The symmetric difference metric

Jordan Bell

April 12, 2015

Let (Ω, Σ, μ) be a probability space. For $A, B \in \Sigma$, define

$$
d_{\mu}(A, B)=\mu(A \triangle B)
$$

This is a pseduometric on Σ :

$$
\begin{aligned}
d_{\mu}(A, C) & =\mu(A \triangle C) \\
& =\mu((A \triangle B) \triangle(B \triangle C)) \\
& \leq \mu((A \triangle B) \cup(B \triangle C)) \\
& \leq \mu(A \triangle B)+\mu(B \triangle C) \\
& =d_{\mu}(A, B)+d_{\mu}(B, C)
\end{aligned}
$$

The relation $A \sim B$ if and only if $d_{\mu}(A, B)=0$ is an equivalence relation on Σ, and $d_{\mu}([A],[B])=d_{\mu}(A, B)$ is a metric on the collection Σ_{μ} of equivalence classes. We call d_{μ} the symmetric difference metric.

The following theorem shows that $\left(\Sigma_{\mu}, d_{\mu}\right)$ is a complete metric space. ${ }^{1}$
Theorem 1. If (Ω, Σ, μ) is a probability space, then $\left(\Sigma_{\mu}, d_{\mu}\right)$ is a complete metric space.

Proof. Suppose that $\left[B_{n}\right]$ is a Cauchy sequence in $\left(\Sigma_{\mu}, d_{\mu}\right)$. As for any Cauchy sequence in a metric space, there is a subsequence $\left[A_{n}\right]$ of $\left[B_{n}\right]$ such that $d_{\mu}\left(\left[A_{k}\right],\left[A_{n}\right]\right)<2^{-n}$ for $k \geq n$. Define

$$
E_{n}=\bigcup_{k \geq n} A_{k} .
$$

[^0]We have

$$
\begin{aligned}
E_{n} \backslash A_{n} & =\bigcup_{k=n+1}^{\infty}\left(A_{k} \backslash A_{n}\right) \\
& =\bigcup_{k=n+1}\left(A_{k} \backslash \bigcup_{j=n}^{k-1} A_{j}\right) \\
& \subset \bigcup_{k=n+1}^{\infty}\left(A_{k} \backslash A_{k-1}\right) \\
& =\bigcup_{k=n}^{\infty}\left(A_{k+1} \backslash A_{k}\right),
\end{aligned}
$$

hence

$$
\begin{equation*}
\mu\left(E_{n} \triangle A_{n}\right)=\mu\left(E_{n} \backslash A_{n}\right) \leq \sum_{k=n}^{\infty} \mu\left(A_{k+1} \backslash A_{k}\right)<\sum_{k=n}^{\infty} 2^{-k}=2^{-n+1} \tag{1}
\end{equation*}
$$

Now, define

$$
A=\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}=\bigcap_{n=1}^{\infty} E_{n},
$$

for which

$$
\begin{aligned}
\mu\left(A_{n} \triangle A\right) & =\mu\left(A_{n} \backslash A\right) \\
& =\mu\left(A_{n} \cap\left(\bigcap_{k=1}^{\infty} E_{k}\right)^{c}\right) \\
& =\mu\left(A_{n} \cap \bigcup_{k=1}^{\infty} E_{k}^{c}\right) \\
& =\mu\left(\bigcup_{k=1}^{\infty}\left(A_{n} \cap E_{k}^{c}\right)\right) \\
& =\lim _{k \rightarrow \infty} \mu\left(A_{n} \cap E_{k}^{c}\right) \\
& =\lim _{k \rightarrow \infty} \mu\left(\bigcap_{j \geq k}\left(A_{n} \backslash A_{j}\right)\right) \\
& \leq \lim _{k \rightarrow \infty} \mu\left(A_{n} \backslash A_{k}\right) \\
& <2^{-n} .
\end{aligned}
$$

Using (1),

$$
d_{\mu}\left(A_{n}, A\right) \leq \mu\left(E_{n} \triangle A_{n}\right)+\mu\left(A_{n} \triangle A\right)<2^{-n+1}+2^{-n}=3 \cdot 2^{-n}
$$

showing that $\left[A_{n}\right]$ converges to $[A]$ as $n \rightarrow \infty$, and because $\left[A_{n}\right]$ is a subsequence of the Cauchy sequence $\left[B_{n}\right]$, it follows that $\left[B_{n}\right]$ converges to $[A]$ and therefore that $\left(\Sigma_{\mu}, d_{\mu}\right)$ is a complete metric space.

Lemma 2. For $A, B \in \Sigma$,

$$
|\mu(A)-\mu(B)| \leq \mu(A \triangle B)
$$

Proof.

$$
\begin{aligned}
|\mu(A)-\mu(B)| & =|(\mu(A \backslash B)+\mu(A \cap B))-(\mu(B \backslash A)+\mu(B \cap B))| \\
& =|\mu(A \backslash B)-\mu(B \backslash A)| \\
& \leq \mu(A \backslash B)+\mu(B \backslash A) \\
& =\mu((A \backslash B) \cup(B \backslash A)) \\
& \leq \mu(A \triangle B) .
\end{aligned}
$$

The following theorem connects the metric space $\left(\Sigma_{\mu}, d_{\mu}\right)$ with the Banach space $L^{1}(\mu) .{ }^{2}$

Theorem 3. If $\left(\Sigma_{\mu}, d_{\mu}\right)$ is separable then $L^{1}(\mu)$ is separable.

[^1]
[^0]: ${ }^{1}$ V. I. Bogachev, Measure Theory, volume I, p. 54, Theorem 1.12.16.

[^1]: ${ }^{2}$ John B. Conway, A Course in Abstract Analysis, p. 90, Proposition 2.7.13.

