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1 Introduction

If X is a topological vector space, we denote by X∗ the set of continuous linear
functionals on X. With the weak-* topology, X∗ is a locally convex space,
whether or not X is a locally convex space. (But in this note, we only talk
about locally convex spaces.)

The purpose of this note is to collect the material given in Walter Rudin,
Functional Analysis, second ed., chapters 6 and 7, involved in stating and prov-
ing Sobolev’s lemma.

2 Test functions

Suppose that Ω is an open subset of Rn. We denote by D(Ω) the set of all
ϕ ∈ C∞(Ω) such that suppϕ is a compact subset of Ω. Elements of D(Ω) are
called test functions. For N = 0, 1, . . . and ϕ ∈ D(Ω), write

∥ϕ∥N = sup{|(Dαϕ)(x)| : x ∈ Ω, |α| ≤ N},

where
Dα = Dα1

1 · · ·Dαn
n , |α| = α1 + · · ·+ αn.

For each compact subset K of Ω, we define

DK = {ϕ ∈ D(Ω) : suppϕ ⊆ K},

and define τK to be the locally convex topology on DK determined by the family
of seminorms {∥·∥N : N ≥ 0}. One proves that DK with the topology τK is a
Fréchet space. As sets,

D(Ω) =
⋃
K

DK .

Define β to be the collection of all convex balanced subsets W of D(Ω) such
that for every compact subset K of Ω we have W ∩ DK ∈ τK ; to say that W is
balanced means that if c is a complex number with |c| ≤ 1 then cW ⊆ W . One
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proves that {ϕ +W : ϕ ∈ D(Ω),W ∈ β} is a basis for a topology τ on D(Ω),
that β is a local basis at 0 for this topology, and that with the topology τ , D(Ω)
is a locally convex space.1 For each compact subset K of Ω, one proves that the
topology τK is equal to the subspace topology on DK inherited from D(Ω).2

We write D ′(Ω) = (D(Ω))∗, and elements of D ′(Ω) are called distributions.
With the weak-* topology, D ′(Ω) is a locally convex space.

It is a fact that a linear functional Λ on D(Ω) is continuous if and only if for
every compact subset K of Ω there is a nonnegative integer N and a constant
C such that |Λϕ| ≤ C ∥ϕ∥N for all ϕ ∈ DK .3

For Λ ∈ D ′(Ω) and α a multi-index, we define

(DαΛ)(ϕ) = (−1)|α|Λ(Dαϕ), ϕ ∈ D(Ω).

Let K be a compact subset of Ω. As Λ is continuous, there is a nonnegative
integer N and a constant C such that |Λϕ| ≤ C ∥ϕ∥N for all ϕ ∈ DK . Then

|(DαΛ)(ϕ)| = |Λ(Dαϕ)| ≤ C ∥Dαϕ∥N ≤ C ∥ϕ∥N+|α| ,

which shows that DαΛ ∈ D ′(Ω).
The Leibniz formula is the statement that for all f, g ∈ C∞(Rn),

Dα(fg) =
∑
β≤α

(
α

β

)
(Dα−βf)(Dβg),

where
(
α
β

)
are multinomial coefficients.

For Λ ∈ D ′(Ω) and f ∈ C∞(Ω), we define

(fΛ)(ϕ) = Λ(fϕ), ϕ ∈ D(Ω);

this makes sense because fϕ ∈ D(Ω) when ϕ ∈ D(Ω). It is apparent that fΛ is
linear, and in the following lemma we prove that fΛ is continuous.4

Lemma 1. If Λ ∈ D ′(Ω) and f ∈ C∞(Ω), then fΛ ∈ D ′(Ω).

Proof. Suppose that K is a compact subset of Ω. Because Λ is continuous, there
is some nonnegative integer N and some constant C such that

|Λϕ| ≤ C ∥ϕ∥N , ϕ ∈ DK .

For |α| ≤ N , by the Leibniz formula, for all ϕ ∈ DK ,

Dα(fϕ) =
∑
β≤α

(
α

β

)
(Dα−βf)(Dβϕ).

