H) with the Hilbert-Schmidt norm is finer than the subspace topology it
inherits from B(H) (i.e. its topology as a normed space with the operator
norm).

Theorem 16. If A ∈ B2(H) then ∥A∥ ≤ ∥A∥2.

Proof. Let ϵ > 0. We have

∥A∥ = sup
∥v∥=1

∥Av∥.

Take v ∈ H, ∥v∥ = 1, with ∥Av∥2 + ϵ > ∥A∥2. There is an orthonormal basis
{eα : α ∈ I} for H that includes v; one proves this using Zorn’s lemma. Then

∥A∥2 < ϵ+ ∥Av∥2 ≤ ϵ+ ∥Av∥2 +
∑
eα ̸=v

∥Aeα∥2 = ϵ+
∑
α∈I

∥Aeα∥2 = ϵ+ ∥A∥22.

As this is true for all ϵ > 0, it follows that ∥A∥ ≤ ∥A∥2.

12



The following theorem states that every bounded finite rank operator is a
bounded Hilbert-Schmidt operator, and that every bounded Hilbert-Schmidt
operator is the limit in the Hilbert-Schmidt norm of a sequence of bounded
finite rank operators.

Theorem 17. B00(H) is a dense subset of the normed space B2(H) with the
Hilbert-Schmidt norm.

Proof. If A ∈ B00(H), then there is an orthonormal basis {ei : i ∈ I} for H and
a finite subset J of I such that if i ∈ I \ J then Aei = 0. From this it follows
that ∥A∥2 < ∞, and thus A ∈ B2(H), so B00(H) is a subset of B2(H).

Let {ei : i ∈ I} be an orthonormal basis for H, let A ∈ B2(H), and let
ϵ > 0. As

∑
i∈I ∥Aei∥2 < ∞, there is some finite subset J of I such that∑

i∈I\J

∥Aei∥2 < ϵ.

Let P be the orthogonal projection onto span{ei : i ∈ J} (which is finite dimen-
sional and hence closed), and define B ∈ B00(H) by B = AP . We have

∥A−B∥22 =
∑

i∈I\J

∥Aei∥2 < ϵ,

showing that B00(H) is dense in B2(H).

If A ∈ B2(H), then by the above theorem there is a sequence of bounded
finite rank operators An such that ∥An −A∥2 → 0 as n → ∞. But by Theorem
16, ∥An − A∥ ≤ ∥An − A∥2, and by Theorem 6, a limit of bounded finite rank
operators is a compact operator, so A is compact. Thus, a bounded Hilbert-
Schmidt operator is a compact operator.

We are going to define an inner product on B2(H) and we will show that
with this inner product B2(H) is a Hilbert space. However the cleanest way I
know to do this is by defining the trace of an operator. Moreover, we care just
as much about trace class operators as we do Hilbert-Schmidt operators.

13



8 Trace class operators

If {eα : α ∈ I} and {fα : α ∈ J} are orthonormal bases for H and A ∈ B(H),
then using Theorem 14 we have∑

α∈I

⟨|A|eα, eα⟩ =
∑
α∈I

⟨|A|1/2eα, |A|1/2eα⟩

=
∑
α∈I

∥|A|1/2eα∥2

=
∑
α∈J

∥|A|1/2fα∥2

=
∑
α∈J

⟨|A|1/2fα, |A|1/2fα⟩

=
∑
α∈J

⟨|A|fα, fα⟩.

If {ei : i ∈ I} is an orthonormal basis for H, we say that A ∈ B(H) is trace
class if ∑

i∈I

⟨|A|ei, ei⟩ < ∞.

We denote the set of trace class operators in B(H) by B1(H). For A ∈ B(H),
define

∥A∥1 =
∑
i∈I

⟨|A|ei, ei⟩.

To say that A ∈ B1(H) is to say that A ∈ B(H) and that ∥A∥1 < ∞. As |A|1/2
is self-adjoint, it is apparent that ∥A∥1 = ∥|A|1/2∥22. We will prove that B1(H)
is a vector space and that ∥ · ∥1 is a norm on this vector space, but this takes a
surprising amount of work and we will not do this yet.

