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1 Introduction

Whenever we speak about a vector space in this note we mean a vector space
over R. If X is a topological vector space then we denote by X™* the set of all
continuous linear maps X — R. X* is called the dual space of X, and is itself
a vector space.!

2 Definition of subdifferential

If X is a topological vector space, f : X — [—o0, 0] is a function, z € X, and
A € X*, then we say that \ is a subgradient of f at x if?

fly) > f@)+ Ay —=), yeX

The subdifferential of f at x is the set of all subgradients of f at z and is
denoted by df(z). Thus Of is a function from X to the power set of X*, i.e.
Of : X = 2% If Of (x) # 0, we say that f is subdifferentiable at x.

It is immediate that if there is some y such that f(y) = —oo, then

)X f(r) =~
8f(x){® ) > —o0” r e X.

Thus, little is lost if we prove statements about subdifferentials of functions that
do not take the value —oo.

Theorem 1. If X is a topological vector space, f : X — [—00, 0] is a function
and x € X, then 0f(x) is a convexr subset of X*.

!n this note, we are following the presentation of some results in Charalambos D. Aliprantis
and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., chapter
7. Three other sources for material on subdifferentials are: Jean-Paul Penot, Calulus Without
Derivatives, chapter 3; Viorel Barbu and Teodor Precupanu, Convezity and Optimization in
Banach Spaces, fourth ed., §2.2, pp. 82-125; and Jean-Pierre Aubin, Optima and Equilibria:
An Introduction to Nonlinear Analysis, second ed., chapter 4, pp. 57-73.

260 + 00 = 00, —00 — 00 = —00, and 0o — oo is nonsense; if a € R, then a — co = —oo and
a + 0o = oo.



Proof. If A, A2 € Of (z) and 0 < ¢t < 1, then of course (1 —¢)A; +tA2 € X*. For
any y € X we have

fly) =0 -=t)f(y) +tf(y)
> =t)f(x)+ (1 =)\ (y — =) +tf(z) + tha(y — )
= f(z) + ((1 -t + t/\z)(y —z),

showing that (1 — t)A; + tAe € 0f(x) and thus that df(z) is convex. O

To say that 0 € 0f(z) is equivalent to saying that f(y) > f(x) for all y € X
and so f(z) = infyex f(y). This can be said in the following way.

Lemma 2. If X is a topological vector space and f : X — [—00,00] is a
function, then x is a minimizer of f if and only if 0 € Of(x).

3 Convex functions

If X isaset and f: X — [—00,00] is a function, then the epigraph of f is the
set
epif ={(z,0) e X xR:a > f(z)},

and the effective domain of f is the set
dom f={z e X: f(z) < o0}

To say that x € dom f is equivalent to saying that there is some a € R such
that (z,«) € epi f. We say that f is finite if —oo < f(z) < oo for all z € X.

If X is a vector space and f : X — [—o0,00] is a function, then we say that
f is convex if epi f is a convex subset of the vector space X x R.

If X is aset and f: X — [—o00,00] is a function, we say that f is proper if
it does not take only the value co and never takes the value —oo. It is unusual
to talk merely about proper functions rather than proper convex functions; we
do so to make clear how convexity is used in the results we prove.

4 Weak-* topology

Let X be a topological vector space and for x € X define e, : X* — R by
ez A = Ax. The weak-* topology on X* is the initial topology for the set of
functions {e, : € X}, that is, the coarsest topology on X* such that for each
x € X, the function e, : X* — R is continuous.

Lemma 3. If X is a topological vector space, 71 1s the weak-* topology on
X*, and T is the subspace topology on X* inherited from RX with the product
topology, then 11 = To.



Proof. Let A\; € X* converge in 7y to A € X*. For each z € X, the function
es : X* — R is 71 continuous, so ez\; — ez, i.e. Nz — Az. But for f; € RX
to converge to f € R means that for each x, we have f;(x) — f(x). Thus \;
converges to A in 7. This shows that 7 C 7.

Let € X, and let \; € X* converge in 7 to A € X*. We then have
exA\i = M — Ax = eg\; since \; was an arbitrary net that converges in 7o,
this shows that e, is 7o continuous. Thus, we have shown that for each z € X,
the function e, is 7o continuous. But 7y is the coarsest topology for which e, is
continuous for all x € X, so we obtain 71 C 7. O

In other words, the weak-* topology on X* is the topology of pointwise
convergence. We now prove that at each point in the effective domain of a
proper function on a topological vector space, the subdifferential is a weak-*
closed subset of the dual space.?