1Walter Rudin, Functional Analysis, second ed., p. 152, Theorem 6.4; cf. Helmut H.
Schaefer, Topological Vector Spaces, p. 57.

2Walter Rudin, Functional Analysis, second ed., p. 153, Theorem 6.5.
3Walter Rudin, Functional Analysis, second ed., p. 156, Theorem 6.8.
4Walter Rudin, Functional Analysis, second ed., p. 159, §6.15.
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Because f ∈ C∞(Ω), there is some Cα such that |(Dα−βf)(x)| ≤ Cα for β ≤ α
and for x ∈ K. Using ϕ(x) = 0 for x ̸∈ K, the above statement of the Leibniz
formula, and the inequality just obtained, it follows that there is some C ′

α such
that |(Dα(fϕ))(x)| ≤ C ′

α ∥ϕ∥N for all x ∈ Ω. This gives

∥fϕ∥N = sup
|α|≤N

sup
x∈Ω

|(Dα(fϕ))(x)| ≤ sup
|α|≤N

C ′
α ∥ϕ∥N = C ′ ∥ϕ∥N ;

the last equality is how we define C ′, which is a maximum of finitely many C ′
α

and so finite. Then,

|(fΛ)(ϕ)| = |Λ(fϕ)| ≤ C ∥fϕ∥N ≤ CC ′ ∥ϕ∥N , ϕ ∈ DK .

This bound shows that fΛ is continuous.

The above lemma shows that fΛ ∈ D ′(Ω) when f ∈ C∞(Ω) and Λ ∈ D ′(Ω).
Therefore Dα(fΛ) ∈ D(Ω), and the following lemma, proved in Rudin, states
that the Leibniz formula can be used with fΛ.5

Lemma 2. If f ∈ C∞(Ω) and Λ ∈ D ′(Ω), then

Dα(fΛ) =
∑
β≤α

(
α

β

)
(Dα−βf)(DβΛ).

If f : Ω → C is locally integrable, define

Λϕ =

∫
Ω

ϕ(x)f(x)dx, ϕ ∈ D(Ω).

For ϕ ∈ DK ,

|Λϕ| ≤ ∥ϕ∥0
∫
K

|f |dx,

from which it follows that Λ is continuous. If µ is a complex Borel measure on
Rn or a positive Borel measure on Rn that assigns finite measure to compact
sets, define

Λϕ =

∫
Ω

ϕdµ, ϕ ∈ D(Ω).

For ϕ ∈ DK ,
|Λϕ| ≤ ∥ϕ∥0 |µ|(K),

from which it follows that Λ is continuous. Thus, we can encode certain functions
and measures as distributions. I will dare to say that we can encode most
functions and measures that we care about as distributions.

If Λ1,Λ2 ∈ D ′(Ω) and ω is an open subset of Ω, we say that Λ1 = Λ2 in ω
if Λ1ϕ = Λ2ϕ for all ϕ ∈ D(ω).

Let Λ ∈ D ′(Ω) and let ω be an open subset of Ω. We say that Λ vanishes
on ω if Λϕ = 0 for all ϕ ∈ D(ω). Taking W to be the union of all open subsets
ω of Ω on which Λ vanishes, we define the support of Λ to be the set Ω \W .

5Walter Rudin, Functional Analysis, second ed., p. 160, §6.15.
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3 The Fourier transform

Let C0(Rn) be the set of those continuous functions f : Rn → C such that for
every ϵ > 0, there is some compact set K such that |f(x)| < ϵ for x ̸∈ K. With
the supremum norm ∥·∥∞, C0(Rn) is a Banach space.

Let mn be normalized Lebesgue measure on Rn:

dmn(x) = (2π)−n/2dx.

Using mn, we define

∥f∥Lp =

(∫
Rn

|f |pdmn

)1/p

, 1 ≤ p <∞

and

(f ∗ g)(x) =
∫
Rn

f(x− y)g(y)dmn(y).

For t ∈ Rn, define et : Rn → C by

et(x) = exp(it · x), x ∈ Rn.

The Fourier transform of f ∈ L1(Rn) is the function f̂ : Rn → C defined by

(Ff)(t) = f̂(t) =

∫
Rn

fe−tdmn, t ∈ Rn.

