Total variation, absolute continuity, and the Borel σ-algebra of $C(I)$

Jordan Bell

March 10, 2015

1 Total variation

Let $a<b$. A partition of $[a, b]$ is a sequence $t_{0}, t_{1}, \ldots, t_{n}$ such that

$$
a=t_{0}<t_{1}<\cdots<t_{n}=b
$$

The total variation of a function $f:[a, b] \rightarrow \mathbb{C}$ is

$$
\operatorname{Var}_{f}[a, b]=\sup \left\{\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|: t_{0}, t_{1}, \ldots, t_{n} \text { is a partition of }[a, b]\right\} .
$$

If $\operatorname{Var}_{f}[a, b]<\infty$ then we say that f has bounded variation.
Lemma 1. If $a \leq c<e<d \leq b$, then

$$
\operatorname{Var}_{f}[c, d]=\operatorname{Var}_{f}[c, e]+\operatorname{Var}_{f}[e, d]
$$

The following theorem establishes properties of functions of bounded variation. ${ }^{1}$

Theorem 2. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation and define

$$
F(x)=\operatorname{Var}_{f}[a, x], \quad x \in[a, b] .
$$

Then:

1. $|f(y)-f(x)| \leq F(y)-F(x)$ for all $a \leq x<y \leq b$.
2. F is a nondecreasing function.
3. $F-f$ and $F+f$ are nondecreasing functions.
4. For $x_{0} \in[a, b], f$ is continuous at x_{0} if and only if F is continuous at x_{0}.
[^0]Proof. If t_{0}, \ldots, t_{n} is a partition of $[a, x]$ then t_{0}, \ldots, t_{n}, y is a partition of $[a, y]$, so

$$
\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|+|f(y)-f(x)| \leq F(y)
$$

Since this is true for any partition t_{0}, \ldots, t_{n} of $[a, x]$,

$$
F(x)+|f(y)-f(x)| \leq F(y)
$$

This shows in particular that $F(x) \leq F(y)$, and thus that F is nondecreasing.
For $a \leq x<y \leq b$,

$$
f(y)-f(x) \leq|f(y)-f(x)| \leq F(y)-F(x)
$$

thus

$$
F(x)-f(x) \leq F(y)-f(y)
$$

showing that $x \mapsto F(x)-f(x)$ is nondecreasing. Likewise,

$$
f(x)-f(y) \leq|f(y)-f(x)| \leq F(y)-F(x)
$$

thus

$$
f(x)+F(x) \leq f(y)+F(y)
$$

showing that $x \mapsto F(x)+f(x)$ is nondecreasing.
Suppose that F is continuous at x_{0} and let $\epsilon>0$. There is some $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies that $\left|F(x)-F\left(x_{0}\right)\right|<\epsilon$. If $\left|x-x_{0}\right|<\delta$, then

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|F(x)-F\left(x_{0}\right)\right|<\epsilon
$$

showing that f is continuous at x_{0}.
Suppose that f is continuous at x_{0} and let $\epsilon>0$. Then there is some $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$, and such that $x_{0}-\delta>a$. Let $x_{0}-\delta<s<x_{0}$, and let t_{0}, \ldots, t_{n} be a partition of $[s, b]$ such that

$$
\operatorname{Var}_{f}[s, b]<\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|+\epsilon
$$

and such that none of t_{0}, \ldots, t_{n} is equal to x_{0}. Say that $t_{k}<x_{0}<t_{k+1}$. Then

$$
t_{0}, \ldots, t_{k}, x_{0}, t_{k+1}, \ldots, t_{n}
$$

is a partition of $[s, b]$. For $t_{k}<x<x_{0}$ we have $\left|x-x_{0}\right|<\delta$ and therefore

