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1 Total variation

Let a < b. A partition of [a, b] is a sequence t0, t1, . . . , tn such that

a = t0 < t1 < · · · < tn = b.

The total variation of a function f : [a, b] → C is

Varf [a, b] = sup

{
n∑

i=1

|f(ti)− f(ti−1)| : t0, t1, . . . , tn is a partition of [a, b]

}
.

If Varf [a, b] < ∞ then we say that f has bounded variation.

Lemma 1. If a ≤ c < e < d ≤ b, then

Varf [c, d] = Varf [c, e] + Varf [e, d].

The following theorem establishes properties of functions of bounded varia-
tion.1

Theorem 2. Suppose that f : [a, b] → R is of bounded variation and define

F (x) = Varf [a, x], x ∈ [a, b].

Then:

1. |f(y)− f(x)| ≤ F (y)− F (x) for all a ≤ x < y ≤ b.

2. F is a nondecreasing function.

3. F − f and F + f are nondecreasing functions.

4. For x0 ∈ [a, b], f is continuous at x0 if and only if F is continuous at x0.

1Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed.,
p. 377, Theorem 39.10.
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Proof. If t0, . . . , tn is a partition of [a, x] then t0, . . . , tn, y is a partition of [a, y],
so

n∑
i=1

|f(ti)− f(ti−1)|+ |f(y)− f(x)| ≤ F (y).

Since this is true for any partition t0, . . . , tn of [a, x],

F (x) + |f(y)− f(x)| ≤ F (y).

This shows in particular that F (x) ≤ F (y), and thus that F is nondecreasing.
For a ≤ x < y ≤ b,

f(y)− f(x) ≤ |f(y)− f(x)| ≤ F (y)− F (x),

thus
F (x)− f(x) ≤ F (y)− f(y),

showing that x 7→ F (x)− f(x) is nondecreasing. Likewise,

f(x)− f(y) ≤ |f(y)− f(x)| ≤ F (y)− F (x),

thus
f(x) + F (x) ≤ f(y) + F (y),

showing that x 7→ F (x) + f(x) is nondecreasing.
Suppose that F is continuous at x0 and let ϵ > 0. There is some δ > 0 such

that |x− x0| < δ implies that |F (x)− F (x0)| < ϵ. If |x− x0| < δ, then

|f(x)− f(x0)| ≤ |F (x)− F (x0)| < ϵ,

showing that f is continuous at x0.
Suppose that f is continuous at x0 and let ϵ > 0. Then there is some δ > 0

such that |x−x0| < δ implies that |f(x)− f(x0)| < ϵ, and such that x0− δ > a.
Let x0 − δ < s < x0, and let t0, . . . , tn be a partition of [s, b] such that

Varf [s, b] <

n∑
i=1

|f(ti)− f(ti−1)|+ ϵ

and such that none of t0, . . . , tn is equal to x0. Say that tk < x0 < tk+1. Then

t0, . . . , tk, x0, tk+1, . . . , tn
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is a partition of [s, b]. For tk < x < x0 we have |x− x0| < δ and therefore

Varf [s, x] + Varf [x, b] = Varf [s, b]

<

n∑
i=1

|f(ti)− f(ti−1)|+ ϵ

≤
k∑

i=1

|f(ti)− f(ti−1)|+ |f(x)− f(tk)|

+ |f(x0)− f(x)|

+ |f(tk+1)− f(x0)|+
n∑

i=k+2

|f(ti)− f(ti−1)|+ ϵ

≤ Varf [s, x] + |f(x)− f(x0)|+Varf [x0, b] + ϵ

< Varf [s, x] + Varf [x0, b] + 2ϵ,

giving
Varf [x, b]−Varf [x0, b] < 2ϵ.

As Varf [a, b] = Varf [a, x]+Varf [x, b] and also Varf [a, b] = Varf [a, x0]+Varf [x0, b],
we have F (x) + Varf [x, b] = F (x0) + Varf [x0, b], and therefore

F (x0)− F (x) < 2ϵ.

Thus, if tk < x < x0 then |F (x0)−F (x)| < 2ϵ, showing that F is left-continuous
at x0. It is straightforward to show in the same way that F is right-continuous
at x0, and thus continuous at x0.