The following theorem gives different characterizations of bounded trace
class operators.11 This theorem shows in particular that if A ∈ B1(H) then A
is the product of two bounded Hilbert-Schmidt operators, and thus, as B2(H)
is an ideal in B(H), that A ∈ B2(H). In particular, as a consequence Theorem
16, every bounded Hilbert-Schmidt operator is compact, so every bounded trace
class operator is compact.

Theorem 18. If A ∈ B(H), then the following are equivalent.

• A ∈ B1(H).

• |A|1/2 ∈ B2(H).

• A is the product of two elements of B2(H).

• |A| is the product of two elements of B2(H).

11John B. Conway, A Course in Operator Theory, p. 88, Proposition 18.8.
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Proof. Let ei, i ∈ I be an orthonormal basis for H. Suppose that A ∈ B1(H).
We have

∥|A|1/2∥22 =
∑
i∈I

∥|A|1/2ei∥2 =
∑
i∈I

⟨|A|1/2ei, |A|1/2ei⟩ =
∑
i∈I

⟨|A|ei, ei⟩ = ∥A∥1,

so |A|1/2 ∈ B2(H).
Suppose that |A|1/2 ∈ B2(H). A = U |A| = (U |A|1/2)|A|1/2. As B2(H) is

an ideal, we get U |A|1/2 ∈ B2(H), hence A is the product of two elements of
B2(H).

Suppose that A = BC, with B,C ∈ B2(H). Let A = U |A| be the polar
decomposition of A. By (2), the polar decomposition satisfies U∗U |A| = |A|.
But U |A| = BC implies that U∗U |A| = U∗BC, hence |A| = U∗BC = (U∗B)C.
As B2(H) is an ideal, we have U∗B ∈ B2(H), so we have written |A| as a
product of two elements of B2(H).

Suppose that |A| = BC, with B,C ∈ B2(H); so B∗ ∈ B2(H) too. We have,
using the Cauchy-Schwarz inequality first in H and next in ℓ2(I),

∥A∥1 =
∑
i∈I

⟨|A|ei, ei⟩

=
∑
i∈I

⟨BCei, ei⟩

=
∑
i∈I

⟨Cei, B
∗ei⟩

≤
∑
i∈I

∥Cei∥∥B∗ei∥

≤

(∑
i∈I

∥Cei∥2
)1/2(∑

i∈I

∥B∗ei∥2
)1/2

= ∥C∥2∥B∗∥2
< ∞.

Hence A ∈ B1(H), completing the proof.

The following theorem shows that if A ∈ B1(H) then sums similar to ∥A∥1
are also finite, and that the series

∑
e∈E ⟨Ae, e⟩ does not depend on the orthonor-

mal basis E .12

Theorem 19. If A ∈ B1(H) and E is an orthonormal basis for H, then∑
e∈E

|⟨Ae, e⟩| < ∞,

and if F is an orthonormal basis for H then∑
e∈E

⟨Ae, e⟩ =
∑
f∈F

⟨Af, f⟩.

12John B. Conway, A Course in Operator Theory, p. 88, Proposition 18.9.
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Proof. By Theorem 18, there are B,C ∈ B2(H) such that A = C∗B. If λ ∈ C
and e ∈ E then

∥(B − λC)e∥2 = ⟨(B − λC)e, (B − λC)e⟩
= ⟨Be,Be⟩ − ⟨Be, λCe⟩ − ⟨λCe,Be⟩+ ⟨λCe, λCe⟩
= ∥Be∥2 − ⟨Be, λCe⟩ − ⟨Be, λCe⟩+ |λ|2∥Ce∥2

= ∥Be∥2 − 2Re ⟨Be, λCe⟩+ |λ|2∥Ce∥2.

