The symmetric difference metric

Jordan Bell

April 12, 2015

Let (Ω, Σ, μ) be a probability space. For $A, B \in \Sigma$, define

$$d_{\mu}(A,B) = \mu(A \triangle B).$$

This is a pseduometric on Σ :

$$d_{\mu}(A, C) = \mu(A \triangle C)$$

= $\mu((A \triangle B) \triangle (B \triangle C))$
 $\leq \mu((A \triangle B) \cup (B \triangle C))$
 $\leq \mu(A \triangle B) + \mu(B \triangle C)$
= $d_{\mu}(A, B) + d_{\mu}(B, C).$

The relation $A \sim B$ if and only if $d_{\mu}(A, B) = 0$ is an equivalence relation on Σ , and $d_{\mu}([A], [B]) = d_{\mu}(A, B)$ is a metric on the collection Σ_{μ} of equivalence classes. We call d_{μ} the **symmetric difference metric**.

The following theorem shows that (Σ_{μ}, d_{μ}) is a complete metric space.¹

Theorem 1. If (Ω, Σ, μ) is a probability space, then (Σ_{μ}, d_{μ}) is a complete metric space.

Proof. Suppose that $[B_n]$ is a Cauchy sequence in (Σ_{μ}, d_{μ}) . As for any Cauchy sequence in a metric space, there is a subsequence $[A_n]$ of $[B_n]$ such that $d_{\mu}([A_k], [A_n]) < 2^{-n}$ for $k \ge n$. Define

$$E_n = \bigcup_{k \ge n} A_k.$$

¹V. I. Bogachev, *Measure Theory*, volume I, p. 54, Theorem 1.12.16.

We have

$$E_n \setminus A_n = \bigcup_{k=n+1}^{\infty} (A_k \setminus A_n)$$
$$= \bigcup_{k=n+1}^{\infty} \left(A_k \setminus \bigcup_{j=n}^{k-1} A_j \right)$$
$$\subset \bigcup_{k=n+1}^{\infty} (A_k \setminus A_{k-1})$$
$$= \bigcup_{k=n}^{\infty} (A_{k+1} \setminus A_k),$$

hence

$$\mu(E_n \triangle A_n) = \mu(E_n \setminus A_n) \le \sum_{k=n}^{\infty} \mu(A_{k+1} \setminus A_k) < \sum_{k=n}^{\infty} 2^{-k} = 2^{-n+1}.$$
(1)

Now, define

$$A = \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} E_n,$$

for which

$$\mu(A_n \triangle A) = \mu(A_n \setminus A)$$

$$= \mu \left(A_n \cap \left(\bigcap_{k=1}^{\infty} E_k \right)^c \right)$$

$$= \mu \left(A_n \cap \bigcup_{k=1}^{\infty} E_k^c \right)$$

$$= \mu \left(\bigcup_{k=1}^{\infty} (A_n \cap E_k^c) \right)$$

$$= \lim_{k \to \infty} \mu(A_n \cap E_k^c)$$

$$= \lim_{k \to \infty} \mu \left(\bigcap_{j \ge k} (A_n \setminus A_j) \right)$$

$$\leq \lim_{k \to \infty} \mu(A_n \setminus A_k)$$

$$< 2^{-n}.$$

Using (1),

$$d_{\mu}(A_n, A) \le \mu(E_n \triangle A_n) + \mu(A_n \triangle A) < 2^{-n+1} + 2^{-n} = 3 \cdot 2^{-n},$$

showing that $[A_n]$ converges to [A] as $n \to \infty$, and because $[A_n]$ is a subsequence of the Cauchy sequence $[B_n]$, it follows that $[B_n]$ converges to [A] and therefore that (Σ_{μ}, d_{μ}) is a complete metric space.

Lemma 2. For $A, B \in \Sigma$,

$$|\mu(A) - \mu(B)| \le \mu(A \triangle B).$$

Proof.

$$\begin{aligned} |\mu(A) - \mu(B)| &= |(\mu(A \setminus B) + \mu(A \cap B)) - (\mu(B \setminus A) + \mu(B \cap B))| \\ &= |\mu(A \setminus B) - \mu(B \setminus A)| \\ &\leq \mu(A \setminus B) + \mu(B \setminus A) \\ &= \mu((A \setminus B) \cup (B \setminus A)) \\ &\leq \mu(A \triangle B). \end{aligned}$$

The following theorem connects the metric space (Σ_μ, d_μ) with the Banach space $L^1(\mu).^2$

Theorem 3. If (Σ_{μ}, d_{μ}) is separable then $L^{1}(\mu)$ is separable.

 $^{^2 {\}rm John}$ B. Conway, ACourse in Abstract Analysis, p. 90, Proposition 2.7.13.