Test functions, distributions, and Sobolev's lemma

Jordan Bell

May 22, 2014

1 Introduction

If X is a topological vector space, we denote by X^* the set of continuous linear functionals on X. With the weak-* topology, X^* is a locally convex space, whether or not X is a locally convex space. (But in this note, we only talk about locally convex spaces.)

The purpose of this note is to collect the material given in Walter Rudin, *Functional Analysis*, second ed., chapters 6 and 7, involved in stating and proving Sobolev's lemma.

2 Test functions

Suppose that Ω is an open subset of \mathbb{R}^n . We denote by $\mathscr{D}(\Omega)$ the set of all $\phi \in C^{\infty}(\Omega)$ such that $\operatorname{supp} \phi$ is a compact subset of Ω . Elements of $\mathscr{D}(\Omega)$ are called *test functions*. For $N = 0, 1, \ldots$ and $\phi \in \mathscr{D}(\Omega)$, write

$$\|\phi\|_N = \sup\{|(D^{\alpha}\phi)(x)| : x \in \Omega, |\alpha| \le N\},\$$

where

$$D^{\alpha} = D_1^{\alpha_1} \cdots D_n^{\alpha_n}, \qquad |\alpha| = \alpha_1 + \cdots + \alpha_n$$

For each compact subset K of Ω , we define

$$\mathscr{D}_K = \{ \phi \in \mathscr{D}(\Omega) : \operatorname{supp} \phi \subseteq K \},\$$

and define τ_K to be the locally convex topology on \mathscr{D}_K determined by the family of seminorms $\{\|\cdot\|_N : N \ge 0\}$. One proves that \mathscr{D}_K with the topology τ_K is a Fréchet space. As sets,

$$\mathscr{D}(\Omega) = \bigcup_K \mathscr{D}_K.$$

Define β to be the collection of all convex balanced subsets W of $\mathscr{D}(\Omega)$ such that for every compact subset K of Ω we have $W \cap \mathscr{D}_K \in \tau_K$; to say that W is *balanced* means that if c is a complex number with $|c| \leq 1$ then $cW \subseteq W$. One

proves that $\{\phi + W : \phi \in \mathscr{D}(\Omega), W \in \beta\}$ is a basis for a topology τ on $\mathscr{D}(\Omega)$, that β is a local basis at 0 for this topology, and that with the topology τ , $\mathscr{D}(\Omega)$ is a locally convex space.¹ For each compact subset K of Ω , one proves that the topology τ_K is equal to the subspace topology on \mathscr{D}_K inherited from $\mathscr{D}(\Omega)$.²

We write $\mathscr{D}'(\Omega) = (\mathscr{D}(\Omega))^*$, and elements of $\mathscr{D}'(\Omega)$ are called *distributions*. With the weak-* topology, $\mathscr{D}'(\Omega)$ is a locally convex space.

It is a fact that a linear functional Λ on $\mathscr{D}(\Omega)$ is continuous if and only if for every compact subset K of Ω there is a nonnegative integer N and a constant C such that $|\Lambda \phi| \leq C \|\phi\|_N$ for all $\phi \in \mathscr{D}_K$.³

For $\Lambda \in \mathscr{D}'(\Omega)$ and α a multi-index, we define

$$(D^{\alpha}\Lambda)(\phi) = (-1)^{|\alpha|}\Lambda(D^{\alpha}\phi), \qquad \phi \in \mathscr{D}(\Omega).$$

Let K be a compact subset of Ω . As Λ is continuous, there is a nonnegative integer N and a constant C such that $|\Lambda \phi| \leq C \|\phi\|_N$ for all $\phi \in \mathscr{D}_K$. Then

$$|(D^{\alpha}\Lambda)(\phi)| = |\Lambda(D^{\alpha}\phi)| \le C \|D^{\alpha}\phi\|_{N} \le C \|\phi\|_{N+|\alpha|},$$

which shows that $D^{\alpha}\Lambda \in \mathscr{D}'(\Omega)$.

