Subgaussian random variables, Hoeffding's inequality, and Cramér's large deviation theorem

Jordan Bell

June 4, 2014

1 Subgaussian random variables

For a random variable X, let $\Lambda_{X}(t)=\log E\left(e^{t X}\right)$, the cumulant generating function of X. A b-subgaussian random variable, $b>0$, is a random variable X such that

$$
\Lambda_{X}(t) \leq \frac{b^{2} t^{2}}{2}, \quad t \in \mathbb{R}
$$

We remark that for $\gamma_{a, \sigma^{2}}$ a Gaussian measure, whose density with respect to Lebesgue measure on \mathbb{R} is

$$
p\left(x, a, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-a)^{2}}{2 \sigma^{2}}}
$$

we have

$$
\int_{\mathbb{R}} e^{t x} d \gamma_{0, b^{2}}(x)=\int_{\mathbb{R}} e^{b t y} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y=\int_{\mathbb{R}} e^{\frac{b^{2} t^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-b t)^{2}}{2}} d y=e^{\frac{b^{2} t^{2}}{2}}
$$

We prove that a b-subgaussian random variable is centered and has variance $\leq b^{2} .{ }^{1}$

Theorem 1. If X is b-subgaussian then $E(X)=0$ and $\operatorname{Var}(X) \leq b^{2}$.
Proof. For each $\omega \in \Omega, \sum_{k=0}^{n} \frac{t^{k} X(\omega)^{k}}{k!} \rightarrow e^{t X(\omega)}$, and by the dominated convergence theorem,

$$
\sum_{k=0}^{n} \frac{t^{k} E(X)^{k}}{k!} \rightarrow E\left(e^{t X}\right) \leq e^{\frac{b^{2} t^{2}}{2}}=\sum_{k=0}^{\infty}\left(\frac{b^{2} t^{2}}{2}\right)^{k} \frac{1}{k!}
$$

Therefore

$$
1+t E(X)+t^{2} E\left(X^{2}\right)+O\left(t^{3}\right) \leq 1+\frac{b^{2} t^{2}}{2}+O\left(t^{4}\right)
$$

[^0]whence
$$
t E(X)+t^{2} E\left(X^{2}\right) \leq \frac{b^{2} t^{2}}{2}+o\left(t^{2}\right)
$$
and so, for $t>0$,
$$
E(X)+t E\left(X^{2}\right) \leq \frac{b^{2} t}{2}+o(t)
$$

First, this yields $E(X)=o(t)$, which means that $E(X)=0$. Second, since $E(X)=0$,

$$
t E\left(X^{2}\right) \leq \frac{b^{2} t}{2}+o(t)
$$

and then

$$
E\left(X^{2}\right) \leq \frac{b^{2}}{2}+o(1)
$$

which measn that $E\left(X^{2}\right) \leq \frac{b^{2}}{2}$.
Stromberg attributes the following theorem to Saeki; further, it is proved in Stromberg that if for some t the inequality in the theorem is an equality then the random variable has the Rademacher distribution. ${ }^{2}$

Theorem 2. If X is a random variable satisfying $E(X)=0$ and $P(X \in$ $[-1,1])=1$, then

$$
E\left(e^{t X}\right) \leq \cosh t, \quad t \in \mathbb{R}
$$

Proof. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(t)=e^{t}\left(\cosh t-E\left(e^{t X}\right)\right)=\frac{e^{2 t}}{2}+\frac{1}{2}-e^{t} E\left(e^{t X}\right)
$$