As ∥(B − λC)e∥2 ≥ 0,

2Re ⟨Be, λCe⟩ ≤ ∥Be∥2 + |λ|2∥Ce∥2,

so
2Re

(
λ⟨Be,Ce⟩

)
≤ ∥Be∥2 + |λ|2∥Ce∥2.

This is true for any λ ∈ C and e ∈ E . Take |λ| = 1, depending on e, such that

λ⟨Be,Ce⟩ = |⟨Be,Ce⟩|,

which gives
2Re |⟨Be,Ce⟩| ≤ ∥Be∥2 + ∥Ce∥2,

i.e.,

|⟨Be,Ce⟩| ≤ 1

2

(
∥Be∥2 + ∥Ce∥2

)
.

Since this inequality doesn’t involve λ, the fact that we chose λ depending on e
doesn’t matter, and the above inequality holds for any e ∈ E . Therefore∑

e∈E

|⟨Ae, e⟩| =
∑
e∈E

|⟨C∗Be, e⟩| =
∑
e∈E

|⟨Be,Ce⟩| ≤ 1

2
∥B∥22 +

1

2
∥C∥22 < ∞,

which is the first statement we wanted to prove and which was necessary to
prove even to make sense of the second statement.

Because
∑

e∈E |⟨Ae, e⟩| < ∞, the series
∑

e∈E ⟨Ae, e⟩ converges. We have to
show that its value does not depend on the orthonormal basis E . If e ∈ E , then

∥(B + C)e∥2 − ∥(B − C)e∥2 = ∥Be∥2 + ⟨Be,Ce⟩+ ⟨Ce,Be⟩+ ∥Ce∥2

−
(
∥Be∥2 − ⟨Be,Ce⟩ − ⟨Ce,Be⟩+ ∥Ce∥2

)
= 2⟨Be,Ce⟩+ 2⟨Ce,Be⟩
= 4Re ⟨Be,Ce⟩,

which gives us∑
e∈E

Re ⟨Ae, e⟩ =
∑
e∈E

Re ⟨Be,Ce⟩

=
1

4

∑
e∈E

∥(B + C)e∥2 − ∥(B − C)e∥2

=
1

4
∥B + C∥22 −

1

4
∥B − C∥22.
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Applying this to iA = iC∗B gives us, as (iC∗)∗ = −iC,∑
e∈E

Re ⟨iAe, e⟩ = 1

4
∥B − iC∥22 −

1

4
∥B + iC∥22.

But Re ⟨iAe, e⟩ = Re (i⟨Ae, e⟩) = −Im ⟨Ae, e⟩, as Re (i(a+ ib)) = Re (ia− b) =
−b. Therefore ∑

e∈E

−Im ⟨Ae, e⟩ = 1

4
∥B − iC∥22 −

1

4
∥B + iC∥22,

i.e. ∑
e∈E

Im ⟨Ae, e⟩ = 1

4
∥B + iC∥22 −

1

4
∥B − iC∥22.

Thus∑
e∈E

⟨Ae, e⟩ = 1

4
∥B + C∥22 −

1

4
∥B − C∥22 +

i

4
∥B + iC∥22 −

i

4
∥B − iC∥22,

and the right-hand side does not depend on the orthonormal basis E , completing
the proof.

If A ∈ B1(H) and E is an orthonormal basis for H, we define the trace of
A, written trA, to be

trA =
∑
e∈E

⟨Ae, e⟩.

It is apparent that tr : B1(H) → C is a positive linear functional: tr is a linear
functional B1(H) → C, and if A ∈ B1(H) is a positive operator, then trA is
real and ≥ 0. If A ∈ B1(H) is a positive operator then it is diagonalizable
(being a bounded trace class operator implies that it is compact): there is an
orthonormal basis {ei : i ∈ I} for H such that

A =
∑
i∈I

⟨Aei, ei⟩ei ⊗ ei,

where the series converges in the strong operator topology. Since A is positive,
⟨Aei, ei⟩ is a real nonnegative number for each i ∈ I. trA = 0 means that∑

i∈I

⟨Aei, ei⟩ = 0,

and as this is a series of nonnegative terms they must all be 0. Putting these
into the expression for A gives us A = 0, showing that tr : B1(H) → C is a
positive definite linear functional. We haven’t yet proved that tr is a bounded
linear functional. This follows from Theorem 23, which we prove later in this
section.