If f : [a, b] → R is of bounded variation, then Theorem 2 tells us that F
and F + f are nondecreasing functions. A monotone function is differentiable
almost everywhere,2 and it follows that f = (F + f)−F is differentiable almost
everywhere.

2 Absolute continuity

Let a < b and let I = [a, b]. A function f : I → C is said to be absolutely
continuous if for any ϵ > 0 there is some δ > 0 such that for any n and any
collection of pairwise disjoint intervals (α1, β1), . . . , (αn, βn) satisfying

n∑
i=1

(βi − αi) < δ,

we have
n∑

i=1

|f(βi)− f(αi)| < ϵ.

It is immediate that if f is absolutely continuous then f is uniformly continuous.

2Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed.,
p. 375, Theorem 39.9.
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Lemma 3. If f : [a, b] → C is absolutely continuous then f has bounded
variation.

Proof. Because f is absolutely continuous, there is some δ > 0 such that if
(α1, β1), . . . , (αn, βn) are pairwise disjoint and

n∑
i=1

(βi − αi) < δ,

then
n∑

i=1

|f(βi)− f(αi)| < 1.

Let N be an integer that is > b−a
δ and let a = x0 < · · · < xN = b such that

xi − xi−1 < b−a
N for each i = 1, . . . , N . Then

Varf [a, b] =

N∑
i=1

Varf [xi−1, xi] ≤ N,

showing that f has bounded variation.

Let λ be Lebesgue measure on R and let M be the collection of Lebesgue
measurable subsets of R.

The following theorem establishes connections between absolute continuity
of a function and Lebesgue measure.3 In the following theorem, we extend
f : [a, b] → R to R → R by defining f(x) = f(b) for x > b and f(x) = f(a) for
x < a. In particular, for any x > b, f ′(x) exists and is equal to 0, and for any
x < a, f ′(x) exists and is equal to 0.

Theorem 4. Suppose that I = [a, b] and that f : I → R is continuous and
nondecreasing. Then the following statements are equivalent.

1. f is absolutely continuous.

2. If E ⊂ I and λ(E) = 0 then λ(f(E)) = 0. (In words: f has the Luzin
property.)

3. f is differentiable λ-almost everywhere on I, f ′ ∈ L1(λ), and

f(x)− f(a) =

∫ x

a

f ′(t)dλ(t), a ≤ x ≤ b.

Proof. Assume that f is absolutely continuous and let E ⊂ I with λ(E) = 0. Let
E0 = E\{a, b}; to prove that λ(f(E)) = 0 it suffices to prove that λ(f(E0)) = 0.

3Walter Rudin, Real and Complex Analysis, third ed., p. 146, Theorem 7.18.
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Let ϵ > 0. As f is absolutely continuous, there is some δ > 0 such that for any n
and any collection of pairwise disjoint intervals (α1, β1), . . . , (αn, βn) satisfying

n∑
i=1

(βi − αi) < δ,

we have
n∑

i=1

|f(βi)− f(αi)| < ϵ.

There is an open set V such that E0 ⊂ V ⊂ I and such that λ(V ) < δ. (Lebesgue
measure is outer regular.) There are countably many pairwise disjoint intervals
(αi, βi) such that V =

⋃
i(αi, βi). Then∑

i

(βi − αi) = λ(V ) < δ,

so for any n,
n∑

i=1

(βi − αi) < δ,

and because f is absolutely continuous it follows that

n∑
i=1

|f(βi)− f(αi)| < ϵ.

This is true for all n, so ∑
i

|f(βi)− f(αi)| ≤ ϵ.

Because f is continuous and nondecreasing, f(αi, βi) = (f(αi), f(βi)) for each
i. Therefore

f(V ) = f

(⋃
i

(αi, βi)

)
=
⋃
i

f(αi, βi) =
⋃
i

(f(αi), f(βi)),

which gives

λ(f(V )) =
∑
i

(f(βi)− f(αi)) =
∑
i

|f(βi)− f(αi)| ≤ ϵ.

