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1 Subgaussian random variables

For a random variable X, let Ax(t) = log E(e!*), the cumulant generating
function of X. A b-subgaussian random variable, b > 0, is a random
variable X such that
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We remark that for v, ,2 a Gaussian measure, whose density with respect to
Lebesgue measure on R is
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We prove that a b-subgaussian random variable is centered and has variance
< bt
Theorem 1. If X is b-subgaussian then F(X) = 0 and Var(X) < b2
Proof. For each w € Q, > _, thk(!‘”)k — !X and by the dominated conver-
gence theorem,

L tRE(X) e 2 o 2\ " 1
Do e =T =) ()

k=0

Therefore
2 t2

L+tE(X)+*E(X*)+0(?) <1+ bT +0(th),

1Karl R. Stromberg, Probability for Analysts, p. 293, Proposition 9.8.



whence
b2 2

tE(X) +?E(X?) < =~ + o(t?),
and so, for ¢t > 0,
b2t
BE(X)+tBE(X?) < -+ o(t).

First, this yields E(X) = o(t), which means that E(X) = 0. Second, since
E(X) =0,

o b2t
tE(X?) < 5 +olt),
and then
b2
E(X2) S 5 + 0(1)7
which measn that E(X2) < & 0

Stromberg attributes the following theorem to Saeki; further, it is proved in
Stromberg that if for some ¢ the inequality in the theorem is an equality then
the random variable has the Rademacher distribution.?

Theorem 2. If X is a random variable satisfying E(X) = 0 and P(X €
[-1,1]) =1, then
E(etX) < cosht, t e R.

Proof. Define f : R — R by

6215

f(t) =€ (cosht — E(etX)) =4

1
5t e E(eX).

Then
f/(t) _ th o etE(etX) —etE(XetX);

the derivative of E(e!X) with respect to ¢ is obtained using the dominated
convergence theorem. Let Y =1+ X, with which

fl(t)=e?—E(™)—E(XeY) =2 —E(e™)—E(Y —1)etY) = X~ B(Ye'Y).
E(X)=0,s0 E(Y) =1, hence
f'(t) = E(e®Y) — E(Ye'Y) = B(Y(e* —e'Y)).

Because P(Y € [0,2]) = 1, for t > 0, we have almost surely e?* — e?¥ > 0, and
therefore almost surely Y (e?* — et¥') > 0. Therefore, for ¢ > 0,

f'(t) = BY(e* =) >0,

2Karl R. Stromberg, Probability for Analysts, p. 293, Proposition 9.9; Omar Rivas-
plata, Subgaussian random variables: An expository mote, http://www.math.ualberta.ca/
~orivasplata/publications/subgaussians.pdf



which tells us that for ¢ > 0,
f(0) < f(®).
As f(0) =0, for t > 0,
0 < e’ (cosht — E(e'Y)),

and so
E(e'™) < cosht.

O

Corollary 3. If a random variable X satisfies E(X) = 0 and P(|X| <b) =1,
then X is b-subgaussian.

2 Hoeffding’s inequality
We first prove Hoeffding’s lemma.?

Lemma 4 (Hoeffding’s lemma). If a random variable X satisfies E(X) = 0 and
P(X € [a,b]) = 1, then X is 25%-subgaussian.

Proof. Because P(X € [a,b]) = 1, it follows that

(b—a)?
4 )

Var(X) <

not using that P(X) = 0. (Namely, Popoviciu’s inequality.)
Write p = X, P and for A\ € R define

eAt

dva(t) = mdﬂ(t)~

We check

_ 1 At _ 1 AX _
/Rdyx(t) - W/Re AXP)(1) = 55 /Qe P = 1.