In the following we show that the set of bounded trace class operators is a
normed vector space with norm ∥ · ∥1, which we call the trace norm.13

13John B. Conway, A Course in Operator Theory, p. 89, Theorem 18.11 (a).
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Theorem 20. B1(H) is a normed vector space with the norm ∥ · ∥1.

Proof. Let A,B ∈ B1(H), and let their polar decompositions be A = U |A|, B =
V |B|, and A + B = W |A + B|. As bounded trace class operators are compact
and as the compact operators are a vector space, A+B is a compact operator.
We have already stated that if T is compact then |T | is compact, which follows
from the polar decomposition of T and the fact that the compact operators are
an ideal. Thus |A + B| is a compact operator. |A + B| is a positive operator,
so by the spectral theorem for normal compact operators that we stated as
Theorem 13, |A+B| is diagonalizable: there is a countable subset {en : n ≥ 1}
of an orthonormal basis E for H, and λn ∈ C, such that |A+B|en = λnen and
|A+B|e = 0 if e ∈ E is not a member of this countable subset. As |A+B| is a
positive operator, the eigenvalues λn are real and nonnegative. We have, in the
strong operator topology,

|A+B| =
∞∑

n=1

λnen ⊗ en.

First, as |A+B| = W ∗(A+B) and using the Cauchy-Schwarz inequality in
H,

∥A+B∥1 =
∑
e∈E

⟨|A+B|e, e⟩

=
∑
n≥1

⟨|A+B|en, en⟩

=
∑
n≥1

⟨(A+B)en,Wen⟩

=
∑
n≥1

⟨U |A|en,Wen⟩+ ⟨V |B|en,Wen⟩

=
∑
n≥1

⟨|A|en, U∗Wen⟩+ ⟨|B|en, V ∗Wen⟩

=
∑
n≥1

⟨|A|1/2en, |A|1/2U∗Wen⟩+ ⟨|B|1/2en, |B|1/2V ∗Wen⟩

≤
∑
n≥1

∥|A|1/2en∥ · ∥|A|1/2U∗Wen∥+ ∥|B|1/2en∥ · ∥|B|1/2V ∗Wen∥.
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Applying the Cauchy-Schwarz inequality in ℓ2 to this gives

· · · ≤

∑
n≥1

∥|A|1/2en∥2
1/2∑

n≥1

∥|A|1/2U∗Wen∥2
1/2

+

∑
n≥1

∥|B|1/2en∥2
1/2∑

n≥1

∥|B|1/2V ∗Wen∥2
1/2

.

≤

(∑
e∈E

∥|A|1/2e∥2
)1/2(∑

e∈E

∥|A|1/2U∗We∥2
)1/2

+

(∑
e∈E

∥|B|1/2e∥2
)1/2(∑

e∈E

∥|B|1/2V ∗We∥2
)1/2

.

So we have

∥A+B∥1 ≤ ∥|A|1/2∥2 · ∥|A|1/2U∗W∥2 + ∥|B|1/2∥2 · ∥|B|1/2V ∗W∥2.

By Theorem 18, |A|1/2, |B|1/2 ∈ B2(H), and then using the inequality in The-
orem 15 gives us

∥|A|1/2U∗W∥2 ≤ ∥|A|1/2∥2 · ∥U∗∥ · ∥W∥ ≤ ∥|A|1/2∥2,

where we used the fact that U∗ and W are partial isometries and hence either
have norm 1 or 0, depending on whether they are the zero map. Likewise,

∥|B|1/2V ∗W∥2 ≤ ∥|B|1/2∥2.

