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1 Introduction

Whenever we speak about a vector space in this note we mean a vector space
over R. If X is a topological vector space then we denote by X∗ the set of all
continuous linear maps X → R. X∗ is called the dual space of X, and is itself
a vector space.1

2 Definition of subdifferential

If X is a topological vector space, f : X → [−∞,∞] is a function, x ∈ X, and
λ ∈ X∗, then we say that λ is a subgradient of f at x if2

f(y) ≥ f(x) + λ(y − x), y ∈ X.

The subdifferential of f at x is the set of all subgradients of f at x and is
denoted by ∂f(x). Thus ∂f is a function from X to the power set of X∗, i.e.
∂f : X → 2X

∗
. If ∂f(x) ̸= ∅, we say that f is subdifferentiable at x.

It is immediate that if there is some y such that f(y) = −∞, then

∂f(x) =

{
X∗ f(x) = −∞
∅ f(x) > −∞

, x ∈ X.

Thus, little is lost if we prove statements about subdifferentials of functions that
do not take the value −∞.

Theorem 1. If X is a topological vector space, f : X → [−∞,∞] is a function
and x ∈ X, then ∂f(x) is a convex subset of X∗.

1In this note, we are following the presentation of some results in Charalambos D. Aliprantis
and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., chapter
7. Three other sources for material on subdifferentials are: Jean-Paul Penot, Calulus Without
Derivatives, chapter 3; Viorel Barbu and Teodor Precupanu, Convexity and Optimization in
Banach Spaces, fourth ed., §2.2, pp. 82–125; and Jean-Pierre Aubin, Optima and Equilibria:
An Introduction to Nonlinear Analysis, second ed., chapter 4, pp. 57–73.

2∞+∞ = ∞, −∞−∞ = −∞, and ∞−∞ is nonsense; if a ∈ R, then a−∞ = −∞ and
a+∞ = ∞.
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Proof. If λ1, λ2 ∈ ∂f(x) and 0 ≤ t ≤ 1, then of course (1− t)λ1+ tλ2 ∈ X∗. For
any y ∈ X we have

f(y) = (1− t)f(y) + tf(y)

≥ (1− t)f(x) + (1− t)λ1(y − x) + tf(x) + tλ2(y − x)

= f(x) +
(
(1− t)λ1 + tλ2

)
(y − x),

showing that (1− t)λ1 + tλ2 ∈ ∂f(x) and thus that ∂f(x) is convex.

To say that 0 ∈ ∂f(x) is equivalent to saying that f(y) ≥ f(x) for all y ∈ X
and so f(x) = infy∈X f(y). This can be said in the following way.

Lemma 2. If X is a topological vector space and f : X → [−∞,∞] is a
function, then x is a minimizer of f if and only if 0 ∈ ∂f(x).

3 Convex functions

If X is a set and f : X → [−∞,∞] is a function, then the epigraph of f is the
set

epi f = {(x, α) ∈ X × R : α ≥ f(x)},

and the effective domain of f is the set

dom f = {x ∈ X : f(x) < ∞}.

To say that x ∈ dom f is equivalent to saying that there is some α ∈ R such
that (x, α) ∈ epi f . We say that f is finite if −∞ < f(x) < ∞ for all x ∈ X.

If X is a vector space and f : X → [−∞,∞] is a function, then we say that
f is convex if epi f is a convex subset of the vector space X × R.

If X is a set and f : X → [−∞,∞] is a function, we say that f is proper if
it does not take only the value ∞ and never takes the value −∞. It is unusual
to talk merely about proper functions rather than proper convex functions; we
do so to make clear how convexity is used in the results we prove.

4 Weak-* topology

Let X be a topological vector space and for x ∈ X define ex : X∗ → R by
exλ = λx. The weak-* topology on X∗ is the initial topology for the set of
functions {ex : x ∈ X}, that is, the coarsest topology on X∗ such that for each
x ∈ X, the function ex : X∗ → R is continuous.

