Subdifferentials of convex functions

Jordan Bell

April 21, 2014

1 Introduction

Whenever we speak about a vector space in this note we mean a vector space over \mathbb{R}. If X is a topological vector space then we denote by X^{*} the set of all continuous linear maps $X \rightarrow \mathbb{R}$. X^{*} is called the dual space of X, and is itself a vector space. ${ }^{1}$

2 Definition of subdifferential

If X is a topological vector space, $f: X \rightarrow[-\infty, \infty]$ is a function, $x \in X$, and $\lambda \in X^{*}$, then we say that λ is a subgradient of f at $x \mathrm{if}^{2}$

$$
f(y) \geq f(x)+\lambda(y-x), \quad y \in X
$$

The subdifferential of f at x is the set of all subgradients of f at x and is denoted by $\partial f(x)$. Thus ∂f is a function from X to the power set of X^{*}, i.e. $\partial f: X \rightarrow 2^{X^{*}}$. If $\partial f(x) \neq \emptyset$, we say that f is subdifferentiable at x.

It is immediate that if there is some y such that $f(y)=-\infty$, then

$$
\partial f(x)=\left\{\begin{array}{ll}
X^{*} & f(x)=-\infty \\
\emptyset & f(x)>-\infty
\end{array}, \quad x \in X\right.
$$

Thus, little is lost if we prove statements about subdifferentials of functions that do not take the value $-\infty$.

Theorem 1. If X is a topological vector space, $f: X \rightarrow[-\infty, \infty]$ is a function and $x \in X$, then $\partial f(x)$ is a convex subset of X^{*}.

[^0]Proof. If $\lambda_{1}, \lambda_{2} \in \partial f(x)$ and $0 \leq t \leq 1$, then of course $(1-t) \lambda_{1}+t \lambda_{2} \in X^{*}$. For any $y \in X$ we have

$$
\begin{aligned}
f(y) & =(1-t) f(y)+t f(y) \\
& \geq(1-t) f(x)+(1-t) \lambda_{1}(y-x)+t f(x)+t \lambda_{2}(y-x) \\
& =f(x)+\left((1-t) \lambda_{1}+t \lambda_{2}\right)(y-x),
\end{aligned}
$$

showing that $(1-t) \lambda_{1}+t \lambda_{2} \in \partial f(x)$ and thus that $\partial f(x)$ is convex.
To say that $0 \in \partial f(x)$ is equivalent to saying that $f(y) \geq f(x)$ for all $y \in X$ and so $f(x)=\inf _{y \in X} f(y)$. This can be said in the following way.

Lemma 2. If X is a topological vector space and $f: X \rightarrow[-\infty, \infty]$ is a function, then x is a minimizer of f if and only if $0 \in \partial f(x)$.

3 Convex functions

If X is a set and $f: X \rightarrow[-\infty, \infty]$ is a function, then the epigraph of f is the set

$$
\text { epi } f=\{(x, \alpha) \in X \times \mathbb{R}: \alpha \geq f(x)\}
$$

and the effective domain of f is the set

$$
\operatorname{dom} f=\{x \in X: f(x)<\infty\}
$$

To say that $x \in \operatorname{dom} f$ is equivalent to saying that there is some $\alpha \in \mathbb{R}$ such that $(x, \alpha) \in \operatorname{epi} f$. We say that f is finite if $-\infty<f(x)<\infty$ for all $x \in X$.

If X is a vector space and $f: X \rightarrow[-\infty, \infty]$ is a function, then we say that f is convex if epi f is a convex subset of the vector space $X \times \mathbb{R}$.

If X is a set and $f: X \rightarrow[-\infty, \infty]$ is a function, we say that f is proper if it does not take only the value ∞ and never takes the value $-\infty$. It is unusual to talk merely about proper functions rather than proper convex functions; we do so to make clear how convexity is used in the results we prove.