Then

$$
f^{\prime}(t)=e^{2 t}-e^{t} E\left(e^{t X}\right)-e^{t} E\left(X e^{t X}\right)
$$

the derivative of $E\left(e^{t X}\right)$ with respect to t is obtained using the dominated convergence theorem. Let $Y=1+X$, with which
$f^{\prime}(t)=e^{2 t}-E\left(e^{t Y}\right)-E\left(X e^{t Y}\right)=e^{2 t}-E\left(e^{t Y}\right)-E\left((Y-1) e^{t Y}\right)=e^{2 t}-E\left(Y e^{t Y}\right)$. $E(X)=0$, so $E(Y)=1$, hence

$$
f^{\prime}(t)=E\left(e^{2 t} Y\right)-E\left(Y e^{t Y}\right)=E\left(Y\left(e^{2 t}-e^{t Y}\right)\right)
$$

Because $P(Y \in[0,2])=1$, for $t \geq 0$, we have almost surely $e^{2 t}-e^{t Y} \geq 0$, and therefore almost surely $Y\left(e^{2 t}-e^{t Y}\right) \geq 0$. Therefore, for $t \geq 0$,

$$
f^{\prime}(t)=E\left(Y\left(e^{2 t}-e^{t Y}\right)\right) \geq 0
$$

[^1]which tells us that for $t \geq 0$,
$$
f(0) \leq f(t)
$$

As $f(0)=0$, for $t \geq 0$,

$$
0 \leq e^{t}\left(\cosh t-E\left(e^{t X}\right)\right)
$$

and so

$$
E\left(e^{t X}\right) \leq \cosh t
$$

Corollary 3. If a random variable X satisfies $E(X)=0$ and $P(|X| \leq b)=1$, then X is b-subgaussian.

2 Hoeffding's inequality

We first prove Hoeffding's lemma. ${ }^{3}$
Lemma 4 (Hoeffding's lemma). If a random variable X satisfies $E(X)=0$ and $P(X \in[a, b])=1$, then X is $\frac{b-a}{2}$-subgaussian.

Proof. Because $P(X \in[a, b])=1$, it follows that

$$
\operatorname{Var}(X) \leq \frac{(b-a)^{2}}{4}
$$

not using that $P(X)=0$. (Namely, Popoviciu's inequality.)
Write $\mu=X_{*} P$ and for $\lambda \in \mathbb{R}$ define

$$
d \nu_{\lambda}(t)=\frac{e^{\lambda t}}{e^{\Lambda(\lambda)}} d \mu(t)
$$

We check

$$
\int_{\mathbb{R}} d \nu_{\lambda}(t)=\frac{1}{e^{\Lambda(\lambda)}} \int_{\mathbb{R}} e^{\lambda t} d\left(X_{*} P\right)(t)=\frac{1}{e^{\Lambda(\lambda)}} \int_{\Omega} e^{\lambda X} d P=1
$$

There is a random variable $X_{\lambda}:\left(\Omega_{\lambda}, \mathscr{F}_{\lambda}, P_{\lambda}\right) \rightarrow \mathbb{R}$ for which $X_{\lambda *} P_{\lambda}=\nu_{\lambda} . X_{\lambda}$ satisfies $P_{\lambda}\left(X_{\lambda} \in[a, b]\right)=1$, and so

$$
\operatorname{Var}\left(X_{\lambda}\right) \leq \frac{(b-a)^{2}}{4}
$$

We calculate

$$
\Lambda_{X}^{\prime}(t)=\frac{E\left(X e^{t X}\right)}{E\left(e^{t X}\right)}
$$

[^2]and
$$
\Lambda_{X}^{\prime \prime}(t)=\frac{E\left(X^{2} e^{t X}\right) E\left(e^{t X}\right)-E\left(X e^{t X}\right) E\left(X e^{t X}\right)}{E\left(e^{t X}\right)^{2}}
$$