Lemma 3. If X is a topological vector space, τ1 is the weak-* topology on
X∗, and τ2 is the subspace topology on X∗ inherited from RX with the product
topology, then τ1 = τ2.
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Proof. Let λi ∈ X∗ converge in τ1 to λ ∈ X∗. For each x ∈ X, the function
ex : X∗ → R is τ1 continuous, so exλi → exλ, i.e. λix → λx. But for fi ∈ RX

to converge to f ∈ RX means that for each x, we have fi(x) → f(x). Thus λi

converges to λ in τ2. This shows that τ2 ⊆ τ1.
Let x ∈ X, and let λi ∈ X∗ converge in τ2 to λ ∈ X∗. We then have

exλi = λix → λx = exλ; since λi was an arbitrary net that converges in τ2,
this shows that ex is τ2 continuous. Thus, we have shown that for each x ∈ X,
the function ex is τ2 continuous. But τ1 is the coarsest topology for which ex is
continuous for all x ∈ X, so we obtain τ1 ⊆ τ2.

In other words, the weak-* topology on X∗ is the topology of pointwise
convergence. We now prove that at each point in the effective domain of a
proper function on a topological vector space, the subdifferential is a weak-*
closed subset of the dual space.3

Theorem 4. If X is a topological vector space, f : X → (−∞,∞] is a proper
function, and x ∈ dom f , then ∂f(x) is a weak-* closed subset of X∗.

Proof. If λ ∈ ∂f(x), then for all y ∈ X we have

f(y) ≥ f(x) + λ(y − x),

so, for any v ∈ X, using y = v + x,

f(v + x) ≥ f(x) + λv,

or,
λv ≤ f(x+ v)− f(x);

this makes sense because f(x) is finite. On the other hand, let λ ∈ X∗. If
λv ≤ f(x + v) − f(x) for all v ∈ X, then λ(v − x) ≤ f(v) − f(x), i.e. f(v) ≥
f(x) + λ(v − x), and so λ ∈ ∂f(x). Therefore

∂f(x) =
⋂
v∈X

{λ ∈ X∗ : λv ≤ f(x+ v)− f(x)}. (1)

Defining ev : X∗ → R for v ∈ X by evλ = λv, for each v ∈ X we have

e−1
v (−∞, f(x+ v)− f(x)] = {λ ∈ X∗ : λv ≤ f(x+ v)− f(x)}.

Because ev is continuous, this inverse image is a closed subset of X∗. Therefore,
each of the sets in the intersection (1) is a closed subset of X∗, and so ∂f(x) is
a closed subset of X∗.

3cf. Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A
Hitchhiker’s Guide, third ed., p. 265, Theorem 7.13.
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5 Support points

If X is set, A is a subset of X, and f : X → [−∞,∞] is a function, we say that
x ∈ X is a minimizer of f over A if

f(x) = inf
y∈A

f(y),

and that x is a maximizer of f over A if

f(x) = sup
y∈A

f(y).

If A is a nonempty subset of a topological vector space X and x ∈ A, we
say that x is a support point of A if there is some nonzero λ ∈ X∗ for which
x is a minimizer or a maximizer of λ over A. Moreover, x is a minimizer of λ
over A if and only if x is a maximizer of −λ over A. Thus, if we know that
x is a support point of a set A, then we have at our disposal both that x is a
minimizer of some nonzero element of X∗ over A and that x is a maximizer of
some nonzero element of X∗ over A.

If x is a support point of A and A is not contained in the hyperplane {y ∈
X : λy = λx}, we say that A is properly supported at x. To say that A is not
contained in the set {y ∈ X : λy = λx} is equivalent to saying that there is
some y ∈ A such that λy ̸= λx.

In the following lemma, we show that the support points of a set A are
contained in the boundary ∂A of the set.

Lemma 5. If X is a topological vector space, A is a subset of X, and x is a
support point of A, then x ∈ ∂A.