The Leibniz formula is the statement that for all $f, g \in C^{\infty}(\mathbb{R}^n)$,

$$D^{\alpha}(fg) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} (D^{\alpha-\beta}f) (D^{\beta}g),$$

where $\binom{\alpha}{\beta}$ are multinomial coefficients.

For $\Lambda \in \mathscr{D}'(\Omega)$ and $f \in C^{\infty}(\Omega)$, we define

$$(f\Lambda)(\phi) = \Lambda(f\phi), \qquad \phi \in \mathscr{D}(\Omega);$$

this makes sense because $f\phi \in \mathscr{D}(\Omega)$ when $\phi \in \mathscr{D}(\Omega)$. It is apparent that $f\Lambda$ is linear, and in the following lemma we prove that $f\Lambda$ is continuous.⁴

Lemma 1. If $\Lambda \in \mathscr{D}'(\Omega)$ and $f \in C^{\infty}(\Omega)$, then $f\Lambda \in \mathscr{D}'(\Omega)$.

Proof. Suppose that K is a compact subset of Ω . Because Λ is continuous, there is some nonnegative integer N and some constant C such that

$$\Lambda \phi \leq C \|\phi\|_N, \qquad \phi \in \mathscr{D}_K$$

For $|\alpha| \leq N$, by the Leibniz formula, for all $\phi \in \mathscr{D}_K$,

$$D^{\alpha}(f\phi) = \sum_{\beta \le \alpha} \binom{\alpha}{\beta} (D^{\alpha-\beta}f)(D^{\beta}\phi)$$

¹Walter Rudin, *Functional Analysis*, second ed., p. 152, Theorem 6.4; cf. Helmut H. Schaefer, *Topological Vector Spaces*, p. 57.

²Walter Rudin, *Functional Analysis*, second ed., p. 153, Theorem 6.5.

³Walter Rudin, *Functional Analysis*, second ed., p. 156, Theorem 6.8.

⁴Walter Rudin, *Functional Analysis*, second ed., p. 159, §6.15.

Because $f \in C^{\infty}(\Omega)$, there is some C_{α} such that $|(D^{\alpha-\beta}f)(x)| \leq C_{\alpha}$ for $\beta \leq \alpha$ and for $x \in K$. Using $\phi(x) = 0$ for $x \notin K$, the above statement of the Leibniz formula, and the inequality just obtained, it follows that there is some C'_{α} such that $|(D^{\alpha}(f\phi))(x)| \leq C'_{\alpha} ||\phi||_{N}$ for all $x \in \Omega$. This gives

$$\|f\phi\|_{N} = \sup_{|\alpha| \le N} \sup_{x \in \Omega} |(D^{\alpha}(f\phi))(x)| \le \sup_{|\alpha| \le N} C'_{\alpha} \|\phi\|_{N} = C' \|\phi\|_{N};$$

the last equality is how we define C', which is a maximum of finitely many C'_{α} and so finite. Then,

$$|(f\Lambda)(\phi)| = |\Lambda(f\phi)| \le C \, \|f\phi\|_N \le CC' \, \|\phi\|_N \,, \qquad \phi \in \mathscr{D}_K.$$

This bound shows that $f\Lambda$ is continuous.

The above lemma shows that $f\Lambda \in \mathscr{D}'(\Omega)$ when $f \in C^{\infty}(\Omega)$ and $\Lambda \in \mathscr{D}'(\Omega)$. Therefore $D^{\alpha}(f\Lambda) \in \mathscr{D}(\Omega)$, and the following lemma, proved in Rudin, states that the Leibniz formula can be used with $f\Lambda$.⁵

Lemma 2. If $f \in C^{\infty}(\Omega)$ and $\Lambda \in \mathscr{D}'(\Omega)$, then

$$D^{\alpha}(f\Lambda) = \sum_{\beta \le \alpha} {\alpha \choose \beta} (D^{\alpha-\beta}f) (D^{\beta}\Lambda).$$

If $f: \Omega \to \mathbb{C}$ is locally integrable, define

$$\Lambda \phi = \int_{\Omega} \phi(x) f(x) dx, \qquad \phi \in \mathscr{D}(\Omega).$$