This is true for all ϵ > 0, so λ(f(V )) = 0. Because f(E0) ⊂ f(V ), it follows
that f(E0) ∈ M (Lebesgue measure is complete) and that λ(f(E0)) = 0.

Assume that for all E ⊂ I with λ(E) = 0, λ(f(E)) = 0. Define g : I → R
by

g(x) = x+ f(x), x ∈ I.
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Because f is continuous and nondecreasing, g is continuous and strictly increas-
ing. Thus if (α, β) ⊂ I then g(α, β) = (g(α), g(β)) and so

λ(g(α, β)) = g(β)− g(α) = β + f(β)− (α+ f(α)) = β − α+ f(β)− f(α),

showing that if J ⊂ I is an interval then λ(g(J)) = λ(J)+λ(f(J)). Suppose that
E ⊂ I and λ(E) = 0, and let ϵ > 0. There are countably many pairwise disjoint
intervals (αi, βi) such that E ⊂

⋃
i(αi, βi) and

∑
i(βi − αi) < ϵ, and because

λ(f(E)) = 0, there are countably many pairwise disjoint intervals (γi, δi) such
that f(E) ⊂

⋃
i(γi, δi) and

∑
i(δi − γi) < ϵ. Let

N = f−1

(⋃
i

(γi, δi)

)
∩
⋃
i

(αi, βi) =
⋃
i,j

(f−1(γi, δi) ∩ (αi, βi)) ∈ M.

We check that
λ(g(N)) = λ(N) + λ(f(N)),

and because

λ(N) + λ(f(N)) ≤
∑
i

(βi − αi) +
∑
i

(δi − γi) < 2ϵ

we have
λ(g(N)) < 2ϵ.

Finally, E ⊂ N so g(E) ⊂ g(N). Therefore, for every ϵ > 0 there is some N ∈ M
with g(E) ⊂ g(N) and λ(g(N)) < ϵ, from which it follows that λ(g(E)) = 0.

Suppose that E ⊂ I belongs to M. Because E ∈ M, there are E0, E1 ∈ M
such that E = E0 ∪ E1, λ(E0) = 0, and E1 is a countable union of closed sets
(namely, an Fσ-set). On the one hand, as E1 ⊂ I, E1 is a countable union of
compact sets, and because g is continuous, g(E1) is a countable union of compact
sets, and in particular belongs to M. On the other hand, because λ(E0) = 0,
g(E0) ∈ M. Therefore g(E) = g(E0) ∪ g(E1) ∈ M. Define µ : M → [0,∞) by

µ(E) = λ(g(E ∩ I)), E ∈ M.

If Ei are countably many pairwise disjoint elements of M, then g(Ei ∩ I) are
pairwise disjoint elements of M, hence

µ

(⋃
i

Ei

)
= λ

(
g

((⋃
i

Ei

)
∩ I

))

= λ

(⋃
i

g(Ei ∩ I)

)
=
∑
i

λ(g(Ei ∩ I))

=
∑
i

µ(Ei),
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showing that µ is a measure. If λ(E) = 0, then λ(E∩ I) = 0 so λ(g(E∩ I)) = 0,
i.e. µ(E) = 0. This shows that µ is absolutely continuous with respect to λ.
Therefore by the Radon-Nikodym theorem4 there is a unique h ∈ L1(λ) such
that

µ(E) =

∫
E

hdλ, E ∈ M.

h(x) ≥ 0 for λ-almost all x ∈ R.
Suppose that x ∈ R and let E = [a, x]. Then g(E) = [g(a), g(x)], and

µ(E) =

∫
E

h(t)dλ(t) =

∫ x

a

h(t)dλ(t).

On the other hand,

µ(E) = λ(g(E)) = λ([g(a), g(x)]) = g(x)− g(a) = x+ f(x)− (a+ f(a)).

Hence

f(x)− f(a) =

∫ x

a

h(t)dλ(t)− (x− a),

i.e.,

f(x)− f(a) =

∫ x

a

(h(t)− 1)dλ(t).

By the Lebesgue differentiation theorem,5 f ′(x) = h(x) − 1 for λ-almost all
x ∈ R, and it follows that f ′ ∈ L1(λ) and

f(x)− f(a) =

∫ x

a

f ′(t)dλ(t), x ∈ I.