But

$$
E\left(X_{\lambda}\right)=\int_{\mathbb{R}} t d \nu_{\lambda}(t)=\int_{\mathbb{R}} t \frac{e^{\lambda t}}{e^{\Lambda(\lambda)}} d \mu(t)=\frac{1}{e^{\Lambda(\lambda)}} E\left(X e^{\lambda X}\right)
$$

and

$$
E\left(X_{\lambda}^{2}\right)=\int_{\mathbb{R}} t^{2} d \nu_{\lambda}(t)=\frac{1}{e^{\Lambda(\lambda)}} E\left(X^{2} e^{\lambda X}\right)
$$

and so

$$
\begin{aligned}
\operatorname{Var}\left(X_{\lambda}\right) & =E\left(X_{\lambda}^{2}\right)-E\left(X_{\lambda}\right)^{2} \\
& =\frac{E\left(X^{2} e^{\lambda X}\right)}{e^{\Lambda(\lambda)}}-\frac{E\left(X e^{\lambda X}\right)^{2}}{e^{2 \Lambda(\lambda)}} \\
& =\Lambda_{X}^{\prime \prime}(\lambda)
\end{aligned}
$$

For $\lambda \in \mathbb{R}$, Taylor's theorem tells us that there is some θ between 0 and λ such that

$$
\Lambda_{X}(\lambda)=\Lambda_{X}(0)+\lambda \Lambda_{X}^{\prime}(0)+\frac{\lambda^{2}}{2} \Lambda_{X}^{\prime \prime}(\theta)=\frac{\lambda^{2}}{2} \Lambda_{X}^{\prime \prime}(\theta)
$$

here we have used that $E(X)=0$. But from what we have shown, $\operatorname{Var}\left(X_{\theta}\right)=$ $\Lambda_{X}^{\prime \prime}(\theta)$ and $\operatorname{Var}\left(X_{\theta}\right) \leq \frac{(b-a)^{2}}{4}$, so

$$
\Lambda_{X}(\lambda)=\frac{\lambda^{2}}{2} \operatorname{Var}\left(X_{\theta}\right) \leq \frac{\lambda^{2}}{2} \cdot \frac{(b-a)^{2}}{4}
$$

which shows that X is $\frac{b-a}{2}$-subgaussian.
We now prove Hoeffding's inequality. ${ }^{4}$
Theorem 5 (Hoeffding's inequality). Let X_{1}, \ldots, X_{n} be independent random variables such that for each $1 \leq k \leq n, P\left(X_{k} \in\left[a_{k}, b_{k}\right]\right)=1$, and write $S_{n}=\sum_{k=1}^{n} X_{k}$. For any $a>0$,

$$
P\left(S_{n}-E\left(S_{n}\right) \geq a\right) \leq \exp \left(-\frac{2 a^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right)
$$

Proof. For $\lambda>0$ and $\phi(t)=e^{\lambda t}$, because ϕ is nonnegative and nondecreasing, for X a random variable we have

$$
1_{X \geq a} \phi(a) \leq \phi(X)
$$

and so $E\left(1_{X \geq a} \phi(a)\right) \leq E(\phi(X))$, i.e.

$$
P(X \geq a) \leq \frac{E\left(e^{\lambda X}\right)}{e^{\lambda a}}
$$

[^3]Using this with $X=S_{n}-E\left(S_{n}\right)$ and because the X_{k} are independent,

$$
P\left(S_{n}-E\left(S_{n}\right) \geq a\right) \leq \frac{1}{e^{\lambda a}} E\left(e^{\lambda\left(S_{n}-E\left(S_{n}\right)\right)}\right)=e^{-\lambda a} \prod_{k=1}^{n} E\left(e^{\lambda\left(X_{k}-E\left(X_{k}\right)\right)}\right) .
$$

Because $P\left(X_{k} \in\left[a_{k}, b_{k}\right]\right)=1$, we have $P\left(X_{k}-E\left(X_{k}\right) \in\left[a_{k}-E\left(X_{k}\right), b_{k}-\right.\right.$ $\left.\left.E\left(X_{k}\right)\right]\right)=1$, and as $\left(b_{k}-E\left(X_{k}\right)\right)-\left(a_{k}-E\left(X_{k}\right)\right)=b_{k}-a_{k}$, Hoeffding's lemma tells us

$$
\log E\left(e^{\lambda\left(X_{k}-E\left(X_{k}\right)\right)}\right) \leq \frac{\left(b_{k}-a_{k}\right)^{2} \lambda^{2}}{8}
$$

and thus

$$
\begin{aligned}
P\left(S_{n}-E\left(S_{n}\right) \geq a\right) & \leq e^{-\lambda a} \exp \left(\sum_{k=1}^{n} \frac{\left(b_{k}-a_{k}\right)^{2} \lambda^{2}}{8}\right) \\
& =\exp \left(-\lambda a+\frac{\lambda^{2}}{8} \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}\right) .
\end{aligned}
$$