Using the dominated convergence theorem, one shows that f̂ is continuous.
For f ∈ C∞(Rn) and N a nonnegative integer, write

pN (f) = sup
|α|≤N

sup
x∈Rn

(1 + |x|2)N |(Dαf)(x)|,

and let Sn be the set of those f ∈ C∞(Rn) such that for every nonnegative
integer N , pN (f) < ∞. Sn is a vector space, and with the locally convex
topology determined by the family of seminorms {pN : N ≥ 0} it is a Fréchet
space.6 Further, one proves that F : Sn → Sn is a continuous linear map.7

The Riemann-Lebesgue lemma is the statement that if f ∈ L1(Rn), then
f̂ ∈ C0(Rn).8

The inversion theorem9 is the statement that if g ∈ Sn then

g(x) =

∫
Rn

ĝexdmn, x ∈ Rn,

and that if f ∈ L1(Rn) and f̂ ∈ L1(Rn), and we define f0 ∈ C0(Rn) by

f0(x) =

∫
Rn

f̂ exdmn, x ∈ Rn,

6Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.
7Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.
8Walter Rudin, Functional Analysis, second ed., p. 185, Theorem 7.5.
9Walter Rudin, Functional Analysis, second ed., p. 186, Theorem 7.7.
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then f(x) = f0(x) for almost all x ∈ Rn. For g ∈ Sn, as ĝ ∈ Sn, the function
f(t) = ĝ(−t) belongs to Sn. The inversion theorem tells us that for all x ∈ Rn,

g(x) =

∫
Rn

ĝ(t)ex(t)dmn(t) =

∫
Rn

ĝ(−t)ex(−t)dmn(t) =

∫
Rn

f(t)e−x(t)dmn(t),

and hence that g = f̂ . This shows that F : Sn → Sn is onto. Using the
inversion theorem, one checks that∫

Rn

fgdmn =

∫
Rn

f̂ ĝdmn, f, g ∈ Sn,

and so ∥f∥L2 = ∥Ff∥L2 for f ∈ Sn. It is a fact that Sn is a dense subset of
the Hilbert space L2(Rn), and it follows that there is a unique bounded linear
operator L2(Rn) → L2(Rn), that is equal to F on Sn, and that is unitary. We
denote this F : L2(Rn) → L2(Rn).

It is a fact that D(Rn) is a dense subset of Sn and that the identity map
i : D(Rn) → Sn is continuous.10 If L1, L2 ∈ (Sn)

∗ are distinct, then there is
some f ∈ Sn such that L1f ̸= L2f , and as D(Rn) is dense in Sn, there is a
sequence fj ∈ D(Rn) with fj → f in Sn. As

(L1 ◦ i)(fj)− (L2 ◦ i)(fj) = L1fj − L2fj → L1fj − L2fj ̸= 0,

there is some fj with (L1 ◦ i)(fj) ̸= (L2 ◦ i)(fj), and hence L1 ◦ i ̸= L2 ◦ i. This
shows that L 7→ L ◦ i is a one-to-one linear map (Sn)

∗ → D ′(Rn). Elements
of D ′(Rn) of the form L ◦ i for L ∈ (Sn)

∗ are called tempered distributions,
and we denote the set of tempered distributions by S ′

n. It is a fact that every
distribution with compact support is tempered.11

4 Sobolev’s lemma

Suppose that Ω is an open subset of Rn. We say that a measurable function
f : Ω → C is locally L2 if

∫
K
|f |2dmn < ∞ for every compact subset K of Ω.

We say that Λ ∈ D ′(Ω) is locally L2 if there is a function g that is locally L2 in
Ω such that Λϕ =

∫
Ω
ϕgdmn for every ϕ ∈ D(Ω).

The following proof of Sobolev’s lemma follows Rudin.12

Theorem 3 (Sobolev’s lemma). Suppose that n, p, r are integers, n > 0, p ≥ 0,
and

r > p+
n

2
.