4 Weak-* topology

Let X be a topological vector space and for $x \in X$ define $e_{x}: X^{*} \rightarrow \mathbb{R}$ by $e_{x} \lambda=\lambda x$. The weak-* topology on X^{*} is the initial topology for the set of functions $\left\{e_{x}: x \in X\right\}$, that is, the coarsest topology on X^{*} such that for each $x \in X$, the function $e_{x}: X^{*} \rightarrow \mathbb{R}$ is continuous.

Lemma 3. If X is a topological vector space, τ_{1} is the weak-* topology on X^{*}, and τ_{2} is the subspace topology on X^{*} inherited from \mathbb{R}^{X} with the product topology, then $\tau_{1}=\tau_{2}$.

Proof. Let $\lambda_{i} \in X^{*}$ converge in τ_{1} to $\lambda \in X^{*}$. For each $x \in X$, the function $e_{x}: X^{*} \rightarrow \mathbb{R}$ is τ_{1} continuous, so $e_{x} \lambda_{i} \rightarrow e_{x} \lambda$, i.e. $\lambda_{i} x \rightarrow \lambda x$. But for $f_{i} \in \mathbb{R}^{X}$ to converge to $f \in \mathbb{R}^{X}$ means that for each x, we have $f_{i}(x) \rightarrow f(x)$. Thus λ_{i} converges to λ in τ_{2}. This shows that $\tau_{2} \subseteq \tau_{1}$.

Let $x \in X$, and let $\lambda_{i} \in X^{*}$ converge in τ_{2} to $\lambda \in X^{*}$. We then have $e_{x} \lambda_{i}=\lambda_{i} x \rightarrow \lambda x=e_{x} \lambda$; since λ_{i} was an arbitrary net that converges in τ_{2}, this shows that e_{x} is τ_{2} continuous. Thus, we have shown that for each $x \in X$, the function e_{x} is τ_{2} continuous. But τ_{1} is the coarsest topology for which e_{x} is continuous for all $x \in X$, so we obtain $\tau_{1} \subseteq \tau_{2}$.

In other words, the weak-* topology on X^{*} is the topology of pointwise convergence. We now prove that at each point in the effective domain of a proper function on a topological vector space, the subdifferential is a weak-* closed subset of the dual space. ${ }^{3}$

Theorem 4. If X is a topological vector space, $f: X \rightarrow(-\infty, \infty]$ is a proper function, and $x \in \operatorname{dom} f$, then $\partial f(x)$ is a weak-* closed subset of X^{*}.

Proof. If $\lambda \in \partial f(x)$, then for all $y \in X$ we have

$$
f(y) \geq f(x)+\lambda(y-x)
$$

so, for any $v \in X$, using $y=v+x$,

$$
f(v+x) \geq f(x)+\lambda v
$$

or,

$$
\lambda v \leq f(x+v)-f(x)
$$

this makes sense because $f(x)$ is finite. On the other hand, let $\lambda \in X^{*}$. If $\lambda v \leq f(x+v)-f(x)$ for all $v \in X$, then $\lambda(v-x) \leq f(v)-f(x)$, i.e. $f(v) \geq$ $f(x)+\lambda(v-x)$, and so $\lambda \in \partial f(x)$. Therefore

$$
\begin{equation*}
\partial f(x)=\bigcap_{v \in X}\left\{\lambda \in X^{*}: \lambda v \leq f(x+v)-f(x)\right\} \tag{1}
\end{equation*}
$$

Defining $e_{v}: X^{*} \rightarrow \mathbb{R}$ for $v \in X$ by $e_{v} \lambda=\lambda v$, for each $v \in X$ we have

$$
e_{v}^{-1}(-\infty, f(x+v)-f(x)]=\left\{\lambda \in X^{*}: \lambda v \leq f(x+v)-f(x)\right\}
$$

Because e_{v} is continuous, this inverse image is a closed subset of X^{*}. Therefore, each of the sets in the intersection (1) is a closed subset of X^{*}, and so $\partial f(x)$ is a closed subset of X^{*}.

