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1 Subgaussian random variables

For a random variable X, let ΛX(t) = logE(etX), the cumulant generating
function of X. A b-subgaussian random variable, b > 0, is a random
variable X such that

ΛX(t) ≤ b2t2

2
, t ∈ R.

We remark that for γa,σ2 a Gaussian measure, whose density with respect to
Lebesgue measure on R is

p(x, a, σ2) =
1√
2πσ2

e−
(x−a)2

2σ2 ,

we have∫
R
etxdγ0,b2(x) =

∫
R
ebty

1√
2π
e−

y2

2 dy =

∫
R
e

b2t2

2
1√
2π
e−

(y−bt)2

2 dy = e
b2t2

2 .

We prove that a b-subgaussian random variable is centered and has variance
≤ b2.1

Theorem 1. If X is b-subgaussian then E(X) = 0 and Var(X) ≤ b2.

Proof. For each ω ∈ Ω,
∑n

k=0
tkX(ω)k

k! → etX(ω), and by the dominated conver-
gence theorem,

n∑
k=0

tkE(X)k

k!
→ E(etX) ≤ e

b2t2

2 =

∞∑
k=0

(
b2t2

2

)k
1

k!
.

Therefore

1 + tE(X) + t2E(X2) +O(t3) ≤ 1 +
b2t2

2
+O(t4),

1Karl R. Stromberg, Probability for Analysts, p. 293, Proposition 9.8.
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whence

tE(X) + t2E(X2) ≤ b2t2

2
+ o(t2),

and so, for t > 0,

E(X) + tE(X2) ≤ b2t

2
+ o(t).

First, this yields E(X) = o(t), which means that E(X) = 0. Second, since
E(X) = 0,

tE(X2) ≤ b2t

2
+ o(t),

and then

E(X2) ≤ b2

2
+ o(1),

which measn that E(X2) ≤ b2

2 .

Stromberg attributes the following theorem to Saeki; further, it is proved in
Stromberg that if for some t the inequality in the theorem is an equality then
the random variable has the Rademacher distribution.2

Theorem 2. If X is a random variable satisfying E(X) = 0 and P (X ∈
[−1, 1]) = 1, then

E(etX) ≤ cosh t, t ∈ R.

Proof. Define f : R → R by

f(t) = et
(
cosh t− E(etX)

)
=
e2t

2
+

1

2
− etE(etX).

Then
f ′(t) = e2t − etE(etX)− etE(XetX);

the derivative of E(etX) with respect to t is obtained using the dominated
convergence theorem. Let Y = 1 +X, with which

f ′(t) = e2t−E(etY )−E(XetY ) = e2t−E(etY )−E((Y −1)etY ) = e2t−E(Y etY ).

E(X) = 0, so E(Y ) = 1, hence

f ′(t) = E(e2tY )− E(Y etY ) = E(Y (e2t − etY )).

Because P (Y ∈ [0, 2]) = 1, for t ≥ 0, we have almost surely e2t − etY ≥ 0, and
therefore almost surely Y (e2t − etY ) ≥ 0. Therefore, for t ≥ 0,

f ′(t) = E(Y (e2t − etY )) ≥ 0,

2Karl R. Stromberg, Probability for Analysts, p. 293, Proposition 9.9; Omar Rivas-
plata, Subgaussian random variables: An expository note, http://www.math.ualberta.ca/

~orivasplata/publications/subgaussians.pdf
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which tells us that for t ≥ 0,
f(0) ≤ f(t).

As f(0) = 0, for t ≥ 0,

0 ≤ et
(
cosh t− E(etX)

)
,

and so
E(etX) ≤ cosh t.

Corollary 3. If a random variable X satisfies E(X) = 0 and P (|X| ≤ b) = 1,
then X is b-subgaussian.

2 Hoeffding’s inequality

We first prove Hoeffding’s lemma.3

Lemma 4 (Hoeffding’s lemma). If a random variable X satisfies E(X) = 0 and
P (X ∈ [a, b]) = 1, then X is b−a

2 -subgaussian.