Proof. Because x is a support point of A there is some nonzero λ ∈ X∗ for
which x is a maximizer of λ over A:

λx = sup
y∈A

λy.

As λ is nonzero there is some y ∈ X with λy > λx. For any t > 0,

(1− t)λx+ tλy = λ((1− t)x+ ty) = (1− t)λx+ tλy > (1− t)λx+ tλx = λx,

hence if t > 0 then (1 − t)λx + ty ̸∈ A. But (1 − t)x + ty → x as t → 0 and
x ∈ A, showing that x ∈ ∂A.

The following lemma gives conditions under which a boundary point of a set
is a proper support point of the set.4

Lemma 6. If X is a topological vector space, C is a convex subset of X that
has nonempty interior, and x ∈ C ∩ ∂C, then C is properly supported at x.

4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 259, Lemma 7.7.
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Proof. The Hahn-Banach separation theorem5 tells us that if A and B are dis-
joint nonempty convex subsets of X and A is open then there is some λ ∈ X∗

and some t ∈ R such that

λa < t ≤ λb, a ∈ A, b ∈ B.

Check that the interior of a convex set in a topological vector space is convex,
and hence that we can apply the Hahn-Banach separation theorem to {x} and
C◦: as x belongs to the boundary of C it does not belong to the interior of C,
so {x} and C◦ are disjoint nonempty convex sets. Thus, there is some λ ∈ X∗

and some t ∈ R such that λy < t ≤ λx for all y ∈ C◦, from which it follows
that λx ≤ λy for all y ∈ C, and λ ̸= 0 because of the strict inequality for the
interior. As x ∈ C, this means that x is a maximizer of λ over C, and as λ ̸= 0
this means that x is a support point of C. But C◦ is nonempty and if y ∈ C◦

then λx < λy, hence x is a proper support point of C.

6 Subdifferentials of convex functions

If f : X → (−∞,∞] is a proper function then there is some y ∈ X for which
f(y) < ∞, and for f to have a subgradient λ at x demands that f(y) ≥ f(x) +
λ(y − x), and hence that f(x) < ∞. Therefore, if f is a proper function then
the set of x at which f is subdifferentiable is a subset of dom f .

We now prove conditions under which a function is subdifferentiable at a
point, i.e., under which the subdifferential at that point is nonempty.6

Theorem 7. If X is a topological vector space, f : X → (−∞,∞] is a proper
convex function, x is an interior point of dom f , and f is continuous at x, then
f has a subgradient at x.

Proof. Because f is convex, the set dom f is convex, and the interior of a convex
set in a topological vector space is convex so (dom f)◦ is convex. f is proper
so it does not take the value −∞, and on dom f it does not take the value ∞,
hence f is finite on dom f . But for a finite convex function on an open convex
set in a topological vector space, being continuous at a point is equivalent to
being continuous on the set, and is also equivalent to being bounded above on
an open neighborhood of the point.7 Therefore, f is continuous on (dom f)◦ and
is bounded above on some open neighborhood V of x contained in (dom f)◦, say
f(y) ≤ M for all y ∈ V . V ×(M,∞) is an open subset of X×R, and is contained
in epi f . This shows that epi f has nonempty interior. Since f(x) < ∞, if ϵ > 0
then (x, f(x)− ϵ) ̸∈ epi f , and since f(x) > −∞ we have (x, f(x)) ∈ epi f , and
therefore (x, f(x)) ∈ epi f ∩ ∂(epi f). We can now apply Lemma 6: epi f is a
convex subset of the topological vector space X×R with nonempty interior and

5Gert K. Pedersen, Analysis Now, revised printing, p. 65, Theorem 2.4.7.
6Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 265, Theorem 7.12.
7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 188, Theorem 5.43.
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(x, f(x)) ∈ epi f ∩ ∂(epi f), so epi f is properly supported at (x, f(x)). That is,
Lemma 6 shows that there is some Λ ∈ (X × R)∗ such that

Λ(x, f(x)) = sup
(y,α)∈epi f

Λ(y, α),

and there is some (y, α) ∈ epi f for which Λ(x, f(x)) > Λ(y, α). Now, there
is some λ ∈ X∗ and some β ∈ R∗ = R such that Λ(y, α) = λy + βα for all
(y, α) ∈ X ×R. Thus, there is some nonzero λ ∈ X∗ and some β ∈ R such that

λx+ βf(x) = sup
(y,α)∈epi f

λy + βα.