[^1]
5 Support points

If X is set, A is a subset of X, and $f: X \rightarrow[-\infty, \infty]$ is a function, we say that $x \in X$ is a minimizer of f over A if

$$
f(x)=\inf _{y \in A} f(y)
$$

and that x is a maximizer of f over A if

$$
f(x)=\sup _{y \in A} f(y) .
$$

If A is a nonempty subset of a topological vector space X and $x \in A$, we say that x is a support point of A if there is some nonzero $\lambda \in X^{*}$ for which x is a minimizer or a maximizer of λ over A. Moreover, x is a minimizer of λ over A if and only if x is a maximizer of $-\lambda$ over A. Thus, if we know that x is a support point of a set A, then we have at our disposal both that x is a minimizer of some nonzero element of X^{*} over A and that x is a maximizer of some nonzero element of X^{*} over A.

If x is a support point of A and A is not contained in the hyperplane $\{y \in$ $X: \lambda y=\lambda x\}$, we say that A is properly supported at x. To say that A is not contained in the set $\{y \in X: \lambda y=\lambda x\}$ is equivalent to saying that there is some $y \in A$ such that $\lambda y \neq \lambda x$.

In the following lemma, we show that the support points of a set A are contained in the boundary ∂A of the set.

Lemma 5. If X is a topological vector space, A is a subset of X, and x is a support point of A, then $x \in \partial A$.

Proof. Because x is a support point of A there is some nonzero $\lambda \in X^{*}$ for which x is a maximizer of λ over A :

$$
\lambda x=\sup _{y \in A} \lambda y
$$

As λ is nonzero there is some $y \in X$ with $\lambda y>\lambda x$. For any $t>0$,
$(1-t) \lambda x+t \lambda y=\lambda((1-t) x+t y)=(1-t) \lambda x+t \lambda y>(1-t) \lambda x+t \lambda x=\lambda x$,
hence if $t>0$ then $(1-t) \lambda x+t y \notin A$. But $(1-t) x+t y \rightarrow x$ as $t \rightarrow 0$ and $x \in A$, showing that $x \in \partial A$.

The following lemma gives conditions under which a boundary point of a set is a proper support point of the set. ${ }^{4}$

Lemma 6. If X is a topological vector space, C is a convex subset of X that has nonempty interior, and $x \in C \cap \partial C$, then C is properly supported at x.

[^2]Proof. The Hahn-Banach separation theorem ${ }^{5}$ tells us that if A and B are disjoint nonempty convex subsets of X and A is open then there is some $\lambda \in X^{*}$ and some $t \in \mathbb{R}$ such that

$$
\lambda a<t \leq \lambda b, \quad a \in A, b \in B
$$

Check that the interior of a convex set in a topological vector space is convex, and hence that we can apply the Hahn-Banach separation theorem to $\{x\}$ and C° : as x belongs to the boundary of C it does not belong to the interior of C, so $\{x\}$ and C° are disjoint nonempty convex sets. Thus, there is some $\lambda \in X^{*}$ and some $t \in \mathbb{R}$ such that $\lambda y<t \leq \lambda x$ for all $y \in C^{\circ}$, from which it follows that $\lambda x \leq \lambda y$ for all $y \in C$, and $\lambda \neq 0$ because of the strict inequality for the interior. As $x \in C$, this means that x is a maximizer of λ over C, and as $\lambda \neq 0$ this means that x is a support point of C. But C° is nonempty and if $y \in C^{\circ}$ then $\lambda x<\lambda y$, hence x is a proper support point of C.

6 Subdifferentials of convex functions

If $f: X \rightarrow(-\infty, \infty]$ is a proper function then there is some $y \in X$ for which $f(y)<\infty$, and for f to have a subgradient λ at x demands that $f(y) \geq f(x)+$ $\lambda(y-x)$, and hence that $f(x)<\infty$. Therefore, if f is a proper function then the set of x at which f is subdifferentiable is a subset of $\operatorname{dom} f$.

We now prove conditions under which a function is subdifferentiable at a point, i.e., under which the subdifferential at that point is nonempty. ${ }^{6}$

Theorem 7. If X is a topological vector space, $f: X \rightarrow(-\infty, \infty]$ is a proper convex function, x is an interior point of $\operatorname{dom} f$, and f is continuous at x, then f has a subgradient at x.