We remark that λ does not appear in the left-hand side. Define

$$
g(\lambda)=-\lambda a+\frac{\lambda^{2}}{8} \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2},
$$

for which

$$
g^{\prime}(\lambda)=-a+\frac{\lambda}{4} \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}
$$

Then $g^{\prime}(\lambda)=0$ if and only if

$$
\lambda=\frac{4 a}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}},
$$

at which g assumes its infimum. Then

$$
\begin{aligned}
P\left(S_{n}-E\left(S_{n}\right) \geq a\right) & \leq \exp \left(-\frac{4 a^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}+\frac{16 a^{2}}{8} \frac{1}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right) \\
& =\exp \left(-\frac{2 a}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right),
\end{aligned}
$$

proving the claim.

3 Cramér's large deviation theorem

The following is Cramér's large deviation theorem. ${ }^{5}$

[^4]Theorem 6 (Cramér's large deviation theorem). Suppose that $X_{n}:(\Omega, \mathscr{F}, P) \rightarrow$ $\mathbb{R}, n \geq 1$, are independent identically distributed random variables such that for all $t \in \mathbb{R}$,

$$
\Lambda(t)=\log E\left(e^{t X_{1}}\right)<\infty
$$

For $x \in \mathbb{R}$ define

$$
\Lambda^{*}(x)=\sup _{t \in \mathbb{R}}(t x-\Lambda(t))
$$

If $a>E\left(X_{1}\right)$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} \geq a n\right)=-\Lambda^{*}(a)
$$

where $S_{n}=\sum_{k=1}^{n} X_{k}$.
Proof. For $a>E\left(X_{1}\right)$, let $Y_{n}=X_{n}-a$, let

$$
L(t)=\log E\left(e^{t Y_{1}}\right)=\log E\left(e^{t X_{1}} e^{-t a}\right)=-t a+\Lambda(t)
$$

and let

$$
L^{*}(x)=\sup _{t \in \mathbb{R}}(t x-L(t))=\sup _{t \in \mathbb{R}}(t(x+a)-\Lambda(t))=\Lambda^{*}(x+a)
$$

Lastly, let $T_{n}=\sum_{k=1}^{n} Y_{k}=S_{n}-n a$, with which

$$
P\left(T_{n} \geq b n\right)=P\left(S_{n} \geq(b+a) n\right)
$$

Thus, if we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(T_{n} \geq 0\right)=-L^{*}(0)
$$

then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} \geq a n\right)=-L^{*}(0)=-\Lambda^{*}(a)
$$

Therefore it suffices to prove the theorem for when $E\left(X_{1}\right)<0$ and $a=0$.
Define

$$
\phi(t)=e^{\Lambda(t)}=E\left(e^{t X_{1}}\right)=\int_{\Omega} e^{t X_{1}} d P=\int_{\mathbb{R}} e^{t x} d\left(X_{1 *} P\right)(x), \quad t \in \mathbb{R}
$$

the moment generating function of X_{1}, and define

$$
\rho=e^{-\Lambda^{*}(0)}=\exp \left(-\sup _{t \in \mathbb{R}}(-\Lambda(t))\right)=\exp \left(\inf _{t \in \mathbb{R}} \Lambda(t)\right)=\inf _{t \in \mathbb{R}} \phi(t)
$$

using that $x \mapsto e^{x}$ is increasing.
Using the dominated convergence theorem, for $k \geq 0$ we obtain

$$
\phi^{(k)}(t)=\int_{\mathbb{R}} x^{k} e^{t x} d\left(X_{1 *} P\right)(x)=E\left(X_{1}^{k} e^{t X_{1}}\right)
$$