Theorem 4. If X is a topological vector space, f : X — (—o00,00] is a proper
function, and x € dom f, then Of(x) is a weak-* closed subset of X*.

Proof. If A € 3f(x), then for all y € X we have
fly) = () + Ay — ),
so, for any v € X, using y = v + «,
flo+ax)> f(z)+ Ao,

or,

Ao < fx+v) = f(z);

this makes sense because f(z) is finite. On the other hand, let A\ € X*. If
M < f(x4+v)— f(z) for all v € X, then AM(v —2) < f(v) — f(z), i.e. f(v) >
f(z) + Mo —2), and so A € 9f(x). Therefore

of(xz) = m{/\eX*:)\vgf(x—i—v)—f(x)}. (1)

Defining e, : X* — R for v € X by e, A = Av, for each v € X we have
ey (=00, fz+v) = f(2)] = {A € X" : v < f(z +0) - f(z)}.

Because e, is continuous, this inverse image is a closed subset of X*. Therefore,
each of the sets in the intersection (1) is a closed subset of X*, and so f(x) is
a closed subset of X*. O

3¢f. Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A
Hitchhiker’s Guide, third ed., p. 265, Theorem 7.13.




5 Support points

If X is set, A is a subset of X, and f: X — [—00,00] is a function, we say that
x € X is a minimizer of f over A if

f(z) = inf f(y),

yEA

and that z is a maximizer of f over A if

f(@) = sup f(y).

yeA

If A is a nonempty subset of a topological vector space X and x € A, we
say that z is a support point of A if there is some nonzero A € X* for which
2 is a minimizer or a maximizer of A over A. Moreover, x is a minimizer of A
over A if and only if x is a maximizer of —\ over A. Thus, if we know that
x is a support point of a set A, then we have at our disposal both that = is a
minimizer of some nonzero element of X* over A and that x is a maximizer of
some nonzero element of X* over A.

If 2 is a support point of A and A is not contained in the hyperplane {y €
X : Ay = A}, we say that A is properly supported at x. To say that A is not
contained in the set {y € X : Ay = Az} is equivalent to saying that there is
some y € A such that Ay # A\z.

In the following lemma, we show that the support points of a set A are
contained in the boundary 0A of the set.

Lemma 5. If X is a topological vector space, A is a subset of X, and x is a
support point of A, then x € 0A.

Proof. Because x is a support point of A there is some nonzero A € X* for
which z is a maximizer of A over A:

Ax = sup \y.
yeEA

As ) is nonzero there is some y € X with Ay > Az. For any ¢ > 0,
1-—tdx+tdy=A(1—t)z+ty) = (1 —t) Az +tdy > (1 — ) Az + tAz = Az,

hence if ¢ > 0 then (1 —t)dz +ty ¢ A. But (1 —t)z+ty - = ast — 0 and
x € A, showing that x € 0A. O

The following lemma gives conditions under which a boundary point of a set
is a proper support point of the set.*

Lemma 6. If X is a topological vector space, C' is a convexr subset of X that
has nonempty interior, and x € C N OC, then C is properly supported at x.

4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 259, Lemma 7.7.



Proof. The Hahn-Banach separation theorem® tells us that if A and B are dis-
joint nonempty convex subsets of X and A is open then there is some A € X*
and some ¢t € R such that

Na<t<M, acAbcB.

Check that the interior of a convex set in a topological vector space is convex,
and hence that we can apply the Hahn-Banach separation theorem to {z} and
C°: as x belongs to the boundary of C' it does not belong to the interior of C,
so {z} and C° are disjoint nonempty convex sets. Thus, there is some A € X*
and some ¢t € R such that Ay < t < Az for all y € C°, from which it follows
that Az < Ay for all y € C, and A # 0 because of the strict inequality for the
interior. As xz € C, this means that x is a maximizer of A over C, and as A # 0
this means that = is a support point of C. But C° is nonempty and if y € C°
then Az < Ay, hence z is a proper support point of C. O

6 Subdifferentials of convex functions

If f:X — (—00,00] is a proper function then there is some y € X for which
f(y) < oo, and for f to have a subgradient A at « demands that f(y) > f(x) +
Ay — z), and hence that f(z) < co. Therefore, if f is a proper function then
the set of x at which f is subdifferentiable is a subset of dom f.

We now prove conditions under which a function is subdifferentiable at a
point, i.e., under which the subdifferential at that point is nonempty.%

Theorem 7. If X is a topological vector space, f : X — (—o0,00] is a proper
conver function, x is an interior point of dom f, and f is continuous at x, then
f has a subgradient at x.