Proof. Because f is convex, the set $\operatorname{dom} f$ is convex, and the interior of a convex set in a topological vector space is convex so $(\operatorname{dom} f)^{\circ}$ is convex. f is proper so it does not take the value $-\infty$, and on $\operatorname{dom} f$ it does not take the value ∞, hence f is finite on $\operatorname{dom} f$. But for a finite convex function on an open convex set in a topological vector space, being continuous at a point is equivalent to being continuous on the set, and is also equivalent to being bounded above on an open neighborhood of the point. ${ }^{7}$ Therefore, f is continuous on $(\operatorname{dom} f)^{\circ}$ and is bounded above on some open neighborhood V of x contained in $(\operatorname{dom} f)^{\circ}$, say $f(y) \leq M$ for all $y \in V . V \times(M, \infty)$ is an open subset of $X \times \mathbb{R}$, and is contained in epi f. This shows that epi f has nonempty interior. Since $f(x)<\infty$, if $\epsilon>0$ then $(x, f(x)-\epsilon) \notin$ epi f, and since $f(x)>-\infty$ we have $(x, f(x)) \in$ epi f, and therefore $(x, f(x)) \in$ epi $f \cap \partial($ epi $f)$. We can now apply Lemma 6: epi f is a convex subset of the topological vector space $X \times \mathbb{R}$ with nonempty interior and

[^3]$(x, f(x)) \in$ epi $f \cap \partial($ epi $f)$, so epi f is properly supported at $(x, f(x))$. That is, Lemma 6 shows that there is some $\Lambda \in(X \times \mathbb{R})^{*}$ such that
$$
\Lambda(x, f(x))=\sup _{(y, \alpha) \in \operatorname{epi} f} \Lambda(y, \alpha)
$$
and there is some $(y, \alpha) \in \operatorname{epi} f$ for which $\Lambda(x, f(x))>\Lambda(y, \alpha)$. Now, there is some $\lambda \in X^{*}$ and some $\beta \in \mathbb{R}^{*}=\mathbb{R}$ such that $\Lambda(y, \alpha)=\lambda y+\beta \alpha$ for all $(y, \alpha) \in X \times \mathbb{R}$. Thus, there is some nonzero $\lambda \in X^{*}$ and some $\beta \in \mathbb{R}$ such that
$$
\lambda x+\beta f(x)=\sup _{(y, \alpha) \in \operatorname{epi} f} \lambda y+\beta \alpha
$$

If $\beta>0$ then the right-hand side would be ∞ while the left-hand side is constant and $<\infty$, so $\beta \leq 0$. Suppose by contradiction that $\beta=0$. Then $\lambda x \geq \lambda y$ for all $y \in \operatorname{dom} f$, and as $\lambda \neq 0$ this means that x is a support point of $\operatorname{dom} f$, and then by Lemma 5 we have that $x \in \partial(\operatorname{dom} f)$, contradicting $x \in(\operatorname{dom} f)^{\circ}$. Hence $\beta<0$, so

$$
\lambda x+\beta f(x) \geq \lambda y+\beta f(y), \quad y \in \operatorname{dom} f
$$

i.e.,

$$
f(y) \geq f(x)-\frac{\lambda}{\beta}(y-x), \quad y \in \operatorname{dom} f
$$

Furthermore, if $y \notin \operatorname{dom} f$ then $f(y)=\infty$, for which the above inequality is true. Therefore, $f(y) \geq f(x)-\frac{\lambda}{\beta}(y-x)$ for all $y \in X$, showing that $-\frac{\lambda}{\beta}$ is a subgradient of f at x.