$$
\begin{aligned}
\operatorname{Var}_{f}[s, x]+\operatorname{Var}_{f}[x, b] & =\operatorname{Var}_{f}[s, b] \\
& <\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|+\epsilon \\
& \leq \sum_{i=1}^{k}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|+\left|f(x)-f\left(t_{k}\right)\right| \\
& +\left|f\left(x_{0}\right)-f(x)\right| \\
& +\left|f\left(t_{k+1}\right)-f\left(x_{0}\right)\right|+\sum_{i=k+2}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|+\epsilon \\
& \leq \operatorname{Var}_{f}[s, x]+\left|f(x)-f\left(x_{0}\right)\right|+\operatorname{Var}_{f}\left[x_{0}, b\right]+\epsilon \\
& <\operatorname{Var}_{f}[s, x]+\operatorname{Var}_{f}\left[x_{0}, b\right]+2 \epsilon
\end{aligned}
$$

giving

$$
\operatorname{Var}_{f}[x, b]-\operatorname{Var}_{f}\left[x_{0}, b\right]<2 \epsilon
$$

$\operatorname{As} \operatorname{Var}_{f}[a, b]=\operatorname{Var}_{f}[a, x]+\operatorname{Var}_{f}[x, b]$ and also $\operatorname{Var}_{f}[a, b]=\operatorname{Var}_{f}\left[a, x_{0}\right]+\operatorname{Var}_{f}\left[x_{0}, b\right]$, we have $F(x)+\operatorname{Var}_{f}[x, b]=F\left(x_{0}\right)+\operatorname{Var}_{f}\left[x_{0}, b\right]$, and therefore

$$
F\left(x_{0}\right)-F(x)<2 \epsilon
$$

Thus, if $t_{k}<x<x_{0}$ then $\left|F\left(x_{0}\right)-F(x)\right|<2 \epsilon$, showing that F is left-continuous at x_{0}. It is straightforward to show in the same way that F is right-continuous at x_{0}, and thus continuous at x_{0}.

If $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation, then Theorem 2 tells us that F and $F+f$ are nondecreasing functions. A monotone function is differentiable almost everywhere, ${ }^{2}$ and it follows that $f=(F+f)-F$ is differentiable almost everywhere.

2 Absolute continuity

Let $a<b$ and let $I=[a, b]$. A function $f: I \rightarrow \mathbb{C}$ is said to be absolutely continuous if for any $\epsilon>0$ there is some $\delta>0$ such that for any n and any collection of pairwise disjoint intervals $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)$ satisfying

$$
\sum_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)<\delta
$$

we have

$$
\sum_{i=1}^{n}\left|f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right|<\epsilon
$$

It is immediate that if f is absolutely continuous then f is uniformly continuous.

[^1]Lemma 3. If $f:[a, b] \rightarrow \mathbb{C}$ is absolutely continuous then f has bounded variation.

Proof. Because f is absolutely continuous, there is some $\delta>0$ such that if $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)$ are pairwise disjoint and

$$
\sum_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)<\delta,
$$

then

$$
\sum_{i=1}^{n}\left|f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right|<1
$$

Let N be an integer that is $>\frac{b-a}{\delta}$ and let $a=x_{0}<\cdots<x_{N}=b$ such that $x_{i}-x_{i-1}<\frac{b-a}{N}$ for each $i=1, \ldots, N$. Then

$$
\operatorname{Var}_{f}[a, b]=\sum_{i=1}^{N} \operatorname{Var}_{f}\left[x_{i-1}, x_{i}\right] \leq N
$$

showing that f has bounded variation.
Let λ be Lebesgue measure on \mathbb{R} and let \mathfrak{M} be the collection of Lebesgue measurable subsets of \mathbb{R}.

The following theorem establishes connections between absolute continuity of a function and Lebesgue measure. ${ }^{3}$ In the following theorem, we extend $f:[a, b] \rightarrow \mathbb{R}$ to $\mathbb{R} \rightarrow \mathbb{R}$ by defining $f(x)=f(b)$ for $x>b$ and $f(x)=f(a)$ for $x<a$. In particular, for any $x>b, f^{\prime}(x)$ exists and is equal to 0 , and for any $x<a, f^{\prime}(x)$ exists and is equal to 0.