There is a random variable Xy : (2, Z#x, Py) — R for which X, Py = vy. X
satisfies Py (X € [a,b]) =1, and so

(b—a)*

Var(X)\) < 1

We calculate ( tX)
F(Xe

ANo(t) = =" 72

x(®) E(etX)

3Stéphane Boucheron, Gabor Lugosi, and Pascal Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence, p. 27, Lemma 2.2.



and B(X2eX)E(et™) — B(XeX)B(XetX)

" _
Ay (t) = B(eiX)?
But “
_ _ € _ 1 AX
E(X») —/thw(t) —/Rtmdu(t) = —eAmE(Xe )
and
2 2 1 2 X
E(X3) = Rt dva(t) = mE(X e,
and so

Var(Xy) = B(X3) — E(X))?

E(XQG)‘X) E(Xe)\X)2
AN T e2AN)

= A% (M),

For A € R, Taylor’s theorem tells us that there is some 6 between 0 and A
such that

A2 A2
Ax(X) = Ax(0) + A% (0) + ?Al)/((e) = EA/)/((eﬁ

here we have used that F(X) = 0. But from what we have shown, Var(Xy) =
2
A% (0) and Var(Xy) < %7 s0

which shows that X is bg“—subgaussian. O

We now prove Hoeffding’s inequality.*

Theorem 5 (Hoeffding’s inequality). Let Xi,..., X, be independent random
variables such that for each 1 < k < n, P(X) € [ag,bx]) = 1, and write
Sp =3 1_1 Xi. For any a > 0,

P(S, — E(S,) > a) < exp (‘2;;_1(2;1%)2) '

Proof. For A > 0 and ¢(t) = e*, because ¢ is nonnegative and nondecreasing,
for X a random variable we have

Lx>ad(a) < ¢(X),
and so E(1x>.¢(a)) < E(¢(X)), ie.
E(e)\X)

P(X >a) < o

4Stéphane Boucheron, Gébor Lugosi, and Pascal Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence, p. 34, Theorem 2.8.



Using this with X = S,, — E(S,,) and because the X}, are independent,

n
LE(eA(SnfE(Sn))) — e J[ B(eXXe X0,

P(Sy = B(Sa) > a) <
k=1

Because P(Xy € [ag,bx]) = 1, we have P(Xy — F(Xg) € [ar — F(Xy),bx —
E(Xy)]) =1, and as (b — E(Xy)) — (ar — E(Xkg)) = b — ag, Hoeffding’s lemma

tells us
(bk — ak)Q)\Q

log E(eMXe—E(Xk)) <
og E(e ) < 3 ;

and thus

P(S, — E(S,) > a) < e Mexp < " W)

k=1 8

P )
= exp (—)\a + § Z(bk — ak) ) .
k=1
We remark that A does not appear in the left-hand side. Define

A2 &
g(A) = —Aa+ 3 Z(bk —ar)?,

k=1

for which
)\ n
g\ =—-a+ 1 ;;(bk —az)”.

Then ¢'(A) = 0 if and only if

_ 4a
ZZ:l(bk —ay)?’

at which g assumes its infimum. Then

A

402 1642 1
P(Sn_E(Sn) > a) < eXp( - ba >

- n + )
Zk:1(bk —a)? 8 Zk:l(bk —ag)?
( 2a )
=eXpl—<<n 7 3 /)
P Ek:l(bk — a)?

proving the claim. O

3 Cramér’s large deviation theorem

The following is Cramér’s large deviation theorem.®

5Achim Klenke, Probability Theory: A Comprehensive Course, p. 508, Theorem 23.3.



Theorem 6 (Cramér’s large deviation theorem). Suppose that X, : (0,.%, P) —
R, n > 1, are independent identically distributed random variables such that
for all t € R,

A(t) = log B(e"*1) < o0.

For z € R define
A (z) = sup(tz — A(t)).

teR
If a > E(X;), then

lim 1 log P(S,, > an) = —A*(a),

n—o0 n
where S, =Y 7_, X
Proof. For a > E(X4), let Y,, = X,, — a, let

L(t) = log E(e™) = log E(e!*1e™1%) = —ta 4+ A(t)
and let

L*(z) = itelﬂg(tz —L(t)) = igﬂ}{)(t(af +a)—A(t)) = A*(z + a).