If β > 0 then the right-hand side would be ∞ while the left-hand side is constant
and < ∞, so β ≤ 0. Suppose by contradiction that β = 0. Then λx ≥ λy for
all y ∈ dom f , and as λ ̸= 0 this means that x is a support point of dom f ,
and then by Lemma 5 we have that x ∈ ∂(dom f), contradicting x ∈ (dom f)◦.
Hence β < 0, so

λx+ βf(x) ≥ λy + βf(y), y ∈ dom f,

i.e.,

f(y) ≥ f(x)− λ

β
(y − x), y ∈ dom f.

Furthermore, if y ̸∈ dom f then f(y) = ∞, for which the above inequality is
true. Therefore, f(y) ≥ f(x) − λ

β (y − x) for all y ∈ X, showing that −λ
β is a

subgradient of f at x.

7 Directional derivatives

Lemma 8. If X is a vector space, f : X → (−∞,∞] is a proper convex
function, x ∈ dom f , v ∈ X, and 0 < h′ < h, then

f(x+ h′v)− f(x)

h′ ≤ f(x+ hv)− f(x)

h
.

Proof. We have

x+ h′v =
h′

h
(x+ hv) +

h− h′

h
x,

and because f is convex this gives

f(x+ h′v) ≤ h′

h
f(x+ hv) +

h− h′

h
f(x),

i.e.

f(x+ h′v)− f(x) ≤ h′

h
(f(x+ hv)− f(x)).
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Dividing by h′,
f(x+ h′v)− f(x)

h′ ≤ f(x+ hv)− f(x)

h
.

If f : X → (−∞,∞] is a proper convex function, x ∈ dom f , and v ∈ X,
then the above lemma shows that

h 7→ f(x+ hv)− f(x)

h

is an increasing function (0,∞) → (−∞,∞], and therefore that

lim
h→0+

f(x+ hv)− f(x)

h

exists; it belongs to [−∞,∞], and if there is at least one h > 0 for which
f(x+ hv) < ∞ then the limit will be < ∞. We define the one-sided directional
derivative of f at x to be the function d+f(x) : X → [−∞,∞] defined by8

d+f(x)v = lim
h→0+

f(x+ hv)− f(x)

h
, v ∈ X.

Lemma 9. If X is a topological vector space, f : X → (−∞,∞] is a proper
convex function, x ∈ (dom f)◦, f is continuous at x, and v ∈ X, then −∞ <
d+f(x)v < ∞.

Proof. Because x ∈ (dom f)◦, there is some h > 0 for which x + hv ∈ dom f
and hence for which f(x+ hv) < ∞. This implies that d+f(x)v < ∞.

Let h > 0. By Theorem 7, the subdifferential ∂f(x) is nonempty, i.e. there
is some λ ∈ X∗ for which f(y) ≥ f(x) + λ(y − x) for all y ∈ X. Thus, for all
v ∈ X we have, with y = x+ hv,

f(x+ hv) ≥ f(x) + λ(hv),

i.e.,

λv ≤ f(x+ hv)− f(x)

h
.

Since this difference quotient is bounded below by λv, its limit as h → 0+ is
> −∞, and therefore d+f(x)v > −∞.

8We are following the notation of Charalambos D. Aliprantis and Kim C. Border, Infinite
Dimensional Analysis: A Hitchhiker’s Guide, third ed., p. 266.
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