For $\phi \in \mathscr{D}_K$,

$$|\Lambda \phi| \le \|\phi\|_0 \int_K |f| dx,$$

from which it follows that Λ is continuous. If μ is a complex Borel measure on \mathbb{R}^n or a positive Borel measure on \mathbb{R}^n that assigns finite measure to compact sets, define

$$\Lambda \phi = \int_{\Omega} \phi d\mu, \qquad \phi \in \mathscr{D}(\Omega).$$

For $\phi \in \mathscr{D}_K$,

$$\Lambda \phi \leq \left\| \phi \right\|_0 |\mu|(K),$$

from which it follows that Λ is continuous. Thus, we can encode certain functions and measures as distributions. I will dare to say that we can encode most functions and measures that we care about as distributions.

If $\Lambda_1, \Lambda_2 \in \mathscr{D}'(\Omega)$ and ω is an open subset of Ω , we say that $\Lambda_1 = \Lambda_2$ in ω if $\Lambda_1 \phi = \Lambda_2 \phi$ for all $\phi \in \mathscr{D}(\omega)$.

Let $\Lambda \in \mathscr{D}'(\Omega)$ and let ω be an open subset of Ω . We say that Λ vanishes on ω if $\Lambda \phi = 0$ for all $\phi \in \mathscr{D}(\omega)$. Taking W to be the union of all open subsets ω of Ω on which Λ vanishes, we define the support of Λ to be the set $\Omega \setminus W$.

⁵Walter Rudin, *Functional Analysis*, second ed., p. 160, §6.15.

3 The Fourier transform

Let $C_0(\mathbb{R}^n)$ be the set of those continuous functions $f : \mathbb{R}^n \to \mathbb{C}$ such that for every $\epsilon > 0$, there is some compact set K such that $|f(x)| < \epsilon$ for $x \notin K$. With the supremum norm $\|\cdot\|_{\infty}$, $C_0(\mathbb{R}^n)$ is a Banach space.

Let m_n be normalized Lebesgue measure on \mathbb{R}^n :

$$dm_n(x) = (2\pi)^{-n/2} dx.$$

Using m_n , we define

$$\|f\|_{L^p} = \left(\int_{\mathbb{R}^n} |f|^p dm_n\right)^{1/p}, \qquad 1 \le p < \infty$$

and

$$(f*g)(x) = \int_{\mathbb{R}^n} f(x-y)g(y)dm_n(y).$$

For $t \in \mathbb{R}^n$, define $e_t : \mathbb{R}^n \to \mathbb{C}$ by

$$e_t(x) = \exp(it \cdot x), \qquad x \in \mathbb{R}^n.$$

The Fourier transform of $f \in L^1(\mathbb{R}^n)$ is the function $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ defined by

$$(\mathscr{F}f)(t) = \hat{f}(t) = \int_{\mathbb{R}^n} f e_{-t} dm_n, \qquad t \in \mathbb{R}^n.$$

Using the dominated convergence theorem, one shows that \hat{f} is continuous.

For $f \in C^{\infty}(\mathbb{R}^n)$ and N a nonnegative integer, write

$$p_N(f) = \sup_{|\alpha| \le N} \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^N |(D^{\alpha}f)(x)|,$$

and let \mathscr{S}_n be the set of those $f \in C^{\infty}(\mathbb{R}^n)$ such that for every nonnegative integer N, $p_N(f) < \infty$. \mathscr{S}_n is a vector space, and with the locally convex topology determined by the family of seminorms $\{p_N : N \ge 0\}$ it is a Fréchet space.⁶ Further, one proves that $\mathscr{F} : \mathscr{S}_n \to \mathscr{S}_n$ is a continuous linear map.⁷

The Riemann-Lebesgue lemma is the statement that if $f \in L^1(\mathbb{R}^n)$, then $\hat{f} \in C_0(\mathbb{R}^n)$.⁸

The *inversion theorem*⁹ is the statement that if $g \in \mathscr{S}_n$ then

$$g(x) = \int_{\mathbb{R}^n} \hat{g}e_x dm_n, \qquad x \in \mathbb{R}^n$$

and that if $f \in L^1(\mathbb{R}^n)$ and $\hat{f} \in L^1(\mathbb{R}^n)$, and we define $f_0 \in C_0(\mathbb{R}^n)$ by

$$f_0(x) = \int_{\mathbb{R}^n} \hat{f}e_x dm_n, \qquad x \in \mathbb{R}^n.$$

⁶Walter Rudin, *Functional Analysis*, second ed., p. 184, Theorem 7.4.