Suppose that Ω is an open subset of Rn, that f : Ω → C is locally L2, and that
the distribution derivatives Dk

j f are locally L2 for 1 ≤ j ≤ n, 1 ≤ k ≤ r. Then
there is some f0 ∈ Cp(Ω) such that f0(x) = f(x) for almost all x ∈ Ω.

10Walter Rudin, Functional Analysis, second ed., p. 189, Theorem 7.10.
11Walter Rudin, Functional Analysis, second ed., p. 190, Example 7.12 (a).
12Walter Rudin, Functional Analysis, second ed., p. 202, Theorem 7.25.
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Proof. To say that the distribution derivative Dk
j f is locally L2 means that

there is some gj,k : Ω → C that is locally L2 such that

Dk
jΛf = Λgj,k .

Suppose that ω is an open subset of Ω whose closureK is a compact subset of
Ω. There is some ψ ∈ D(Ω) with ψ(x) = 1 for x ∈ K, and we define F : Rn → C
by

F (x) =

{
ψ(x)f(x) x ∈ Ω,

0 x ̸∈ Ω;

in particular, for x ∈ K we have F (x) = f(x), and for x ̸∈ suppψ we have
F (x) = 0. Because suppψ ⊂ Ω is compact and f is locally L2,

∥F∥L2 =

(∫
suppψ

|ψf |2dmn

)1/2

≤ ∥ψ∥0

(∫
suppψ

|f |2dmn

)1/2

<∞,

and using the Cauchy-Schwarz inequality, ∥F∥L1 ≤ ∥F∥L2 mn(suppψ)
1/2 <∞,

so
F ∈ L2(Rn) ∩ L1(Rn).

Then, ∫
Rn

|F̂ |2dmn <∞. (1)

Because ΛF = ψΛf in Ω, the Leibniz formula tells us that in Ω,

Dr
jΛF = Dr

j (ψΛf ) =

r∑
s=0

(
r

s

)
(Dr−s

j ψ)(Ds
jΛf ) =

r∑
s=0

(
r

s

)
(Dr−s

j ψ)(Λgj,s),

hence, defining Hj : Rn → C by

Hj(x) =

{∑r
s=0

(
r
s

)
(Dr−s

j ψ)(x)gj,s(x) x ∈ Ω,

0 x ̸∈ Ω,

we have Dr
jΛF = ΛHj

in Ω. It is apparent that Hj ∈ L2(Rn) ∩ L1(Rn).
Let ϕ ∈ D(Rn). There are ϕ1, ϕ2 ∈ D(Rn) with ϕ = ϕ1+ϕ2 and suppϕ1 ⊂ Ω,

suppϕ2 ⊂ Rn \ suppψ.13 We have just established that (Dr
jΛF )ϕ1 = ΛHj

ϕ1.
For ϕ2, it is apparent that

(Dr
jΛF )ϕ2 = ΛF (D

r
jϕ2) =

∫
Rn

(Dr
jϕ2)(x)F (x)dmn(x) = 0

and

ΛHj
ϕ2 =

∫
Rn

ϕ2(x)Hj(x)dmn(x) = 0.

13ϕ1 and ϕ2 are constructed using a partition of unity. See Walter Rudin, Functional
Analysis, second ed., p. 162, Theorem 6.20.
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Hence (Dr
jΛF )(ϕ) = ΛHjϕ. It is apparent that ΛHj has compact support, so

Dr
jΛF = ΛHj are tempered distributions. Let ξ ∈ Sn, and take ϕ ∈ Sn with

ξ = ϕ̂. Then,

(Dr
jΛF )ϕ = ΛFD

r
jϕ

=

∫
Rn

(Dr
jϕ)(x)F (x)dmn(x)

=

∫
Rn

F (Dr
jϕ)(y)F̂ (y)dmn(y)

=

∫
Rn

(iyj)
rξ(y)F̂ (y)dmn(y),

and

ΛHjϕ =

∫
Rn

ϕ(x)Hj(x)dmn(x) =

∫
Rn

ξ(y)Ĥj(y)dmn(y).