Theorem 4. Suppose that $I=[a, b]$ and that $f: I \rightarrow \mathbb{R}$ is continuous and nondecreasing. Then the following statements are equivalent.

1. f is absolutely continuous.
2. If $E \subset I$ and $\lambda(E)=0$ then $\lambda(f(E))=0$. (In words: f has the Luzin property.)
3. f is differentiable λ-almost everywhere on $I, f^{\prime} \in L^{1}(\lambda)$, and

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d \lambda(t), \quad a \leq x \leq b
$$

Proof. Assume that f is absolutely continuous and let $E \subset I$ with $\lambda(E)=0$. Let $E_{0}=E \backslash\{a, b\} ;$ to prove that $\lambda(f(E))=0$ it suffices to prove that $\lambda\left(f\left(E_{0}\right)\right)=0$.

[^2]Let $\epsilon>0$. As f is absolutely continuous, there is some $\delta>0$ such that for any n and any collection of pairwise disjoint intervals $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)$ satisfying

$$
\sum_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)<\delta
$$

we have

$$
\sum_{i=1}^{n}\left|f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right|<\epsilon
$$

There is an open set V such that $E_{0} \subset V \subset I$ and such that $\lambda(V)<\delta$. (Lebesgue measure is outer regular.) There are countably many pairwise disjoint intervals $\left(\alpha_{i}, \beta_{i}\right)$ such that $V=\bigcup_{i}\left(\alpha_{i}, \beta_{i}\right)$. Then

$$
\sum_{i}\left(\beta_{i}-\alpha_{i}\right)=\lambda(V)<\delta
$$

so for any n,

$$
\sum_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)<\delta
$$

and because f is absolutely continuous it follows that

$$
\sum_{i=1}^{n}\left|f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right|<\epsilon
$$

This is true for all n, so

$$
\sum_{i}\left|f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right| \leq \epsilon
$$

Because f is continuous and nondecreasing, $f\left(\alpha_{i}, \beta_{i}\right)=\left(f\left(\alpha_{i}\right), f\left(\beta_{i}\right)\right)$ for each i. Therefore

$$
f(V)=f\left(\bigcup_{i}\left(\alpha_{i}, \beta_{i}\right)\right)=\bigcup_{i} f\left(\alpha_{i}, \beta_{i}\right)=\bigcup_{i}\left(f\left(\alpha_{i}\right), f\left(\beta_{i}\right)\right)
$$

which gives

$$
\lambda(f(V))=\sum_{i}\left(f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right)=\sum_{i}\left|f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right| \leq \epsilon
$$

This is true for all $\epsilon>0$, so $\lambda(f(V))=0$. Because $f\left(E_{0}\right) \subset f(V)$, it follows that $f\left(E_{0}\right) \in \mathfrak{M}$ (Lebesgue measure is complete) and that $\lambda\left(f\left(E_{0}\right)\right)=0$.

Assume that for all $E \subset I$ with $\lambda(E)=0, \lambda(f(E))=0$. Define $g: I \rightarrow \mathbb{R}$ by

$$
g(x)=x+f(x), \quad x \in I
$$

Because f is continuous and nondecreasing, g is continuous and strictly increasing. Thus if $(\alpha, \beta) \subset I$ then $g(\alpha, \beta)=(g(\alpha), g(\beta))$ and so

$$
\lambda(g(\alpha, \beta))=g(\beta)-g(\alpha)=\beta+f(\beta)-(\alpha+f(\alpha))=\beta-\alpha+f(\beta)-f(\alpha)
$$

showing that if $J \subset I$ is an interval then $\lambda(g(J))=\lambda(J)+\lambda(f(J))$. Suppose that $E \subset I$ and $\lambda(E)=0$, and let $\epsilon>0$. There are countably many pairwise disjoint intervals $\left(\alpha_{i}, \beta_{i}\right)$ such that $E \subset \bigcup_{i}\left(\alpha_{i}, \beta_{i}\right)$ and $\sum_{i}\left(\beta_{i}-\alpha_{i}\right)<\epsilon$, and because $\lambda(f(E))=0$, there are countably many pairwise disjoint intervals $\left(\gamma_{i}, \delta_{i}\right)$ such that $f(E) \subset \bigcup_{i}\left(\gamma_{i}, \delta_{i}\right)$ and $\sum_{i}\left(\delta_{i}-\gamma_{i}\right)<\epsilon$. Let