Lastly, let T, = >, _, Yi = S,, — na, with which
P(T,, > bn) = P(S, > (b+ a)n).

Thus, if we have
1
lim —log P(T,, > 0) = —L*(0),

n—o00 N
then )
lim —log P(S,, > an) = —L"(0) = —A"(a).

n—o00 N,

Therefore it suffices to prove the theorem for when E(X;) < 0 and a = 0.
Define

o(t) = MO = B = [

etXigp = / e d(X1,P)(x), t eR,
Q R

the moment generating function of X7, and define

p= N0 —exp (sup(-A(0)) =exp (inf A®)) = inf o0,

teR teR

using that x — e” is increasing.
Using the dominated convergence theorem, for k£ > 0 we obtain

o (t) = /R aFetd( X, P)(x) = BE(XFet).



In particular, ¢'(t) = E(X;et*1), for which ¢/(0) = E(X1) < 0, and ¢ (¢) =
E(X2etX1) > 0 for all ¢ (either the expectation is 0 or positive, and if it is 0
then XZe'X1 is 0 almost everywhere, which contradicts F(X;) < 0).

Either P(X; <0) =1 or P(X; <0) < 1. In the first case,

P (t) = / XetX1dp = / X,etX1dP <0,
Q X1<0
s0, using the dominated convergence theorem,

s _ . _ . Xl _ _ _
p=inf o(t) = lim 6(t) _/X1§o (hm et )dP_/XIZOdP_P(Xl =0).

e 00
Then
P(S,>0)=P(X;=0,...,X,=0)=P(X; =0)---P(X,, =0) = p".
That is, as a = 0,
P(S, >a) = e "M@

and the claim is immediate in this case.

In the second case, P(X; < 0) < 1. As ¢"(t) > 0 for all ¢, there is some
7 € R at which ¢(7) < ¢(t) for all ¢ # 7 (namely, a unique global minimum).
Thus,

¢(r)=p,  #(r)=0.

And ¢'(0) = E(X;) < 0, which with the above yields 7 > 0. Because 7 > 0,
S,(w) > 0 if and only if 75, (w) > 0 if and only if ™) > 1. Applying
Chebyshev’s inequality, and because X, are independent,

P(S, > 0) = P(e™" > 1) < E(e™") = E(e™) -+ E(e™X") = ¢(7)" = p",

thus log P(S,, > 0) < nlogp and then
1 «
lim sup — log P(S,, > 0) < limsuplog p = log p = loge (0 = —A*(0).
n—oo N n—oo

To prove the claim, it now suffices to prove that, in the case P(X; < 0) < 1,

1
lim inf — log P(S,, > 0) > log p. (1)
n

n—oo

Let p = X1, P, and let

eT{L’

dv(x) = Tdu(:r).

v is a Borel probability measure: it is apparent that it is a Borel measure, and

V(R) = /R dv(z) = /R %du(m‘) _ % /]R e dp(z) = ‘ﬁ(;) _1



There are independent identically distributed random variables Y,,, n > 1, each
with Y,,,Q = v. % Define

TI 1
e"dv(x) = /Remefdu(x) = Ae(t+T)wdu(w) — : 2}

— E(etV) =
b(t) = B(e™) / - ;

R
the moment generating function of Y;. As ¢/(7) =0,

#'(r)
p

B(Yy) =w(0) = 22 o,

As p >0 and ¢”(t) > 0 for all ¢,
Var(vy) = B?) = (0 = £ € (0.00)

For T,, = ZZ=1 Y)., using that the X, are independent and that the Y, are
independent,

@1+ >0

= / du(xy) - - - dp(z,)
1442, 20
_ /m‘..mzo (Ledvtan) - (Ldvie.)

T1+-+T, >0

But

z1+-+x, >0 Tpn>0
= E(lyr, >0y € 7™),

hence
P(Sn Z 0) = an(l{TnZO} . G_TT").

Thus, (1) is equivalent to

1
lim inf — log (p”E(l{Tn>0} . e*TT")) > log p,
n >

n—oo

so, to prove the claim it suffices to prove that

1
liminf = log (E(1{7, >0} - € 7'")) > 0.

n—oo n

6Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, p. 329,
Corollary 10.19.