Assume that f is differentiable λ-almost everywhere in I, f ′ ∈ L1(λ), and

f(x)− f(a) =

∫ x

a

f ′(t)dλ(t), x ∈ I.

Let ϵ > 0 and let (α1, β1), . . . , (αn, βn) be pairwise disjoint intervals satisfying

n∑
i=1

(βi − αi) < δ.

Because f is nondecreasing, for λ-almost all x ∈ I, f ′(x) ≥ 0, and hence the
measure µ defined by dµ = f ′dλ is absolutely continuous with respect to λ. It
follows6 that there is some δ > 0 such that for E ∈ M, λ(E) < δ implies that
µ(E) < ϵ. This gives us

µ

(
n⋃

i=1

(αi, βi)

)
< ϵ,

4Walter Rudin, Real and Complex Analysis, third ed., p. 121, Theorem 6.10.
5Walter Rudin, Real and Complex Analysis, third ed., p. 141, Theorem 7.11.
6Walter Rudin, Real and Complex Analysis, third ed., p. 124, Theorem 6.11.
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and as

µ(αi, βi) =

∫ βi

αi

f ′(t)dλ(t) = f(βi)− f(αi),

we get
n∑

i=1

f(βi)− f(αi) < ϵ.

This shows that f is absolutely continuous, completing the proof.

The following lemma establishes properties of the total variation of abso-
lutely continuous functions.7

Lemma 5. Suppose that I = [a, b] and that f : I → R is absolutely continuous.
Then the function F : I → R defined by

F (x) = Varf [a, x], x ∈ I

is absolutely continuous.

Proof. Let ϵ > 0. Because f is absolutely continuous, there is some δ > 0 such
that if (a1, b1), . . . , (am, bm) are disjoint intervals with

∑m
k=1(bk − ak) < δ, then

m∑
k=1

|f(bk)− f(ak)| < ϵ.

Suppose that (α1, β1), . . . , (αn, βn) are disjoint intervals with
∑n

i=1(βi−αi) < δ.
If αi = ti,0 < · · · < ti,mi

= βi for i = 1, . . . , n, then (ti,j−1, ti,j), 1 ≤ i ≤ n,
1 ≤ j ≤ mi, are disjoint intervals whose total length is < δ, hence

n∑
i=1

mi∑
j=1

|f(ti,j)− f(ti,j−1)| < ϵ.

It follows that

n∑
i=1

|F (βi)− F (αi)| =
n∑

i=1

Varf [αi, βi] ≤ ϵ,

which shows that F is absolutely continuous.

We now prove the fundamental theorem of calculus for absolutely con-
tinuous functions.8

Theorem 6. Suppose that I = [a, b] and that f : I → R is absolutely continu-
ous. Then f is differentiable at almost all x in I, f ′ ∈ L1(λ), and

f(x)− f(a) =

∫ x

a

f ′(t)dλ(t), x ∈ I.

7Walter Rudin, Real and Complex Analysis, third ed., p. 147, Theorem 7.19.
8Walter Rudin, Real and Complex Analysis, third ed., p. 148, Theorem 7.20.
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Proof. Define F : I → R by

F (x) = Varf [a, x], x ∈ I.

By Lemma 3, f has bounded variation, and then using Theorem 2, F − f and
F+f are nondecreasing. Furthermore, by Lemma 5, F is absolutely continuous,
so F − f and F + f are absolutely continuous. Let

f1 =
F + f

2
, f2 =

F − f

2
,

which are thus nondecreasing and absolutely continuous. Applying Theorem 4,
we get that f1, f2 are differentiable at almost all x ∈ I, f ′

1, f
′
2 ∈ L1(λ), and

f1(x)− f1(a) =

∫ x

a

f ′
1(t)dλ(t), a ≤ x ≤ b

and

f2(x)− f2(a) =

∫ x

a

f ′
2(t)dλ(t), a ≤ x ≤ b.

Because f = f1−f2, f is differentiable at almost all x ∈ I, f ′ = f ′
1−f ′

2 ∈ L1(λ),
and

f(x)− f(a) =

∫ x

a

f ′(t)dλ(t), a ≤ x ≤ b,

proving the claim.