In particular, $\phi^{\prime}(t)=E\left(X_{1} e^{t X_{1}}\right)$, for which $\phi^{\prime}(0)=E\left(X_{1}\right)<0$, and $\phi^{\prime \prime}(t)=$ $E\left(X_{1}^{2} e^{t X_{1}}\right)>0$ for all t (either the expectation is 0 or positive, and if it is 0 then $X_{1}^{2} e^{t X_{1}}$ is 0 almost everywhere, which contradicts $\left.E\left(X_{1}\right)<0\right)$.

Either $P\left(X_{1} \leq 0\right)=1$ or $P\left(X_{1} \leq 0\right)<1$. In the first case,

$$
\phi^{\prime}(t)=\int_{\Omega} X_{1} e^{t X_{1}} d P=\int_{X_{1} \leq 0} X_{1} e^{t X_{1}} d P \leq 0
$$

so, using the dominated convergence theorem,

$$
\rho=\inf _{t \in \mathbb{R}} \phi(t)=\lim _{t \rightarrow \infty} \phi(t)=\int_{X_{1} \leq 0}\left(\lim _{t \rightarrow \infty} e^{t X_{1}}\right) d P=\int_{X_{1}=0} d P=P\left(X_{1}=0\right)
$$

Then

$$
P\left(S_{n} \geq 0\right)=P\left(X_{1}=0, \ldots, X_{n}=0\right)=P\left(X_{1}=0\right) \cdots P\left(X_{n}=0\right)=\rho^{n}
$$

That is, as $a=0$,

$$
P\left(S_{n} \geq a\right)=e^{-n \Lambda^{*}(a)}
$$

and the claim is immediate in this case.
In the second case, $P\left(X_{1} \leq 0\right)<1$. As $\phi^{\prime \prime}(t)>0$ for all t, there is some $\tau \in \mathbb{R}$ at which $\phi(\tau)<\phi(t)$ for all $t \neq \tau$ (namely, a unique global minimum). Thus,

$$
\phi(\tau)=\rho, \quad \phi^{\prime}(\tau)=0
$$

And $\phi^{\prime}(0)=E\left(X_{1}\right)<0$, which with the above yields $\tau>0$. Because $\tau>0$, $S_{n}(\omega) \geq 0$ if and only if $\tau S_{n}(\omega) \geq 0$ if and only if $e^{\tau S_{n}(\omega)} \geq 1$. Applying Chebyshev's inequality, and because X_{n} are independent,

$$
P\left(S_{n} \geq 0\right)=P\left(e^{\tau S_{n}} \geq 1\right) \leq E\left(e^{\tau S_{n}}\right)=E\left(e^{\tau X_{1}}\right) \cdots E\left(e^{\tau X_{n}}\right)=\phi(\tau)^{n}=\rho^{n}
$$

thus $\log P\left(S_{n} \geq 0\right) \leq n \log \rho$ and then

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} \geq 0\right) \leq \limsup _{n \rightarrow \infty} \log \rho=\log \rho=\log e^{-\Lambda^{*}(0)}=-\Lambda^{*}(0)
$$

To prove the claim, it now suffices to prove that, in the case $P\left(X_{1} \leq 0\right)<1$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} \geq 0\right) \geq \log \rho \tag{1}
\end{equation*}
$$

Let $\mu=X_{1 *} P$, and let

$$
d \nu(x)=\frac{e^{\tau x}}{\rho} d \mu(x)
$$

ν is a Borel probability measure: it is apparent that it is a Borel measure, and

$$
\nu(\mathbb{R})=\int_{\mathbb{R}} d \nu(x)=\int_{\mathbb{R}} \frac{e^{\tau x}}{\rho} d \mu(x)=\frac{1}{\rho} \int_{\mathbb{R}} e^{\tau x} d \mu(x)=\frac{\phi(\tau)}{\rho}=1
$$