$$
N=f^{-1}\left(\bigcup_{i}\left(\gamma_{i}, \delta_{i}\right)\right) \cap \bigcup_{i}\left(\alpha_{i}, \beta_{i}\right)=\bigcup_{i, j}\left(f^{-1}\left(\gamma_{i}, \delta_{i}\right) \cap\left(\alpha_{i}, \beta_{i}\right)\right) \in \mathfrak{M}
$$

We check that

$$
\lambda(g(N))=\lambda(N)+\lambda(f(N))
$$

and because

$$
\lambda(N)+\lambda(f(N)) \leq \sum_{i}\left(\beta_{i}-\alpha_{i}\right)+\sum_{i}\left(\delta_{i}-\gamma_{i}\right)<2 \epsilon
$$

we have

$$
\lambda(g(N))<2 \epsilon
$$

Finally, $E \subset N$ so $g(E) \subset g(N)$. Therefore, for every $\epsilon>0$ there is some $N \in \mathfrak{M}$ with $g(E) \subset g(N)$ and $\lambda(g(N))<\epsilon$, from which it follows that $\lambda(g(E))=0$.

Suppose that $E \subset I$ belongs to \mathfrak{M}. Because $E \in \mathfrak{M}$, there are $E_{0}, E_{1} \in \mathfrak{M}$ such that $E=E_{0} \cup E_{1}, \lambda\left(E_{0}\right)=0$, and E_{1} is a countable union of closed sets (namely, an F_{σ}-set). On the one hand, as $E_{1} \subset I, E_{1}$ is a countable union of compact sets, and because g is continuous, $g\left(E_{1}\right)$ is a countable union of compact sets, and in particular belongs to \mathfrak{M}. On the other hand, because $\lambda\left(E_{0}\right)=0$, $g\left(E_{0}\right) \in \mathfrak{M}$. Therefore $g(E)=g\left(E_{0}\right) \cup g\left(E_{1}\right) \in \mathfrak{M}$. Define $\mu: \mathfrak{M} \rightarrow[0, \infty)$ by

$$
\mu(E)=\lambda(g(E \cap I)), \quad E \in \mathfrak{M}
$$

If E_{i} are countably many pairwise disjoint elements of \mathfrak{M}, then $g\left(E_{i} \cap I\right)$ are pairwise disjoint elements of \mathfrak{M}, hence

$$
\begin{aligned}
\mu\left(\bigcup_{i} E_{i}\right) & =\lambda\left(g\left(\left(\bigcup_{i} E_{i}\right) \cap I\right)\right) \\
& =\lambda\left(\bigcup_{i} g\left(E_{i} \cap I\right)\right) \\
& =\sum_{i} \lambda\left(g\left(E_{i} \cap I\right)\right) \\
& =\sum_{i} \mu\left(E_{i}\right)
\end{aligned}
$$

showing that μ is a measure. If $\lambda(E)=0$, then $\lambda(E \cap I)=0$ so $\lambda(g(E \cap I))=0$, i.e. $\mu(E)=0$. This shows that μ is absolutely continuous with respect to λ. Therefore by the Radon-Nikodym theorem ${ }^{4}$ there is a unique $h \in L^{1}(\lambda)$ such that

$$
\mu(E)=\int_{E} h d \lambda, \quad E \in \mathfrak{M}
$$

$h(x) \geq 0$ for λ-almost all $x \in \mathbb{R}$.
Suppose that $x \in \mathbb{R}$ and let $E=[a, x]$. Then $g(E)=[g(a), g(x)]$, and