Proof. Because P (X ∈ [a, b]) = 1, it follows that

Var(X) ≤ (b− a)2

4
,

not using that P (X) = 0. (Namely, Popoviciu’s inequality.)
Write µ = X∗P and for λ ∈ R define

dνλ(t) =
eλt

eΛ(λ)
dµ(t).

We check ∫
R
dνλ(t) =

1

eΛ(λ)

∫
R
eλtd(X∗P )(t) =

1

eΛ(λ)

∫
Ω

eλXdP = 1.

There is a random variable Xλ : (Ωλ,Fλ, Pλ) → R for which Xλ∗Pλ = νλ. Xλ

satisfies Pλ(Xλ ∈ [a, b]) = 1, and so

Var(Xλ) ≤
(b− a)2

4
.

We calculate

Λ′
X(t) =

E(XetX)

E(etX)

3Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence, p. 27, Lemma 2.2.
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and

Λ′′
X(t) =

E(X2etX)E(etX)− E(XetX)E(XetX)

E(etX)2
.

But

E(Xλ) =

∫
R
tdνλ(t) =

∫
R
t
eλt

eΛ(λ)
dµ(t) =

1

eΛ(λ)
E(XeλX)

and

E(X2
λ) =

∫
R
t2dνλ(t) =

1

eΛ(λ)
E(X2eλX),

and so

Var(Xλ) = E(X2
λ)− E(Xλ)

2

=
E(X2eλX)

eΛ(λ)
− E(XeλX)2

e2Λ(λ)

= Λ′′
X(λ).

For λ ∈ R, Taylor’s theorem tells us that there is some θ between 0 and λ
such that

ΛX(λ) = ΛX(0) + λΛ′
X(0) +

λ2

2
Λ′′
X(θ) =

λ2

2
Λ′′
X(θ);

here we have used that E(X) = 0. But from what we have shown, Var(Xθ) =

Λ′′
X(θ) and Var(Xθ) ≤ (b−a)2

4 , so

ΛX(λ) =
λ2

2
Var(Xθ) ≤

λ2

2
· (b− a)2

4
,

which shows that X is b−a
2 -subgaussian.

We now prove Hoeffding’s inequality.4

Theorem 5 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random
variables such that for each 1 ≤ k ≤ n, P (Xk ∈ [ak, bk]) = 1, and write
Sn =

∑n
k=1Xk. For any a > 0,

P (Sn − E(Sn) ≥ a) ≤ exp

(
− 2a2∑n

k=1(bk − ak)2

)
.

Proof. For λ > 0 and ϕ(t) = eλt, because ϕ is nonnegative and nondecreasing,
for X a random variable we have

1X≥aϕ(a) ≤ ϕ(X),

and so E(1X≥aϕ(a)) ≤ E(ϕ(X)), i.e.

P (X ≥ a) ≤ E(eλX)

eλa
.

4Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence, p. 34, Theorem 2.8.
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Using this with X = Sn − E(Sn) and because the Xk are independent,

P (Sn − E(Sn) ≥ a) ≤ 1

eλa
E(eλ(Sn−E(Sn))) = e−λa

n∏
k=1

E(eλ(Xk−E(Xk))).

Because P (Xk ∈ [ak, bk]) = 1, we have P (Xk − E(Xk) ∈ [ak − E(Xk), bk −
E(Xk)]) = 1, and as (bk−E(Xk))− (ak−E(Xk)) = bk−ak, Hoeffding’s lemma
tells us

logE(eλ(Xk−E(Xk))) ≤ (bk − ak)
2λ2

8
,

and thus

P (Sn − E(Sn) ≥ a) ≤ e−λa exp

(
n∑

k=1

(bk − ak)
2λ2

8

)

= exp

(
−λa+ λ2

8

n∑
k=1

(bk − ak)
2

)
.

We remark that λ does not appear in the left-hand side. Define

g(λ) = −λa+ λ2

8

n∑
k=1

(bk − ak)
2,

for which

g′(λ) = −a+ λ

4

n∑
k=1

(bk − ak)
2.