7 Directional derivatives

Lemma 8. If X is a vector space, $f: X \rightarrow(-\infty, \infty]$ is a proper convex function, $x \in \operatorname{dom} f, v \in X$, and $0<h^{\prime}<h$, then

$$
\frac{f\left(x+h^{\prime} v\right)-f(x)}{h^{\prime}} \leq \frac{f(x+h v)-f(x)}{h}
$$

Proof. We have

$$
x+h^{\prime} v=\frac{h^{\prime}}{h}(x+h v)+\frac{h-h^{\prime}}{h} x
$$

and because f is convex this gives

$$
f\left(x+h^{\prime} v\right) \leq \frac{h^{\prime}}{h} f(x+h v)+\frac{h-h^{\prime}}{h} f(x)
$$

i.e.

$$
f\left(x+h^{\prime} v\right)-f(x) \leq \frac{h^{\prime}}{h}(f(x+h v)-f(x))
$$

Dividing by h^{\prime},

$$
\frac{f\left(x+h^{\prime} v\right)-f(x)}{h^{\prime}} \leq \frac{f(x+h v)-f(x)}{h} .
$$

If $f: X \rightarrow(-\infty, \infty]$ is a proper convex function, $x \in \operatorname{dom} f$, and $v \in X$, then the above lemma shows that

$$
h \mapsto \frac{f(x+h v)-f(x)}{h}
$$

is an increasing function $(0, \infty) \rightarrow(-\infty, \infty]$, and therefore that

$$
\lim _{h \rightarrow 0^{+}} \frac{f(x+h v)-f(x)}{h}
$$

exists; it belongs to $[-\infty, \infty]$, and if there is at least one $h>0$ for which $f(x+h v)<\infty$ then the limit will be $<\infty$. We define the one-sided directional derivative of f at x to be the function $d^{+} f(x): X \rightarrow[-\infty, \infty]$ defined by ${ }^{8}$

$$
d^{+} f(x) v=\lim _{h \rightarrow 0^{+}} \frac{f(x+h v)-f(x)}{h}, \quad v \in X
$$

Lemma 9. If X is a topological vector space, $f: X \rightarrow(-\infty, \infty]$ is a proper convex function, $x \in(\operatorname{dom} f)^{\circ}$, f is continuous at x, and $v \in X$, then $-\infty<$ $d^{+} f(x) v<\infty$.

Proof. Because $x \in(\operatorname{dom} f)^{\circ}$, there is some $h>0$ for which $x+h v \in \operatorname{dom} f$ and hence for which $f(x+h v)<\infty$. This implies that $d^{+} f(x) v<\infty$.

Let $h>0$. By Theorem 7, the subdifferential $\partial f(x)$ is nonempty, i.e. there is some $\lambda \in X^{*}$ for which $f(y) \geq f(x)+\lambda(y-x)$ for all $y \in X$. Thus, for all $v \in X$ we have, with $y=x+h v$,

$$
f(x+h v) \geq f(x)+\lambda(h v)
$$

i.e.,

$$
\lambda v \leq \frac{f(x+h v)-f(x)}{h}
$$

Since this difference quotient is bounded below by λv, its limit as $h \rightarrow 0^{+}$is $>-\infty$, and therefore $d^{+} f(x) v>-\infty$.

[^4]
[^0]: ${ }^{1}$ In this note, we are following the presentation of some results in Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., chapter 7. Three other sources for material on subdifferentials are: Jean-Paul Penot, Calulus Without Derivatives, chapter 3; Viorel Barbu and Teodor Precupanu, Convexity and Optimization in Banach Spaces, fourth ed., §2.2, pp. 82-125; and Jean-Pierre Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, second ed., chapter 4, pp. 57-73.
 ${ }^{2} \infty+\infty=\infty,-\infty-\infty=-\infty$, and $\infty-\infty$ is nonsense; if $a \in \mathbb{R}$, then $a-\infty=-\infty$ and $a+\infty=\infty$.

[^1]: ${ }^{3}$ cf. Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 265, Theorem 7.13.

[^2]: ${ }^{4}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 259, Lemma 7.7.

[^3]: ${ }^{5}$ Gert K. Pedersen, Analysis Now, revised printing, p. 65, Theorem 2.4.7.
 ${ }^{6}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 265, Theorem 7.12.
 ${ }^{7}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 188, Theorem 5.43.

[^4]: ${ }^{8}$ We are following the notation of Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 266.