⁷Walter Rudin, *Functional Analysis*, second ed., p. 184, Theorem 7.4.

⁸Walter Rudin, *Functional Analysis*, second ed., p. 185, Theorem 7.5.

⁹Walter Rudin, *Functional Analysis*, second ed., p. 186, Theorem 7.7.

then $f(x) = f_0(x)$ for almost all $x \in \mathbb{R}^n$. For $g \in \mathscr{S}_n$, as $\hat{g} \in \mathscr{S}_n$, the function $f(t) = \hat{g}(-t)$ belongs to \mathscr{S}_n . The inversion theorem tells us that for all $x \in \mathbb{R}^n$,

$$g(x) = \int_{\mathbb{R}^n} \hat{g}(t) e_x(t) dm_n(t) = \int_{\mathbb{R}^n} \hat{g}(-t) e_x(-t) dm_n(t) = \int_{\mathbb{R}^n} f(t) e_{-x}(t) dm_n(t),$$

and hence that $g = \hat{f}$. This shows that $\mathscr{F} : \mathscr{S}_n \to \mathscr{S}_n$ is onto. Using the inversion theorem, one checks that

$$\int_{\mathbb{R}^n} f\overline{g} dm_n = \int_{\mathbb{R}^n} \tilde{f}\overline{\hat{g}} dm_n, \qquad f, g \in \mathscr{S}_n,$$

and so $||f||_{L^2} = ||\mathscr{F}f||_{L^2}$ for $f \in \mathscr{S}_n$. It is a fact that \mathscr{S}_n is a dense subset of the Hilbert space $L^2(\mathbb{R}^n)$, and it follows that there is a unique bounded linear operator $L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$, that is equal to \mathscr{F} on \mathscr{S}_n , and that is unitary. We denote this $\mathscr{F} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$.

It is a fact that $\mathscr{D}(\mathbb{R}^n)$ is a dense subset of \mathscr{S}_n and that the identity map $i: \mathscr{D}(\mathbb{R}^n) \to \mathscr{S}_n$ is continuous.¹⁰ If $L_1, L_2 \in (\mathscr{S}_n)^*$ are distinct, then there is some $f \in \mathscr{S}_n$ such that $L_1 f \neq L_2 f$, and as $\mathscr{D}(\mathbb{R}^n)$ is dense in \mathscr{S}_n , there is a sequence $f_j \in \mathscr{D}(\mathbb{R}^n)$ with $f_j \to f$ in \mathscr{S}_n . As

$$(L_1 \circ i)(f_j) - (L_2 \circ i)(f_j) = L_1 f_j - L_2 f_j \to L_1 f_j - L_2 f_j \neq 0,$$

there is some f_j with $(L_1 \circ i)(f_j) \neq (L_2 \circ i)(f_j)$, and hence $L_1 \circ i \neq L_2 \circ i$. This shows that $L \mapsto L \circ i$ is a one-to-one linear map $(\mathscr{S}_n)^* \to \mathscr{D}'(\mathbb{R}^n)$. Elements of $\mathscr{D}'(\mathbb{R}^n)$ of the form $L \circ i$ for $L \in (\mathscr{S}_n)^*$ are called *tempered distributions*, and we denote the set of tempered distributions by \mathscr{S}'_n . It is a fact that every distribution with compact support is tempered.¹¹

4 Sobolev's lemma

Suppose that Ω is an open subset of \mathbb{R}^n . We say that a measurable function $f: \Omega \to \mathbb{C}$ is *locally* L^2 if $\int_K |f|^2 dm_n < \infty$ for every compact subset K of Ω . We say that $\Lambda \in \mathscr{D}'(\Omega)$ is *locally* L^2 if there is a function g that is locally L^2 in Ω such that $\Lambda \phi = \int_{\Omega} \phi g dm_n$ for every $\phi \in \mathscr{D}(\Omega)$.