Then g′(λ) = 0 if and only if

λ =
4a∑n

k=1(bk − ak)2
,

at which g assumes its infimum. Then

P (Sn − E(Sn) ≥ a) ≤ exp

(
− 4a2∑n

k=1(bk − ak)2
+

16a2

8

1∑n
k=1(bk − ak)2

)
= exp

(
− 2a∑n

k=1(bk − ak)2

)
,

proving the claim.

3 Cramér’s large deviation theorem

The following is Cramér’s large deviation theorem.5

5Achim Klenke, Probability Theory: A Comprehensive Course, p. 508, Theorem 23.3.
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Theorem 6 (Cramér’s large deviation theorem). Suppose thatXn : (Ω,F , P ) →
R, n ≥ 1, are independent identically distributed random variables such that
for all t ∈ R,

Λ(t) = logE(etX1) <∞.

For x ∈ R define
Λ∗(x) = sup

t∈R
(tx− Λ(t)).

If a > E(X1), then

lim
n→∞

1

n
logP (Sn ≥ an) = −Λ∗(a),

where Sn =
∑n

k=1Xk.

Proof. For a > E(X1), let Yn = Xn − a, let

L(t) = logE(etY1) = logE(etX1e−ta) = −ta+ Λ(t)

and let

L∗(x) = sup
t∈R

(tx− L(t)) = sup
t∈R

(t(x+ a)− Λ(t)) = Λ∗(x+ a).

Lastly, let Tn =
∑n

k=1 Yk = Sn − na, with which

P (Tn ≥ bn) = P (Sn ≥ (b+ a)n).

Thus, if we have

lim
n→∞

1

n
logP (Tn ≥ 0) = −L∗(0),

then

lim
n→∞

1

n
logP (Sn ≥ an) = −L∗(0) = −Λ∗(a).

Therefore it suffices to prove the theorem for when E(X1) < 0 and a = 0.
Define

ϕ(t) = eΛ(t) = E(etX1) =

∫
Ω

etX1dP =

∫
R
etxd(X1∗P )(x), t ∈ R,

the moment generating function of X1, and define

ρ = e−Λ∗(0) = exp

(
− sup

t∈R
(−Λ(t))

)
= exp

(
inf
t∈R

Λ(t)

)
= inf

t∈R
ϕ(t),

using that x 7→ ex is increasing.
Using the dominated convergence theorem, for k ≥ 0 we obtain

ϕ(k)(t) =

∫
R
xketxd(X1∗P )(x) = E(Xk

1 e
tX1).
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In particular, ϕ′(t) = E(X1e
tX1), for which ϕ′(0) = E(X1) < 0, and ϕ′′(t) =

E(X2
1e

tX1) > 0 for all t (either the expectation is 0 or positive, and if it is 0
then X2

1e
tX1 is 0 almost everywhere, which contradicts E(X1) < 0).

Either P (X1 ≤ 0) = 1 or P (X1 ≤ 0) < 1. In the first case,

ϕ′(t) =

∫
Ω

X1e
tX1dP =

∫
X1≤0

X1e
tX1dP ≤ 0,

so, using the dominated convergence theorem,

ρ = inf
t∈R

ϕ(t) = lim
t→∞

ϕ(t) =

∫
X1≤0

(
lim
t→∞

etX1

)
dP =

∫
X1=0

dP = P (X1 = 0).

Then

P (Sn ≥ 0) = P (X1 = 0, . . . , Xn = 0) = P (X1 = 0) · · ·P (Xn = 0) = ρn.

That is, as a = 0,
P (Sn ≥ a) = e−nΛ∗(a),

and the claim is immediate in this case.
In the second case, P (X1 ≤ 0) < 1. As ϕ′′(t) > 0 for all t, there is some

τ ∈ R at which ϕ(τ) < ϕ(t) for all t ̸= τ (namely, a unique global minimum).
Thus,

ϕ(τ) = ρ, ϕ′(τ) = 0.