It follows that (iyj)
rF̂ (y) = Ĥj(y) for all y ∈ Rn. But Ĥj ∈ L2(Rn), so∫
Rn

y2ri |F̂ (y)|2dmn(y) <∞, 1 ≤ i ≤ n. (2)

Using (1), (2), and the inequality

(1 + |y|)2r < (2n+ 2)r(1 + y2r1 + · · ·+ y2rn ), y ∈ Rn,

we get

J =

∫
Rn

(1 + |y|)2r|F̂ (y)|2dmn(y) <∞.

Let σn−1 be surface measure on Sn−1, with σn−1(S
n−1) = 2πn/2

Γ(n/2) . Using the

Cauchy-Schwarz inequality and the change of variable y = tu, u ∈ Sn−1, t ≥ 0,(∫
Rn

(1 + |y|)p|F̂ (y)|dmn(y)

)2

=

(∫
Rn

(1 + |y|)r|F̂ (y)|(1 + |y|)p−rdmn(y)

)2

≤ J

∫
Rn

(1 + |y|)2p−2rdmn(y)

= J(2π)−n/2
∫ ∞

0

∫
Sn−1

(1 + t)2p−2rtn−1dσn−1(u)dt

=
2J

Γ(n/2)

∫ ∞

0

(1 + t)2p−2rtn−1dt.

This integral is finite if and only if 2p− 2r+ n− 1 < −1, and we have assumed
that r > p+ n

2 . Therefore,∫
Rn

(1 + |y|)p|F̂ (y)|dmn(y) <∞,

from which we get that yαF̂ (y) is in L1(Rn) for |α| ≤ p.
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Define

Fω(x) =

∫
Rn

F̂ exdmn, x ∈ Rn.

(Note that F depends on ω.) F, F̂ ∈ L1(Rn) so by the inversion theorem we
have F (x) = Fω(x) for almost all x ∈ Rn. Fω ∈ C0(Rn). If p ≥ 1, then we shall
show that Fω ∈ Cp(Ω). Take ek to be the standard basis for Rn. For 1 ≤ k1 ≤ n
and ϵ ̸= 0,

Fω(x+ ϵek1)− Fω(x)

ϵ
=

1

ϵ

∫
Rn

F̂ (y) (exp(iϵek1 · y)− 1) exp(ix · y)dmn(y)

=

∫
Rn

iyk1 F̂ (y)
eiϵyk1 − 1

iϵyk
ex(y)dmn(y).

But
∣∣∣iyk1 F̂ (y) eiϵyk1 −1

iϵyk1
ex(y)

∣∣∣ ≤ |yk1 F̂ (y)| and yk1 F̂ (y) belongs to L1(Rn) (sup-

posing p ≥ 1) so we can apply the dominated convergence theorem, which gives
us

(Dk1Fω)(x) = lim
ϵ→0

Fω(x+ ϵek1)− Fω(x)

ϵ
=

∫
Rn

iyk1 F̂ (y)ex(y)dmn(y).

From the above expression, it is apparent that Dk1Fω is continuous. This is

true for all 1 ≤ k1 ≤ n, so Fω ∈ C1(Rn). If p ≥ 2, then yk1yk2 F̂ (y) is in L
1(Rn)

for any 1 ≤ k2 ≤ n, and repeating the above argument we get Fω ∈ C2(Rn). In
this way, Fω ∈ Cp(Rn).

For all x ∈ ω, f(x) = F (x), so f(x) = Fω(x) for almost all x ∈ ω. If ω′ is an
open subset of Ω whose closure is a compact subset of Ω and ω ∩ ω′ ̸= ∅, then
Fω, Fω′ ∈ Cp(Rn) satisfy f(x) = Fω(x) for almost all x ∈ ω and f(x) = Fω′(x)
for almost all x ∈ ω′, so Fω(x) = Fω′(x) for almost all x ∈ ω∩ω′. Since Fω, Fω′

are continuous, this implies that Fω(x) = Fω′(x) for all x ∈ ω ∩ ω′. Thus, it
makes sense to define f0(x) = Fω(x) for x ∈ ω. Because every point in Ω has
an open neighborhood of the kind ω and the restriction of f0 to each ω belongs
to Cp(ω), it follows that f0 ∈ Cp(Ω).

8