The following proof of Sobolev's lemma follows Rudin.¹²

Theorem 3 (Sobolev's lemma). Suppose that n, p, r are integers, $n > 0, p \ge 0$, and

$$r > p + \frac{n}{2}.$$

Suppose that Ω is an open subset of \mathbb{R}^n , that $f: \Omega \to \mathbb{C}$ is locally L^2 , and that the distribution derivatives $D_j^k f$ are locally L^2 for $1 \leq j \leq n, 1 \leq k \leq r$. Then there is some $f_0 \in C^p(\Omega)$ such that $f_0(x) = f(x)$ for almost all $x \in \Omega$.

¹⁰Walter Rudin, *Functional Analysis*, second ed., p. 189, Theorem 7.10.

¹¹Walter Rudin, *Functional Analysis*, second ed., p. 190, Example 7.12 (a).

¹²Walter Rudin, *Functional Analysis*, second ed., p. 202, Theorem 7.25.

Proof. To say that the distribution derivative $D_j^k f$ is locally L^2 means that there is some $g_{j,k}: \Omega \to \mathbb{C}$ that is locally L^2 such that

$$D_j^k \Lambda_f = \Lambda_{g_{j,k}}$$

Suppose that ω is an open subset of Ω whose closure K is a compact subset of Ω . There is some $\psi \in \mathscr{D}(\Omega)$ with $\psi(x) = 1$ for $x \in K$, and we define $F : \mathbb{R}^n \to \mathbb{C}$ by

$$F(x) = \begin{cases} \psi(x)f(x) & x \in \Omega, \\ 0 & x \notin \Omega; \end{cases}$$

in particular, for $x \in K$ we have F(x) = f(x), and for $x \notin \operatorname{supp} \psi$ we have F(x) = 0. Because supp $\psi \subset \Omega$ is compact and f is locally L^2 ,

$$||F||_{L^2} = \left(\int_{\operatorname{supp}\psi} |\psi f|^2 dm_n\right)^{1/2} \le ||\psi||_0 \left(\int_{\operatorname{supp}\psi} |f|^2 dm_n\right)^{1/2} < \infty,$$

and using the Cauchy-Schwarz inequality, $\|F\|_{L^1} \leq \|F\|_{L^2} m_n(\operatorname{supp} \psi)^{1/2} < \infty$, \mathbf{SO}

$$F \in L^2(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$$

Then,

$$\int_{\mathbb{R}^n} |\widehat{F}|^2 dm_n < \infty. \tag{1}$$

Because $\Lambda_F = \psi \Lambda_f$ in Ω , the Leibniz formula tells us that in Ω ,

$$D_j^r \Lambda_F = D_j^r(\psi \Lambda_f) = \sum_{s=0}^r \binom{r}{s} (D_j^{r-s}\psi) (D_j^s \Lambda_f) = \sum_{s=0}^r \binom{r}{s} (D_j^{r-s}\psi) (\Lambda_{g_{j,s}}),$$

hence, defining $H_j : \mathbb{R}^n \to \mathbb{C}$ by

$$H_j(x) = \begin{cases} \sum_{s=0}^r {r \choose s} (D_j^{r-s}\psi)(x) g_{j,s}(x) & x \in \Omega, \\ 0 & x \notin \Omega, \end{cases}$$

we have $D_j^r \Lambda_F = \Lambda_{H_j}$ in Ω . It is apparent that $H_j \in L^2(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$. Let $\phi \in \mathscr{D}(\mathbb{R}^n)$. There are $\phi_1, \phi_2 \in \mathscr{D}(\mathbb{R}^n)$ with $\phi = \phi_1 + \phi_2$ and $\operatorname{supp} \phi_1 \subset \Omega$, $\operatorname{supp} \phi_2 \subset \mathbb{R}^n \setminus \operatorname{supp} \psi$.¹³ We have just established that $(D_j^r \Lambda_F)\phi_1 = \Lambda_{H_j}\phi_1$. For ϕ_2 , it is apparent that