$$
\mu(E)=\int_{E} h(t) d \lambda(t)=\int_{a}^{x} h(t) d \lambda(t) .
$$

On the other hand,

$$
\mu(E)=\lambda(g(E))=\lambda([g(a), g(x)])=g(x)-g(a)=x+f(x)-(a+f(a))
$$

Hence

$$
f(x)-f(a)=\int_{a}^{x} h(t) d \lambda(t)-(x-a),
$$

i.e.,

$$
f(x)-f(a)=\int_{a}^{x}(h(t)-1) d \lambda(t)
$$

By the Lebesgue differentiation theorem, ${ }^{5} f^{\prime}(x)=h(x)-1$ for λ-almost all $x \in \mathbb{R}$, and it follows that $f^{\prime} \in L^{1}(\lambda)$ and

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d \lambda(t), \quad x \in I
$$

Assume that f is differentiable λ-almost everywhere in $I, f^{\prime} \in L^{1}(\lambda)$, and

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d \lambda(t), \quad x \in I .
$$

Let $\epsilon>0$ and let $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)$ be pairwise disjoint intervals satisfying

$$
\sum_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)<\delta
$$

Because f is nondecreasing, for λ-almost all $x \in I, f^{\prime}(x) \geq 0$, and hence the measure μ defined by $d \mu=f^{\prime} d \lambda$ is absolutely continuous with respect to λ. It follows ${ }^{6}$ that there is some $\delta>0$ such that for $E \in \mathfrak{M}, \lambda(E)<\delta$ implies that $\mu(E)<\epsilon$. This gives us

$$
\mu\left(\bigcup_{i=1}^{n}\left(\alpha_{i}, \beta_{i}\right)\right)<\epsilon
$$

[^3]and as
$$
\mu\left(\alpha_{i}, \beta_{i}\right)=\int_{\alpha_{i}}^{\beta_{i}} f^{\prime}(t) d \lambda(t)=f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)
$$
we get
$$
\sum_{i=1}^{n} f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)<\epsilon
$$

This shows that f is absolutely continuous, completing the proof.
The following lemma establishes properties of the total variation of absolutely continuous functions. ${ }^{7}$
Lemma 5. Suppose that $I=[a, b]$ and that $f: I \rightarrow \mathbb{R}$ is absolutely continuous. Then the function $F: I \rightarrow \mathbb{R}$ defined by

$$
F(x)=\operatorname{Var}_{f}[a, x], \quad x \in I
$$

is absolutely continuous.
Proof. Let $\epsilon>0$. Because f is absolutely continuous, there is some $\delta>0$ such that if $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)$ are disjoint intervals with $\sum_{k=1}^{m}\left(b_{k}-a_{k}\right)<\delta$, then

$$
\sum_{k=1}^{m}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\epsilon
$$

Suppose that $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)$ are disjoint intervals with $\sum_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)<\delta$. If $\alpha_{i}=t_{i, 0}<\cdots<t_{i, m_{i}}=\beta_{i}$ for $i=1, \ldots, n$, then $\left(t_{i, j-1}, t_{i, j}\right), 1 \leq i \leq n$, $1 \leq j \leq m_{i}$, are disjoint intervals whose total length is $<\delta$, hence

$$
\sum_{i=1}^{n} \sum_{j=1}^{m_{i}}\left|f\left(t_{i, j}\right)-f\left(t_{i, j-1}\right)\right|<\epsilon
$$

It follows that

$$
\sum_{i=1}^{n}\left|F\left(\beta_{i}\right)-F\left(\alpha_{i}\right)\right|=\sum_{i=1}^{n} \operatorname{Var}_{f}\left[\alpha_{i}, \beta_{i}\right] \leq \epsilon
$$

which shows that F is absolutely continuous.
We now prove the fundamental theorem of calculus for absolutely continuous functions. ${ }^{8}$

Theorem 6. Suppose that $I=[a, b]$ and that $f: I \rightarrow \mathbb{R}$ is absolutely continuous. Then f is differentiable at almost all x in $I, f^{\prime} \in L^{1}(\lambda)$, and

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d \lambda(t), \quad x \in I
$$