Therefore we have obtained

∥A+B∥1 ≤ ∥|A|1/2∥22 + ∥|B|1/2∥22 = ∥A∥1 + ∥B∥1.

so A+B ∈ B1(H), and ∥ · ∥1 satisfies the triangle inequality.
If A ∈ B(H) and α ∈ C then |αA|1/2 = |α|1/2|A|1/2, and from this it follows

that if A ∈ B1(H) and α ∈ C then ∥αA∥1 = |α|∥A∥1 and so αA ∈ B1(H).
Therefore B1(H) is a vector space.

If ∥A∥1 = 0, then tr |A| = 0. We have shown that tr is a positive definite
linear functional: hence |A| = 0, and so A = 0. This completes the proof that
∥ · ∥1 is a norm on B1(H).

We have shown that B1(H) with the trace norm ∥ · ∥1 is a normed space. In
the following theorem we show that a bounded finite rank operator is a bounded
trace class operator, and that B00(H) is a dense subset of B1(H).

Theorem 21. B00(H) is a dense subset of the normed space B1(H) with the
trace norm.
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Proof. If A ∈ B00(H), then there is an orthonormal basis {ei : i ∈ I} for H
and a finite subset J of I such that such that if i ∈ I \ J then Aei = 0, and so
|A|ei = 0. This gives ∥A∥1 < ∞, so A ∈ B1(H).

Let {ei : i ∈ I} be an orthonormal basis for H. We’ve shown that the
bounded finite rank operators are contained in the bounded trace class opera-
tors, and now we have to show that if A ∈ B1(H) and ϵ > 0 then there is some
B ∈ B00(H) satisfying ∥A−B∥1 < ϵ. As

∑
i∈I⟨|A|ei, ei⟩ < ∞, there is a finite

subset J of I such that ∑
i∈I\J

⟨|A|ei, ei⟩ < ϵ.

Let P be the orthogonal projection onto span{ei : i ∈ J}, and define B ∈
B00(H) by B = AP , which gives us

∥A−B∥1 =
∑
i∈I

⟨|A−B|ei, ei⟩ =
∑

i∈I\J

⟨|A|ei, ei⟩ < ϵ.

Taking an adjoint of an operator on a Hilbert space and taking the complex
conjugate of a complex number ought to be interchangeable where it makes
sense. We show in the following theorem that the adjoint of an element of
B1(H) is also an element of B1(H) and that the trace of the adjoint is the
complex conjugate of the trace.

Theorem 22. If A ∈ B1(H) then A∗ ∈ B1(H) and

trA∗ = trA.

Proof. As A ∈ B1(H), by Theorem 18 there are B,C ∈ B2(H) such that
A = C∗B. Then A∗ = B∗C is a product of two bounded Hilbert-Schmidt
operators, and so by the same theorem is itself an element of B1(H).

We’re going to extract something from our proof of Theorem 19, which
showed that the trace of an operator does not depend on the orthonormal basis
that we use: We proved that, with A = C∗B,

tr (A) =
1

4
∥B + C∥22 −

1

4
∥B − C∥22 +

i

4
∥B + iC∥22 −

i

4
∥B − iC∥22,

Applying this to the adjoint A∗ = B∗C, and as i(C + iB) = iC −B,

trA∗ =
1

4
∥C +B∥22 −

1

4
∥C −B∥22 +

i

4
∥C + iB∥22 −

i

4
∥B − iC∥22

=
1

4
∥B + C∥22 −

1

4
∥B − C∥22 +

i

4
∥iC −B∥22 −

i

4
∥iB + C∥22

= trA.
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It is familiar to us that if A and B are matrices then tr (AB) = tr (BA).
In the next theorem we show that this is true for bounded linear operators
providing one of the two is a bounded trace class operator.14 The first thing
we prove in this theorem is that B1(H) is an ideal of the algebra B(H), so
that it makes sense to talk about the trace of a product of two bounded linear
operators only one of which is a bounded trace class operator. The theorem also
shows that tr : B1(H) → C, which we have already shown is a positive definite
linear functional, is bounded.