There are independent identically distributed random variables $Y_{n}, n \geq 1$, each with $Y_{n *} Q=\nu .{ }^{6}$ Define
$\psi(t)=E\left(e^{t Y_{1}}\right)=\int_{\mathbb{R}} e^{t x} d \nu(x)=\int_{\mathbb{R}} e^{t x} \frac{e^{\tau x}}{\rho} d \mu(x)=\frac{1}{\rho} \int_{\mathbb{R}} e^{(t+\tau) x} d \mu(x)=\frac{\phi(t+\tau)}{\rho}$,
the moment generating function of Y_{1}. As $\phi^{\prime}(\tau)=0$,

$$
E\left(Y_{1}\right)=\psi^{\prime}(0)=\frac{\phi^{\prime}(\tau)}{\rho}=0
$$

As $\rho>0$ and $\phi^{\prime \prime}(t)>0$ for all t,

$$
\operatorname{Var}\left(Y_{1}\right)=E\left(Y_{1}^{2}\right)=\psi^{\prime \prime}(0)=\frac{\phi^{\prime \prime}(\tau)}{\rho} \in(0, \infty)
$$

For $T_{n}=\sum_{k=1}^{n} Y_{k}$, using that the X_{n} are independent and that the Y_{n} are independent,

$$
\begin{aligned}
P\left(S_{n} \geq 0\right) & =\int_{x_{1}+\cdots+x_{n} \geq 0} d\left(S_{n *} P\right)(x) \\
& =\int_{x_{1}+\cdots+x_{n} \geq 0} d \mu\left(x_{1}\right) \cdots d \mu\left(x_{n}\right) \\
& =\int_{x_{1}+\cdots+x_{n} \geq 0}\left(\frac{\rho}{e^{\tau x_{1}}} d \nu\left(x_{1}\right)\right) \cdots\left(\frac{\rho}{e^{\tau x_{n}}} d \nu\left(x_{n}\right)\right) \\
& =\rho^{n} \int_{x_{1}+\cdots+x_{n} \geq 0} e^{-\tau\left(x_{1}+\cdots+x_{n}\right)} d\left(T_{n *} Q\right) .
\end{aligned}
$$

But

$$
\begin{aligned}
\int_{x_{1}+\cdots+x_{n} \geq 0} e^{-\tau\left(x_{1}+\cdots+x_{n}\right)} d\left(T_{n *} Q\right) & =\int_{T_{n} \geq 0} e^{-\tau T_{n}} d Q \\
& =E\left(1_{\left\{T_{n} \geq 0\right\}} \cdot e^{-\tau T_{n}}\right)
\end{aligned}
$$

hence

$$
P\left(S_{n} \geq 0\right)=\rho^{n} E\left(1_{\left\{T_{n} \geq 0\right\}} \cdot e^{-\tau T_{n}}\right)
$$

Thus, (1) is equivalent to

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \left(\rho^{n} E\left(1_{\left\{T_{n} \geq 0\right\}} \cdot e^{-\tau T_{n}}\right)\right) \geq \log \rho
$$

so, to prove the claim it suffices to prove that

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \left(E\left(1_{\left\{T_{n} \geq 0\right\}} \cdot e^{-\tau T_{n}}\right)\right) \geq 0
$$

[^5]For any $c>0$,

$$
\begin{aligned}
\log \left(E\left(1_{\left\{T_{n} \geq 0\right\}} \cdot e^{-\tau T_{n}}\right)\right) & \geq \log E\left(1_{\left\{0 \leq T_{n} \leq c \sqrt{n}\right\}} \cdot e^{-\tau T_{n}}\right) \\
& \geq \log \left(e^{-\tau c \sqrt{n}} \cdot Q\left(0 \leq T_{n} \leq c \sqrt{n}\right)\right) \\
& =-\tau c \sqrt{n}+\log Q\left(\frac{T_{n}}{\sqrt{n}} \in[0, c]\right)
\end{aligned}
$$