[^4]Proof. Define $F: I \rightarrow \mathbb{R}$ by

$$
F(x)=\operatorname{Var}_{f}[a, x], \quad x \in I
$$

By Lemma 3, f has bounded variation, and then using Theorem 2, $F-f$ and $F+f$ are nondecreasing. Furthermore, by Lemma $5, F$ is absolutely continuous, so $F-f$ and $F+f$ are absolutely continuous. Let

$$
f_{1}=\frac{F+f}{2}, \quad f_{2}=\frac{F-f}{2}
$$

which are thus nondecreasing and absolutely continuous. Applying Theorem 4, we get that f_{1}, f_{2} are differentiable at almost all $x \in I, f_{1}^{\prime}, f_{2}^{\prime} \in L^{1}(\lambda)$, and

$$
f_{1}(x)-f_{1}(a)=\int_{a}^{x} f_{1}^{\prime}(t) d \lambda(t), \quad a \leq x \leq b
$$

and

$$
f_{2}(x)-f_{2}(a)=\int_{a}^{x} f_{2}^{\prime}(t) d \lambda(t), \quad a \leq x \leq b
$$

Because $f=f_{1}-f_{2}, f$ is differentiable at almost all $x \in I, f^{\prime}=f_{1}^{\prime}-f_{2}^{\prime} \in L^{1}(\lambda)$, and

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d \lambda(t), \quad a \leq x \leq b
$$

proving the claim.

3 Borel sets

Let $I=[a, b]$. Denote by $C(I)$ the set of continuous functions $I \rightarrow \mathbb{C}$, which with the norm

$$
\|f\|_{C(I)}=\sup _{x \in I}|f(x)|, \quad f \in C(I)
$$

is a Banach space. Denote by $A C(I)$ the set of absolutely continuous functions $I \rightarrow \mathbb{C}$. Let $\mathscr{B}_{C(I)}$ be the Borel σ-algebra of $C(I)$. We have $A C(I) \subset C(I)$, and in the following theorem we prove that $A C(I)$ is a Borel set in $C(I)$.

Theorem 7. $A C(I) \in \mathscr{B}_{C(I)}$.
Proof. If X, Y are Polish spaces, $f: X \rightarrow Y$ is continuous, $A \in \mathscr{B}_{X}$, and $f \mid A$ is injective, then $f(A) \in \mathscr{B}_{Y} \cdot{ }^{9}$ Let $X=\mathbb{C} \times L^{1}(I)$, which is a Banach space with the norm

$$
\|(A, g)\|_{X}=|A|+\int_{a}^{b}|g| d \lambda, \quad(A, g) \in X
$$

[^5]Furthermore, \mathbb{C} and $L^{1}(I)$ are separable and thus so is X, so X is indeed a Polish space. The Banach space $C(I)$ is separable and thus is a Polish space. Define $\Phi: X \rightarrow C(I)$ by

$$
\Phi(A, g)(x)=A+\int_{a}^{x} g(t) d \lambda(t), \quad(A, g) \in X, \quad x \in I
$$

For $\left(A_{1}, g_{1}\right),\left(A_{2}, g_{2}\right) \in X$,

$$
\begin{aligned}
\left\|\Phi\left(A_{1}, g_{1}\right)-\Phi\left(A_{2}, g_{2}\right)\right\|_{C(I)} & =\left\|\left(A_{1}-A_{2}\right)+\int_{a}^{x}\left(g_{1}(t)-g_{2}(t)\right) d \lambda(t)\right\|_{C(I)} \\
& =\left|A_{1}-A_{2}\right|+\sup _{x \in I}\left|\int_{a}^{x}\left(g_{1}(t)-g_{2}(t)\right) d \lambda(t)\right| \\
& \leq\left|A_{1}-A_{2}\right|+\int_{a}^{b}\left|g_{1}(t)-g_{2}(t)\right| d \lambda(t) \\
& =\left\|\left(A_{1}, g_{1}\right)-\left(A_{2}, g_{2}\right)\right\|_{X}
\end{aligned}
$$