Theorem 23. If A ∈ B1(H) and T ∈ B(H), then AT, TA ∈ B1(H), and
tr (AT ) = tr (TA), and |tr (TA)| ≤ ∥T∥∥A∥1.

Proof. A is the product of two bounded Hilbert-Schmidt operators, say A =
C∗B (we write it this way because this will be handy later in the proof). Hence
AT = C∗(BT ). As B2(H) is an ideal of B(H), we have BT ∈ B2(H), showing
that AT is a product of two bounded Hilbert-Schmidt operators, which implies
that AT ∈ B1(H). Similarly, TA ∈ B1(H). We use from the proof of Theorem
19 the following: (we wrote A = C∗B to match the way we wrote A in that
theorem)

tr (C∗B) =
1

4
∥B + C∥22 −

1

4
∥B − C∥22 +

i

4
∥B + iC∥22 −

i

4
∥B − iC∥22.

Applying this to CB∗, and using that the norm of the adjoint of an operator is
equal to the norm of the operator itself and that (iC∗)∗ = −iC,

tr (CB∗) =
1

4
∥B∗ + C∗∥22 −

1

4
∥B∗ − C∗∥22 +

i

4
∥B∗ + iC∗∥22 −

i

4
∥B∗ − iC∗∥22

=
1

4
∥B + C∥22 −

1

4
∥B − C∥22 +

i

4
∥B − iC∥22 −

i

4
∥B + iC∥22

= tr (C∗B).

Using this we obtain

tr (TA) = tr ((TC∗)B)

= tr ((TC∗)∗B∗)

= tr (CT ∗B∗)

= tr (C(BT )∗)

= tr (C∗(BT ))

= tr (AT ),

which we wanted to show.
We still have to prove that |tr (TA)| ≤ ∥T∥∥A∥1. Let A = U |A| be the polar

decomposition of A, and let E be an orthonormal basis for H. By Theorem 18,

14John B. Conway, A Course in Operator Theory, p. 89, Theorem 18.11 (e).
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|A|1/2 ∈ B2(H). (We mention this to justify talking about the Hilbert-Schmidt
norm of |A|1/2.) We have, using the Cauchy-Schwarz inequality in H and in ℓ2,

|tr (TA)| =

∣∣∣∣∣∑
e∈E

⟨TU |A|e, e⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
e∈E

⟨|A|1/2e, |A|1/2U∗T ∗e⟩

∣∣∣∣∣
≤

∑
e∈E

|⟨|A|1/2e, |A|1/2U∗T ∗e⟩|

≤
∑
e∈E

∥|A|1/2e∥ · ∥|A|1/2U∗T ∗e∥

≤

(∑
e∈E

∥|A|1/2e∥2
)1/2(∑

e∈E

∥|A|1/2U∗T ∗e∥2
)1/2

= ∥|A|1/2∥2 · ∥|A|1/2U∗T ∗∥2.

By Theorem 15, and as U∗ is a partial isometry,

∥|A|1/2U∗T ∗∥2 ≤ ∥|A|1/2∥2 · ∥U∗∥ · ∥T ∗∥ ≤ ∥|A|1/2∥2 · ∥T ∗∥.

Therefore

|tr (TA)| ≤ ∥|A|1/2∥22 · ∥T ∗∥ = ∥|A|1/2∥22 · ∥T∥ = ∥A∥1 · ∥T∥,

completing the proof.

In Theorem 22 we proved that the adjoint of a bounded trace class operator
is itself trace class, and we now prove that they have the same trace norm.

Theorem 24. If A ∈ B1(H) then

∥A∗∥1 = ∥A∥1.

Proof. The polar decompositionA = U |A| satisfies |A∗| = U |A|U∗ and U∗U |A| =
|A|, as we stated in (2). We have, using this and Theorem 23,

∥A∗∥1 = tr |A∗| = tr ((U |A|)U∗) = tr (U∗(U |A|)) = tr |A| = ∥A∥1.