Proof. Because f is convex, the set dom f is convex, and the interior of a convex
set in a topological vector space is convex so (dom f)° is convex. f is proper
so it does not take the value —oo, and on dom f it does not take the value oo,
hence f is finite on dom f. But for a finite convex function on an open convex
set in a topological vector space, being continuous at a point is equivalent to
being continuous on the set, and is also equivalent to being bounded above on
an open neighborhood of the point.” Therefore, f is continuous on (dom f)° and
is bounded above on some open neighborhood V' of  contained in (dom f)°, say
fly) < Mforally € V. Vx(M,o0) is an open subset of X xR, and is contained
in epi f. This shows that epi f has nonempty interior. Since f(z) < oo, if € > 0
then (z, f(z) —€) € epi f, and since f(x) > —oo we have (z, f(x)) € epi f, and
therefore (x, f(z)) € epi f N d(epi f). We can now apply Lemma 6: epi f is a
convex subset of the topological vector space X x R with nonempty interior and

5Gert K. Pedersen, Analysis Now, revised printing, p. 65, Theorem 2.4.7.

6Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 265, Theorem 7.12.

7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 188, Theorem 5.43.



(z, f(x)) € epi f N O(epi f), so epi f is properly supported at (z, f(z)). That is,
Lemma 6 shows that there is some A € (X x R)* such that

Az, f(z)) =  sup Ay, ),

(y,a)€epi f

and there is some (y,«) € epif for which A(x, f(x)) > A(y,«). Now, there
is some A € X* and some § € R* = R such that A(y,a) = Ay + Ba for all
(y,a) € X x R. Thus, there is some nonzero A € X* and some § € R such that

Az +Bf(x) = sup Ay+ Pa.
(y,o)€epi f

If 8 > 0 then the right-hand side would be co while the left-hand side is constant
and < 0o, so 8 < 0. Suppose by contradiction that 8 = 0. Then Az > Ay for
all y € dom f, and as A # 0 this means that x is a support point of dom f,
and then by Lemma 5 we have that € d(dom f), contradicting = € (dom f)°.
Hence 5 < 0, so

Az + Bf(x) > Xy + Bf(y), y € dom f,

ie.,
A

fw) = f@) - 5y-2), yedomf

Furthermore, if y € dom f then f(y) = oo, for which the above inequality is
true. Therefore, f(y) > f(z) — %(y —z) for all y € X, showing that f% is a
subgradient of f at x. O

7 Directional derivatives

Lemma 8. If X is a vector space, f : X — (—o00,00| is a proper convex
function, x € dom f, v € X, and 0 < h/ < h, then

flz+hv) = f(z) _ flz+ho) - f(z)
h - h ’

Proof. We have
h—hn
h

h/
x—i—h’vzﬁ(x—i—hv)—l— z,

and because f is convex this gives

/ !

flx+hv) < %f(:c+hv)+ h

f(:r)7

i.e.

==

fl@+h'v) = f(z) < o (f(x + ho) = f(2)).

[=p}



Dividing by I/,
flx+ h'v) = f(z) < flx+ hv) = f(z)
h - h ’

O

If f:X — (—o00,00] is a proper convex function, z € dom f, and v € X,
then the above lemma shows that

f(x + ho) — f(x)

h — 3

is an increasing function (0, 00) — (—00, o], and therefore that

p f@ et ho) = fa)
h—0t h

exists; it belongs to [—o0, 0], and if there is at least one h > 0 for which
f(z 4+ hv) < oo then the limit will be < co. We define the one-sided directional
derivative of f at x to be the function d* f(x) : X — [—o0, 00 defined by®

d*f(xjv = lim flz+ h?;l) — f(x)

, veX.

Lemma 9. If X is a topological vector space, f : X — (—o0,00] is a proper
convex function, x € (dom f)°, f is continuous at x, and v € X, then —oco <
dt f(z)v < .

Proof. Because x € (dom f)°, there is some h > 0 for which « + hv € dom f
and hence for which f(z + hv) < oo. This implies that d* f(z)v < oco.

Let h > 0. By Theorem 7, the subdifferential Jf(z) is nonempty, i.e. there
is some A € X* for which f(y) > f(x) + My — ) for all y € X. Thus, for all
v € X we have, with y = x + hv,

flz+hv) = f(z) + A(hv),

ie.,
o < Tt ho) = (@)
h
Since this difference quotient is bounded below by Av, its limit as h — 07 is
> —o0, and therefore d* f(z)v > —oc0. O

8We are following the notation of Charalambos D. Aliprantis and Kim C. Border, Infinite
Dimensional Analysis: A Hitchhiker’s Guide, third ed., p. 266.