For any ¢ > 0,

log (E(Lyz, >0y €™ 7")) 2108 E (Ljp<r, <cymy € ")

>log (¢ Q (0 < T < ev/) )

= —7evn +logQ (5% € [O,C]> :

Because the Y,, are independent identically distributed L? random variables
with mean 0 and variance 02 = Var(Y;) = ¢T(T), the central limit theorem tells
us that as n — oo,
T,
@ (2 € 10.d) = 2 (0.).
where v, ,2 is the Gaussian measure, whose density with respect to Lebesgue

measure on R is
1 _(t-a)?

t,a, %) = e 202 .
p( )=
Thus, because for ¢ > 0 we have 7 ,2([0, ¢]) > 0,

o1 T, L. —71c 1 T,
hqugfg log (E(1¢r,>0} - € ) = hnrr_1>10r<1>f (\/ﬁ + glogQ (ﬁ € [O,c}))

= lim —%—i— lim 1logQ(§% € [O,C])

n— o0 n n—oo M,
. 1
= nl;n;o - log 70,02 ([0, ¢])
= O’
which completes the proof. O

For example, say that X,, are independent identically distributed random
variables with X, P = 79,1. We calculate that the cumulant generating function

A(t) = log E(et%1) is
A0 = 1o ([ o (o))

-1 w2
Og(AE o ZL‘)

1 e_%(x_t)z t2d
= lo, —F—e?Zax
& R V27

= log et’2
t2

57




thus A(t) < oo for all ¢. Then

A*(z) = sup(tz — A(t)) = sup (m - tQ) _

teR teR 2

Now applying Cramér’s theorem we get that for a > E(X;) = 0, for S, =

> r_y Xk we have
. 1 a2
lim —log P(S, > an) = ——.

n—oo N 2

Another example: If X, are independent identically distributed random
variables with the Rademacher distribution:

1 1
X, P==0_ —0;.
2 1+2 1

Then

1 1 1 1
E(etX1> — /]Retxd (261 -+ 261> ({L‘) = §€_t + §€t = COSht,

so the cumulant generating function of X; is
A(t) = logcosht,
and indeed A(t) < oo for all t € R. Then, as %(tx —logcosht) = x — tanht,

A*(z) = sup (tx — log cosht) = arctanh « -  — log cosh arctanh .

teR
For z € (—1,1),
1 1
arctanhx = — log T
2 1—2x
Then
_ 1 arctanh x —arctanhz) __ 1 I+2 1 -2 _ 1
cosharctanhx—§(e +e )—5 17x+§ 1+x—m.

With these identities,

. 14z 1
1 1
= glog(l—f—x)—glog(l—x)—i—§log(1+x)+§log(l—x)
1 1-—
= ;xlog(l—i—x)—i— 2xlog(1—x).

With S,, = Yp_, Xk, applying Cramér’s theorem, we get that for any a >
E(X;) =0,

1 1-—-
+$10g(1+x)7 *

1
lim —log P(S, > an) = —

n—o00 M

log(1 — z).

10



For a Borel probability measure p on R, we define its Laplace transform
i : R — (0,00] by

fult) = /R eYdpu(y).

Suppose that fR lyldu(y) < oo and let My = fR ydu(y), the first moment of .
For any t the function = — €® is convex, so by Jensen’s inequality,

e < /R edu(y) = at).
Thus for all t € R,

tMy —log fi(t) < 0.

For a Borel probability measure p with finite first moment, we define its
Cramér transform [, : R — [0, 00] by’

Iu(x) = igﬂg(tw —log fi(t)).

For t = 0, tx — log i(t) = —log 1(0) = —log(1) = 0, which shows that indeed
0 <I,(x) <ooforall z € R. But tM; —logfi(t) <0 for all ¢ yields

L,(M;) = 0.

"Heinz Bauer, Probability Theory, pp. 89-90, §12.
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