$$(D_j^r \Lambda_F)\phi_2 = \Lambda_F(D_j^r \phi_2) = \int_{\mathbb{R}^n} (D_j^r \phi_2)(x)F(x)dm_n(x) = 0$$

and

$$\Lambda_{H_j}\phi_2 = \int_{\mathbb{R}^n} \phi_2(x) H_j(x) dm_n(x) = 0.$$

 $^{^{13}\}phi_1$ and ϕ_2 are constructed using a partition of unity. See Walter Rudin, Functional Analysis, second ed., p. 162, Theorem 6.20.

Hence $(D_j^r \Lambda_F)(\phi) = \Lambda_{H_j} \phi$. It is apparent that Λ_{H_j} has compact support, so $D_j^r \Lambda_F = \Lambda_{H_j}$ are tempered distributions. Let $\xi \in \mathscr{S}_n$, and take $\phi \in \mathscr{S}_n$ with $\xi = \hat{\phi}$. Then,

$$\begin{aligned} (D_j^r \Lambda_F)\phi &= \Lambda_F D_j^r \phi \\ &= \int_{\mathbb{R}^n} (D_j^r \phi)(x) F(x) dm_n(x) \\ &= \int_{\mathbb{R}^n} \mathscr{F}(D_j^r \phi)(y) \widehat{F}(y) dm_n(y) \\ &= \int_{\mathbb{R}^n} (iy_j)^r \xi(y) \widehat{F}(y) dm_n(y), \end{aligned}$$

and

$$\Lambda_{H_j}\phi = \int_{\mathbb{R}^n} \phi(x)H_j(x)dm_n(x) = \int_{\mathbb{R}^n} \xi(y)\widehat{H_j}(y)dm_n(y).$$

It follows that $(iy_j)^r \widehat{F}(y) = \widehat{H}_j(y)$ for all $y \in \mathbb{R}^n$. But $\widehat{H}_j \in L^2(\mathbb{R}^n)$, so

$$\int_{\mathbb{R}^n} y_i^{2r} |\widehat{F}(y)|^2 dm_n(y) < \infty, \qquad 1 \le i \le n.$$
(2)

Using (1), (2), and the inequality

$$(1+|y|)^{2r} < (2n+2)^r (1+y_1^{2r}+\dots+y_n^{2r}), \qquad y \in \mathbb{R}^n,$$

we get

$$J = \int_{\mathbb{R}^n} (1+|y|)^{2r} |\widehat{F}(y)|^2 dm_n(y) < \infty.$$

Let σ_{n-1} be surface measure on S^{n-1} , with $\sigma_{n-1}(S^{n-1}) = \frac{2\pi^{n/2}}{\Gamma(n/2)}$. Using the Cauchy-Schwarz inequality and the change of variable y = tu, $u \in S^{n-1}$, $t \ge 0$,

$$\begin{split} \left(\int_{\mathbb{R}^n} (1+|y|)^p |\widehat{F}(y)| dm_n(y) \right)^2 &= \left(\int_{\mathbb{R}^n} (1+|y|)^r |\widehat{F}(y)| (1+|y|)^{p-r} dm_n(y) \right)^2 \\ &\leq J \int_{\mathbb{R}^n} (1+|y|)^{2p-2r} dm_n(y) \\ &= J(2\pi)^{-n/2} \int_0^\infty \int_{S^{n-1}} (1+t)^{2p-2r} t^{n-1} d\sigma_{n-1}(u) dt \\ &= \frac{2J}{\Gamma(n/2)} \int_0^\infty (1+t)^{2p-2r} t^{n-1} dt. \end{split}$$

This integral is finite if and only if 2p - 2r + n - 1 < -1, and we have assumed that $r > p + \frac{n}{2}$. Therefore,

$$\int_{\mathbb{R}^n} (1+|y|)^p |\widehat{F}(y)| dm_n(y) < \infty,$$

from which we get that $y^{\alpha}\widehat{F}(y)$ is in $L^{1}(\mathbb{R}^{n})$ for $|\alpha| \leq p$.