which shows that $\Phi: X \rightarrow C(I)$ is continuous.
Let $(A, g) \in X$ and $\epsilon>0$. Because $g \in L^{1}(I)$, there is some $\delta>0$ such that if $\lambda(E)<\delta$ then $\int_{E}|g| d \lambda<\epsilon$. ${ }^{10}$ If $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)$ are disjoint intervals whose total length is $<\delta$, then, with $E=\bigcup_{i=1}^{n}\left(\alpha_{i}, \beta_{i}\right)$,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\Phi(A, g)\left(\beta_{i}\right)-\Phi(A, g)\left(\alpha_{i}\right)\right| & =\sum_{i=1}^{n}\left|\int_{\alpha_{i}}^{\beta_{i}} g(t) d \lambda(t)\right| \\
& \leq \sum_{i=1}^{n} \int_{\alpha_{i}}^{\beta_{i}}|g(t)| d \lambda(t) \\
& =\int_{E}|g| d \lambda \\
& <\epsilon
\end{aligned}
$$

showing that $\Phi(A, g)$ is absolutely continuous. On the other hand, let $f \in$ $A C(I)$. From Theorem 6, f is differentiable at almost all $x \in I, f^{\prime} \in L^{1}(I)$, and

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d \lambda(t), \quad x \in I
$$

Then $\left(f(a), f^{\prime}\right) \in X$, and the above gives us, for all $x \in I$,

$$
\Phi\left(f(a), f^{\prime}\right)(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d \lambda(t)=f(x)
$$

thus $\Phi\left(f(a), f^{\prime}\right)=f$. Therefore

$$
\Phi(X)=A C(I)
$$

[^6]If $\Phi\left(A_{1}, g_{1}\right)=\Phi\left(A_{2}, g_{2}\right)$, then $\Phi\left(A_{1}, g_{1}\right)(a)=\Phi\left(A_{2}, g_{2}\right)(a)$ gives $A_{1}=A_{2}$. Using this, and defining $G: I \rightarrow \mathbb{C}$ by $G=\int_{a}^{x}\left(g_{1}(t)-g_{2}(t)\right) d \lambda(t)$, we have $G(x)=0$ for all $x \in I$. Then $G^{\prime}(x)=0$ for all $x \in I$, and by the Lebesgue differentiation theorem ${ }^{11}$ we have $G^{\prime}(x)=g_{1}(x)-g_{2}(x)$ for almost all $x \in I$. That is, $g_{1}(x)=g_{2}(x)$ for almost all $x \in I$, and thus in $L^{1}(I)$ we have $g_{1}=g_{2}$. Therefore $\Phi: X \rightarrow C(I)$ is injective.

Therefore $\Phi(X) \in \mathscr{B}_{C(I)}$.

[^7]
[^0]: ${ }^{1}$ Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed., p. 377 , Theorem 39.10.

[^1]: ${ }^{2}$ Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed., p. 375, Theorem 39.9.

[^2]: ${ }^{3}$ Walter Rudin, Real and Complex Analysis, third ed., p. 146, Theorem 7.18.

[^3]: ${ }^{4}$ Walter Rudin, Real and Complex Analysis, third ed., p. 121, Theorem 6.10.
 ${ }^{5}$ Walter Rudin, Real and Complex Analysis, third ed., p. 141, Theorem 7.11.
 ${ }^{6}$ Walter Rudin, Real and Complex Analysis, third ed., p. 124, Theorem 6.11.

[^4]: ${ }^{7}$ Walter Rudin, Real and Complex Analysis, third ed., p. 147, Theorem 7.19.
 ${ }^{8}$ Walter Rudin, Real and Complex Analysis, third ed., p. 148, Theorem 7.20.

[^5]: ${ }^{9}$ Alexander Kechris, Classical Descriptive Set Theory, p. 89, Theorem 15.1.

[^6]: ${ }^{10}$ Walter Rudin, Real and Complex Analysis, third ed., p. 32, exercise 1.12.

[^7]: ${ }^{11}$ Walter Rudin, Real and Complex Analysis, third ed., p. 141, Theorem 7.11.