Because the Y_{n} are independent identically distributed L^{2} random variables with mean 0 and variance $\sigma^{2}=\operatorname{Var}\left(Y_{1}\right)=\frac{\phi^{\prime \prime}(\tau)}{\rho}$, the central limit theorem tells us that as $n \rightarrow \infty$,

$$
Q\left(\frac{T_{n}}{\sqrt{n}} \in[0, c]\right) \rightarrow \gamma_{0, \sigma^{2}}([0, c])
$$

where $\gamma_{a, \sigma^{2}}$ is the Gaussian measure, whose density with respect to Lebesgue measure on \mathbb{R} is

$$
p\left(t, a, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(t-a)^{2}}{2 \sigma^{2}}}
$$

Thus, because for $c>0$ we have $\gamma_{0, \sigma^{2}}([0, c])>0$,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \left(E\left(1_{\left\{T_{n} \geq 0\right\}} \cdot e^{-\tau T_{n}}\right)\right) & \geq \liminf _{n \rightarrow \infty}\left(\frac{-\tau c}{\sqrt{n}}+\frac{1}{n} \log Q\left(\frac{T_{n}}{\sqrt{n}} \in[0, c]\right)\right) \\
& =\lim _{n \rightarrow \infty}-\frac{\tau c}{\sqrt{n}}+\lim _{n \rightarrow \infty} \frac{1}{n} \log Q\left(\frac{T_{n}}{\sqrt{n}} \in[0, c]\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \gamma_{0, \sigma^{2}}([0, c]) \\
& =0,
\end{aligned}
$$

which completes the proof.
For example, say that X_{n} are independent identically distributed random variables with $X_{1 *} P=\gamma_{0,1}$. We calculate that the cumulant generating function $\Lambda(t)=\log E\left(e^{t X_{1}}\right)$ is

$$
\begin{aligned}
\Lambda(t) & =\log \left(\int_{\mathbb{R}} e^{t x} d \gamma_{0,1}(x)\right) \\
& =\log \left(\int_{\mathbb{R}} e^{t x} \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x\right) \\
& =\log \left(\int_{\mathbb{R}} \frac{e^{-\frac{1}{2}(x-t)^{2}}}{\sqrt{2 \pi}} e^{\frac{t^{2}}{2}} d x\right) \\
& =\log e^{t^{2}} 2 \\
& =\frac{t^{2}}{2}
\end{aligned}
$$

thus $\Lambda(t)<\infty$ for all t. Then

$$
\Lambda^{*}(x)=\sup _{t \in \mathbb{R}}(t x-\Lambda(t))=\sup _{t \in \mathbb{R}}\left(t x-\frac{t^{2}}{2}\right)=\frac{x^{2}}{2}
$$

Now applying Cramér's theorem we get that for $a>E\left(X_{1}\right)=0$, for $S_{n}=$ $\sum_{k=1}^{n} X_{k}$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} \geq a n\right)=-\frac{a^{2}}{2}
$$

Another example: If X_{n} are independent identically distributed random variables with the Rademacher distribution:

$$
X_{n *} P=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}
$$

Then

$$
E\left(e^{t X_{1}}\right)=\int_{\mathbb{R}} e^{t x} d\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)(x)=\frac{1}{2} e^{-t}+\frac{1}{2} e^{t}=\cosh t
$$

so the cumulant generating function of X_{1} is

$$
\Lambda(t)=\log \cosh t
$$

and indeed $\Lambda(t)<\infty$ for all $t \in \mathbb{R}$. Then, as $\frac{d}{d t}(t x-\log \cosh t)=x-\tanh t$,

$$
\Lambda^{*}(x)=\sup _{t \in \mathbb{R}}(t x-\log \cosh t)=\operatorname{arctanh} x \cdot x-\log \cosh \operatorname{arctanh} x
$$