Theorem 25. If A ∈ B1(H) and T ∈ B(H), then

∥AT∥1 ≤ ∥A∥1 · ∥T∥, ∥TA∥1 ≤ ∥T∥ · ∥A∥1.

22



Proof. Let A have the polar decomposition A = U |A| and let TA have the polar
decomposition TA = W |TA|. We have, from (2),

|TA| = W ∗(TA) = W ∗TU |A|.

It follows from Theorem 23 that, putting S = W ∗TU ,

∥TA∥1 = tr (|TA|) = tr (S|A|) ≤ ∥S∥ · ∥A∥1.

As W ∗ and U are partial isometries, ∥S∥ ≤ ∥T∥, thus

∥TA∥1 ≤ ∥T∥ · ∥A∥1. (3)

On the other hand, Theorem 24 tells us

∥AT∥1 = ∥T ∗A∗∥1.

As A∗ ∈ B1(H), by (3) we get

∥T ∗A∗∥1 ≤ ∥T ∗∥ · ∥A∗∥1 = ∥T∥ · ∥A∥1,

using Theorem 24 again.

In Theorem 16 we proved that if A ∈ B2(H) then ∥A∥ ≤ ∥A∥2. Now
we prove that the trace norm also dominates the operator norm, so that the
topology on the normed space B1(H) with the trace norm is finer than its
topology as a subspace of B(H).

Theorem 26. If A ∈ B1(H), then

∥A∥ ≤ ∥A∥1.

Proof. Let A have polar decomposition A = U |A|. As |A| is a compact positive,
it is diagonalizable: there is an orthonormal basis {ei : i ∈ I} for H and λi ∈ C
such that |A|ei = λiei. On the one hand, the operator norm of a diagonalizable
operator is the supremum of the absolute values of its eigenvalues, as we stated
in (1). On the other hand,

∥|A|∥1 =
∑
i∈I

|λi|.

Certainly then ∥|A|∥ ≤ ∥|A|∥1. But

∥A∥ ≤ ∥U∥ · ∥|A|∥ ≤ ∥|A|∥ ≤ ∥|A|∥1 = ∥A∥1,

which is what we wanted to prove.
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We have already shown that the trace class operators with the trace norm
are a normed space. We now prove that they are a Banach space. We do this
by showing that there is an isometric isomorphism ρ : B1(H) → B0(H)∗.15

The latter space is a Banach space, so if An ∈ B1(H) is a Cauchy sequence, its
image ρ(An) is a Cauchy sequence in B0(H)∗ and hence has a limit, call it B.
Since ρ is surjective, there is some A ∈ B1(H) such that ρ(A) = B, and one
checks that An → A.

For A ∈ B1(H) and C ∈ B0(H), define

ΦA(C) = tr (CA).

Theorem 27. The map ρ : B1(H) → B0(H)∗ defined by

ρ(A) = ΦA, A ∈ B1(H),

is an isometric isomorphism.

Proof. Let A ∈ B1(H). It is apparent that ΦA : B0(H) → C is a linear map.
Using Theorem 23, its operator norm is

∥ΦA∥ = sup
∥C∥≤1

|ΦA(C)| = sup
∥C∥≤1

|tr (CA)| ≤ sup
∥C∥≤1

∥C∥∥A∥1 = ∥A∥1,

where the supremum is taken over compact operators. Hence ΦA ∈ B0(H)∗

(if H = {0} then the final equality is ≤). We have ∥ΦA∥ ≤ ∥A∥1, so to show
that ρ is an isometric isomorphism, we have to show that if A ∈ B1(H) then
∥ΦA∥ ≥ ∥A∥1, and that ρ is surjective (as being injective is implied by being an
isometry).

Let Φ ∈ B0(H)∗. For g, h ∈ H, define

B(g, h) = Φ(g ⊗ h), B(g, h)v = g ⊗ h(v) = ⟨v, h⟩g.