And ϕ′(0) = E(X1) < 0, which with the above yields τ > 0. Because τ > 0,
Sn(ω) ≥ 0 if and only if τSn(ω) ≥ 0 if and only if eτSn(ω) ≥ 1. Applying
Chebyshev’s inequality, and because Xn are independent,

P (Sn ≥ 0) = P (eτSn ≥ 1) ≤ E(eτSn) = E(eτX1) · · ·E(eτXn) = ϕ(τ)n = ρn,

thus logP (Sn ≥ 0) ≤ n log ρ and then

lim sup
n→∞

1

n
logP (Sn ≥ 0) ≤ lim sup

n→∞
log ρ = log ρ = log e−Λ∗(0) = −Λ∗(0).

To prove the claim, it now suffices to prove that, in the case P (X1 ≤ 0) < 1,

lim inf
n→∞

1

n
logP (Sn ≥ 0) ≥ log ρ. (1)

Let µ = X1∗P , and let

dν(x) =
eτx

ρ
dµ(x).

ν is a Borel probability measure: it is apparent that it is a Borel measure, and

ν(R) =
∫
R
dν(x) =

∫
R

eτx

ρ
dµ(x) =

1

ρ

∫
R
eτxdµ(x) =

ϕ(τ)

ρ
= 1.
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There are independent identically distributed random variables Yn, n ≥ 1, each
with Yn∗Q = ν. 6 Define

ψ(t) = E(etY1) =

∫
R
etxdν(x) =

∫
R
etx

eτx

ρ
dµ(x) =

1

ρ

∫
R
e(t+τ)xdµ(x) =

ϕ(t+ τ)

ρ
,

the moment generating function of Y1. As ϕ′(τ) = 0,

E(Y1) = ψ′(0) =
ϕ′(τ)

ρ
= 0.

As ρ > 0 and ϕ′′(t) > 0 for all t,

Var(Y1) = E(Y 2
1 ) = ψ′′(0) =

ϕ′′(τ)

ρ
∈ (0,∞).

For Tn =
∑n

k=1 Yk, using that the Xn are independent and that the Yn are
independent,

P (Sn ≥ 0) =

∫
x1+···+xn≥0

d(Sn∗P )(x)

=

∫
x1+···+xn≥0

dµ(x1) · · · dµ(xn)

=

∫
x1+···+xn≥0

( ρ

eτx1
dν(x1)

)
· · ·
( ρ

eτxn
dν(xn)

)
= ρn

∫
x1+···+xn≥0

e−τ(x1+···+xn)d(Tn∗Q).

But ∫
x1+···+xn≥0

e−τ(x1+···+xn)d(Tn∗Q) =

∫
Tn≥0

e−τTndQ

= E(1{Tn≥0} · e−τTn),

hence
P (Sn ≥ 0) = ρnE(1{Tn≥0} · e−τTn).

Thus, (1) is equivalent to

lim inf
n→∞

1

n
log
(
ρnE(1{Tn≥0} · e−τTn)

)
≥ log ρ,

so, to prove the claim it suffices to prove that

lim inf
n→∞

1

n
log
(
E(1{Tn≥0} · e−τTn)

)
≥ 0.

6Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, p. 329,
Corollary 10.19.
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For any c > 0,

log
(
E(1{Tn≥0} · e−τTn)

)
≥ logE

(
1{0≤Tn≤c

√
n} · e−τTn

)
≥ log

(
e−τc

√
n ·Q

(
0 ≤ Tn ≤ c

√
n
))

= −τc
√
n+ logQ

(
Tn√
n
∈ [0, c]

)
.

Because the Yn are independent identically distributed L2 random variables

with mean 0 and variance σ2 = Var(Y1) =
ϕ′′(τ)

ρ , the central limit theorem tells
us that as n→ ∞,

Q

(
Tn√
n
∈ [0, c]

)
→ γ0,σ2([0, c]),

where γa,σ2 is the Gaussian measure, whose density with respect to Lebesgue
measure on R is

p(t, a, σ2) =
1

σ
√
2π
e−

(t−a)2

2σ2 .