For $x \in(-1,1)$,

$$
\operatorname{arctanh} x=\frac{1}{2} \log \frac{1+x}{1-x}
$$

Then
$\cosh \operatorname{arctanh} x=\frac{1}{2}\left(e^{\operatorname{arctanh} x}+e^{-\operatorname{arctanh} x}\right)=\frac{1}{2} \sqrt{\frac{1+x}{1-x}}+\frac{1}{2} \sqrt{\frac{1-x}{1+x}}=\frac{1}{\sqrt{1-x^{2}}}$.
With these identities,

$$
\begin{aligned}
\Lambda^{*}(t) & =\frac{x}{2} \log \frac{1+x}{1-x}+\frac{1}{2} \log \left(1-x^{2}\right) \\
& =\frac{x}{2} \log (1+x)-\frac{x}{2} \log (1-x)+\frac{1}{2} \log (1+x)+\frac{1}{2} \log (1-x) \\
& =\frac{1+x}{2} \log (1+x)+\frac{1-x}{2} \log (1-x)
\end{aligned}
$$

With $S_{n}=\sum_{k=1}^{n} X_{k}$, applying Cramér's theorem, we get that for any $a>$ $E\left(X_{1}\right)=0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n} \geq a n\right)=-\frac{1+x}{2} \log (1+x)-\frac{1-x}{2} \log (1-x)
$$

For a Borel probability measure μ on \mathbb{R}, we define its Laplace transform $\check{\mu}: \mathbb{R} \rightarrow(0, \infty]$ by

$$
\check{\mu}(t)=\int_{\mathbb{R}} e^{t y} d \mu(y)
$$

Suppose that $\int_{\mathbb{R}}|y| d \mu(y)<\infty$ and let $M_{1}=\int_{\mathbb{R}} y d \mu(y)$, the first moment of μ. For any t the function $x \mapsto e^{t x}$ is convex, so by Jensen's inequality,

$$
e^{t M_{1}} \leq \int_{\mathbb{R}} e^{t y} d \mu(y)=\check{\mu}(t)
$$

Thus for all $t \in \mathbb{R}$,

$$
t M_{1}-\log \check{\mu}(t) \leq 0
$$

For a Borel probability measure μ with finite first moment, we define its Cramér transform $I_{\mu}: \mathbb{R} \rightarrow[0, \infty]$ by 7

$$
I_{\mu}(x)=\sup _{t \in \mathbb{R}}(t x-\log \check{\mu}(t)) .
$$

For $t=0, t x-\log \check{\mu}(t)=-\log \check{\mu}(0)=-\log (1)=0$, which shows that indeed $0 \leq I_{\mu}(x) \leq \infty$ for all $x \in \mathbb{R}$. But $t M_{1}-\log \check{\mu}(t) \leq 0$ for all t yields

$$
I_{\mu}\left(M_{1}\right)=0
$$

[^6]
[^0]: ${ }^{1}$ Karl R. Stromberg, Probability for Analysts, p. 293, Proposition 9.8.

[^1]: ${ }^{2}$ Karl R. Stromberg, Probability for Analysts, p. 293, Proposition 9.9; Omar Rivasplata, Subgaussian random variables: An expository note, http://www.math.ualberta.ca/ ~orivasplata/publications/subgaussians.pdf

[^2]: ${ }^{3}$ Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, p. 27, Lemma 2.2.

[^3]: ${ }^{4}$ Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, p. 34, Theorem 2.8.

[^4]: ${ }^{5}$ Achim Klenke, Probability Theory: A Comprehensive Course, p. 508, Theorem 23.3.

[^5]: ${ }^{6}$ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, p. 329, Corollary 10.19.

[^6]: ${ }^{7}$ Heinz Bauer, Probability Theory, pp. 89-90, §12.