Define

$$F_{\omega}(x) = \int_{\mathbb{R}^n} \widehat{F}e_x dm_n, \qquad x \in \mathbb{R}^n.$$

(Note that F depends on ω .) $F, \widehat{F} \in L^1(\mathbb{R}^n)$ so by the inversion theorem we have $F(x) = F_{\omega}(x)$ for almost all $x \in \mathbb{R}^n$. $F_{\omega} \in C_0(\mathbb{R}^n)$. If $p \ge 1$, then we shall show that $F_{\omega} \in C^p(\Omega)$. Take e_k to be the standard basis for \mathbb{R}^n . For $1 \le k_1 \le n$ and $\epsilon \ne 0$,

$$\begin{aligned} \frac{F_{\omega}(x+\epsilon e_{k_1})-F_{\omega}(x)}{\epsilon} &= \frac{1}{\epsilon} \int_{\mathbb{R}^n} \widehat{F}(y) \left(\exp(i\epsilon e_{k_1} \cdot y) - 1 \right) \exp(ix \cdot y) dm_n(y) \\ &= \int_{\mathbb{R}^n} iy_{k_1} \widehat{F}(y) \frac{e^{i\epsilon y_{k_1}} - 1}{i\epsilon y_k} e_x(y) dm_n(y). \end{aligned}$$

But $\left|iy_{k_1}\widehat{F}(y)\frac{e^{i\epsilon y_{k_1}}-1}{i\epsilon y_{k_1}}e_x(y)\right| \leq |y_{k_1}\widehat{F}(y)|$ and $y_{k_1}\widehat{F}(y)$ belongs to $L^1(\mathbb{R}^n)$ (supposing $p \geq 1$) so we can apply the dominated convergence theorem, which gives us

$$(D_{k_1}F_{\omega})(x) = \lim_{\epsilon \to 0} \frac{F_{\omega}(x + \epsilon e_{k_1}) - F_{\omega}(x)}{\epsilon} = \int_{\mathbb{R}^n} iy_{k_1}\widehat{F}(y)e_x(y)dm_n(y).$$

From the above expression, it is apparent that $D_{k_1}F_{\omega}$ is continuous. This is true for all $1 \leq k_1 \leq n$, so $F_{\omega} \in C^1(\mathbb{R}^n)$. If $p \geq 2$, then $y_{k_1}y_{k_2}\widehat{F}(y)$ is in $L^1(\mathbb{R}^n)$ for any $1 \leq k_2 \leq n$, and repeating the above argument we get $F_{\omega} \in C^2(\mathbb{R}^n)$. In this way, $F_{\omega} \in C^p(\mathbb{R}^n)$.

For all $x \in \omega$, f(x) = F(x), so $f(x) = F_{\omega}(x)$ for almost all $x \in \omega$. If ω' is an open subset of Ω whose closure is a compact subset of Ω and $\omega \cap \omega' \neq \emptyset$, then $F_{\omega}, F_{\omega'} \in C^p(\mathbb{R}^n)$ satisfy $f(x) = F_{\omega}(x)$ for almost all $x \in \omega$ and $f(x) = F_{\omega'}(x)$ for almost all $x \in \omega'$, so $F_{\omega}(x) = F_{\omega'}(x)$ for almost all $x \in \omega \cap \omega'$. Since $F_{\omega}, F_{\omega'}$ are continuous, this implies that $F_{\omega}(x) = F_{\omega'}(x)$ for all $x \in \omega \cap \omega'$. Thus, it makes sense to define $f_0(x) = F_{\omega}(x)$ for $x \in \omega$. Because every point in Ω has an open neighborhood of the kind ω and the restriction of f_0 to each ω belongs to $C^p(\omega)$, it follows that $f_0 \in C^p(\Omega)$.