3 Borel sets

Let I = [a, b]. Denote by C(I) the set of continuous functions I → C, which
with the norm

∥f∥C(I) = sup
x∈I

|f(x)|, f ∈ C(I),

is a Banach space. Denote by AC(I) the set of absolutely continuous functions
I → C. Let BC(I) be the Borel σ-algebra of C(I). We have AC(I) ⊂ C(I), and
in the following theorem we prove that AC(I) is a Borel set in C(I).

Theorem 7. AC(I) ∈ BC(I).

Proof. If X,Y are Polish spaces, f : X → Y is continuous, A ∈ BX , and f |A is
injective, then f(A) ∈ BY .

9 Let X = C× L1(I), which is a Banach space with
the norm

∥(A, g)∥X = |A|+
∫ b

a

|g|dλ, (A, g) ∈ X.

9Alexander Kechris, Classical Descriptive Set Theory, p. 89, Theorem 15.1.
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Furthermore, C and L1(I) are separable and thus so is X, so X is indeed a
Polish space. The Banach space C(I) is separable and thus is a Polish space.
Define Φ : X → C(I) by

Φ(A, g)(x) = A+

∫ x

a

g(t)dλ(t), (A, g) ∈ X, x ∈ I.

For (A1, g1), (A2, g2) ∈ X,

∥Φ(A1, g1)− Φ(A2, g2)∥C(I) =

∥∥∥∥(A1 −A2) +

∫ x

a

(g1(t)− g2(t))dλ(t)

∥∥∥∥
C(I)

= |A1 −A2|+ sup
x∈I

∣∣∣∣∫ x

a

(g1(t)− g2(t))dλ(t)

∣∣∣∣
≤ |A1 −A2|+

∫ b

a

|g1(t)− g2(t)|dλ(t)

= ∥(A1, g1)− (A2, g2)∥X ,

which shows that Φ : X → C(I) is continuous.
Let (A, g) ∈ X and ϵ > 0. Because g ∈ L1(I), there is some δ > 0 such that

if λ(E) < δ then
∫
E
|g|dλ < ϵ.10 If (α1, β1), . . . , (αn, βn) are disjoint intervals

whose total length is < δ, then, with E =
⋃n

i=1(αi, βi),

n∑
i=1

|Φ(A, g)(βi)− Φ(A, g)(αi)| =
n∑

i=1

∣∣∣∣∣
∫ βi

αi

g(t)dλ(t)

∣∣∣∣∣
≤

n∑
i=1

∫ βi

αi

|g(t)|dλ(t)

=

∫
E

|g|dλ

< ϵ,

showing that Φ(A, g) is absolutely continuous. On the other hand, let f ∈
AC(I). From Theorem 6, f is differentiable at almost all x ∈ I, f ′ ∈ L1(I), and

f(x)− f(a) =

∫ x

a

f ′(t)dλ(t), x ∈ I.

Then (f(a), f ′) ∈ X, and the above gives us, for all x ∈ I,

Φ(f(a), f ′)(x) = f(a) +

∫ x

a

f ′(t)dλ(t) = f(x),

thus Φ(f(a), f ′) = f . Therefore

Φ(X) = AC(I).

10Walter Rudin, Real and Complex Analysis, third ed., p. 32, exercise 1.12.
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If Φ(A1, g1) = Φ(A2, g2), then Φ(A1, g1)(a) = Φ(A2, g2)(a) gives A1 = A2.
Using this, and defining G : I → C by G =

∫ x

a
(g1(t) − g2(t))dλ(t), we have

G(x) = 0 for all x ∈ I. Then G′(x) = 0 for all x ∈ I, and by the Lebesgue
differentiation theorem11 we have G′(x) = g1(x) − g2(x) for almost all x ∈ I.
That is, g1(x) = g2(x) for almost all x ∈ I, and thus in L1(I) we have g1 = g2.
Therefore Φ : X → C(I) is injective.

Therefore Φ(X) ∈ BC(I).

11Walter Rudin, Real and Complex Analysis, third ed., p. 141, Theorem 7.11.
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