It is apparent from this that B is a sesquilinear form on H. A sesquilinear form
B is said to be bounded if M = sup∥g∥,∥h∥=1 |B(g, h)| < ∞. For ∥g∥ = ∥h∥ = 1,

|B(g, h)| = |Φ(g ⊗ h)| ≤ ∥Φ∥∥g ⊗ h∥ ≤ ∥Φ∥∥g∥∥h∥ = ∥Φ∥.

Thus B is a bounded sesquilinear form on H, and we can therefore apply the
Riesz representation theorem,16 which states that there is a unique T ∈ B(H)
such that

B(g, h) = ⟨g, Th⟩, g, h ∈ H,

and that this T satisfies ∥T∥ = M .
Let A = T ∗, let A = U |A| be the polar decomposition of A, and let E be an

orthonormal basis for H. If E0 is a finite subset of E , define

CE0
=

(∑
e∈E0

e⊗ e

)
U∗ =

∑
e∈E0

e⊗ Ue.

15John B. Conway, A Course in Operator Theory, p. 93, Theorem 19.1.
16Walter Rudin, Functional Analysis, second ed., p. 310, Theorem 12.8.
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It is apparent that CE0 ∈ B00(H), and one checks that ∥CE0∥ ≤ 1. We have

∑
e∈E0

⟨|A|e, e⟩ =

∣∣∣∣∣∑
e∈E0

⟨|A|e, e⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
e∈E0

⟨U∗Ae, e⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
e∈E0

⟨e, TUe⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
e∈E0

B(e, Ue)

∣∣∣∣∣
=

∣∣∣∣∣∑
e∈E0

Φ(e⊗ Ue)

∣∣∣∣∣
= |Φ(CE0

)| .

Then ∑
e∈E0

⟨|A|e, e⟩ ≤ ∥Φ∥∥CE0
∥ ≤ ∥Φ∥.

This is true for any finite subset E0 of E , and it follows that

∥A∥1 ≤ ∥Φ∥, (4)

and thus A ∈ B1(H).
Let C ∈ B00(H). Then there are some g1, . . . , gn, h1, . . . , hn ∈ H such that

(cf. Theorem 1)

C =

n∑
k=1

gk ⊗ hk.

We have

Φ(C) =

n∑
k=1

Φ(gk ⊗ hk)

=

n∑
k=1

B(gk, hk)

=

n∑
k=1

⟨Agk, hk⟩

=

n∑
k=1

tr (A(gk ⊗ hk))

= tr (AC)

= ΦA(C).
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Since the bounded linear functionals Φ and ΦA agree on B00(H), a dense subset
of B1(H) with the trace norm, they are equal. Therefore, ρ is surjective. More-
over, we showed in (4) that ∥A∥1 ≤ ∥Φ∥, so ∥ΦA∥ ≥ ∥A∥1, so ρ is an isometry,
which completes the proof.

We have shown that the B1(H) is the dual of B0(H). It can further be shown
that B(H) is the dual of B1(H). For T ∈ B(H) we define ΨT : B1(H) → C
by ΨT (A) = tr (TA), A ∈ B1(H). Then the map T 7→ ΨT is an isometric
isomorphism B(H) → B1(H)∗.17

9 The Hilbert-Schmidt inner product

If A,B ∈ B2(H), we define

⟨A,B⟩ = tr (B∗A),

which makes sense because, by Theorem 18, AB ∈ B1(H). As tr : B1(H) → C
is a positive definite linear functional, we get that ⟨·, ·⟩ : B2(H)× B2(H) → C
is an inner product. We call this the Hilbert-Schmidt inner product. Check
that ⟨A,A⟩ = ∥A∥22. It is a fact that B2(H) is a complete metric space with
the Hilbert-Schmidt norm,18 and hence B2(H) with the Hilbert-Schmidt inner
product is a Hilbert space.

Theorem 28. B2(H) with the Hilbert-Schmidt inner product is a Hilbert space.

17John B. Conway, A Course in Operator Theory, p. 94, Theorem 19.2.
18Gert K. Pedersen, Analysis Now, revised printing, p. 119, Theorem 3.4.9.
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