Thus, because for c > 0 we have γ0,σ2([0, c]) > 0,

lim inf
n→∞

1

n
log
(
E(1{Tn≥0} · e−τTn)

)
≥ lim inf

n→∞

(
−τc√
n

+
1

n
logQ

(
Tn√
n
∈ [0, c]

))
= lim

n→∞
− τc√

n
+ lim

n→∞

1

n
logQ

(
Tn√
n
∈ [0, c]

)
= lim

n→∞

1

n
log γ0,σ2([0, c])

= 0,

which completes the proof.

For example, say that Xn are independent identically distributed random
variables withX1∗P = γ0,1. We calculate that the cumulant generating function
Λ(t) = logE(etX1) is

Λ(t) = log

(∫
R
etxdγ0,1(x)

)
= log

(∫
R
etx

e−
x2

2

√
2π

dx

)

= log

(∫
R

e−
1
2 (x−t)2

√
2π

e
t2

2 dx

)
= log et

2

2

=
t2

2
,
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thus Λ(t) <∞ for all t. Then

Λ∗(x) = sup
t∈R

(tx− Λ(t)) = sup
t∈R

(
tx− t2

2

)
=
x2

2
.

Now applying Cramér’s theorem we get that for a > E(X1) = 0, for Sn =∑n
k=1Xk we have

lim
n→∞

1

n
logP (Sn ≥ an) = −a

2

2
.

Another example: If Xn are independent identically distributed random
variables with the Rademacher distribution:

Xn∗P =
1

2
δ−1 +

1

2
δ1.

Then

E(etX1) =

∫
R
etxd

(
1

2
δ−1 +

1

2
δ1

)
(x) =

1

2
e−t +

1

2
et = cosh t,

so the cumulant generating function of X1 is

Λ(t) = log cosh t,

and indeed Λ(t) <∞ for all t ∈ R. Then, as d
dt (tx− log cosh t) = x− tanh t,

Λ∗(x) = sup
t∈R

(tx− log cosh t) = arctanhx · x− log cosh arctanhx.

For x ∈ (−1, 1),

arctanhx =
1

2
log

1 + x

1− x
.

Then

cosh arctanhx =
1

2

(
earctanh x + e−arctanh x

)
=

1

2

√
1 + x

1− x
+
1

2

√
1− x

1 + x
=

1√
1− x2

.

With these identities,

Λ∗(t) =
x

2
log

1 + x

1− x
+

1

2
log(1− x2)

=
x

2
log(1 + x)− x

2
log(1− x) +

1

2
log(1 + x) +

1

2
log(1− x)

=
1 + x

2
log(1 + x) +

1− x

2
log(1− x).

With Sn =
∑n

k=1Xk, applying Cramér’s theorem, we get that for any a >
E(X1) = 0,

lim
n→∞

1

n
logP (Sn ≥ an) = −1 + x

2
log(1 + x)− 1− x

2
log(1− x).
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For a Borel probability measure µ on R, we define its Laplace transform
µ̌ : R → (0,∞] by

µ̌(t) =

∫
R
etydµ(y).

Suppose that
∫
R |y|dµ(y) < ∞ and let M1 =

∫
R ydµ(y), the first moment of µ.

For any t the function x 7→ etx is convex, so by Jensen’s inequality,

etM1 ≤
∫
R
etydµ(y) = µ̌(t).

Thus for all t ∈ R,
tM1 − log µ̌(t) ≤ 0.

For a Borel probability measure µ with finite first moment, we define its
Cramér transform Iµ : R → [0,∞] by7

Iµ(x) = sup
t∈R

(tx− log µ̌(t)).

For t = 0, tx − log µ̌(t) = − log µ̌(0) = − log(1) = 0, which shows that indeed
0 ≤ Iµ(x) ≤ ∞ for all x ∈ R. But tM1 − log µ̌(t) ≤ 0 for all t yields

Iµ(M1) = 0.

7Heinz Bauer, Probability Theory, pp. 89–90, §12.
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