Spectral theory, Volterra integral operators and the Sturm-Liouville theorem

Jordan Bell

December 5, 2016

1 Banach algebras

Let A be a complex Banach algebra with unit element e. Let $G(A)$ be the set of invertible elements of A. For $x \in A$, the resolvent set of x is

$$
\rho(x)=\{\lambda \in \mathbb{C}: \lambda e-x \in G(A)\}
$$

The spectrum of x is

$$
\sigma(x)=\mathbb{C} \backslash \rho(x)=\{\lambda \in \mathbb{C}: \lambda e-x \notin G(A)\}
$$

The spectral radius of x is

$$
r(x)=\sup \{|\lambda|: \lambda \in \sigma(x)\}
$$

One proves that $\sigma(x) \subset \mathbb{C}$ is compact and nonempty and

$$
r(x)=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{1 / n}
$$

the spectral radius formula. ${ }^{1}$ If $r(x)=0$ we say that x is quasinilpotent. ${ }^{2}$ $x \in A$ is quasinilpotent if and only if $\sigma(x)=\{0\}$.
Lemma 1. If $x \in A$ is quasinilpotent and $|\lambda|>0$, then $S_{n}=\sum_{j=0}^{n} \lambda^{j} x^{j} \in A$ is a Cauchy sequence, and

$$
(e-\lambda x) \sum_{n=0}^{\infty} \lambda^{n} x^{n}=e
$$

Proof. Let $0<\epsilon<|\lambda|^{-1}$. There is some n_{ϵ} such that $\left\|x^{n}\right\|^{1 / n} \leq \epsilon$ for $n \geq n_{\epsilon}$. For $n>m \geq n_{\epsilon}$,

$$
\left\|S_{n}-S_{m}\right\| \leq \sum_{j=m+1}^{n}|\lambda|^{j}\left\|x^{j}\right\| \leq \sum_{j=m+1}|\lambda|^{j} \epsilon^{j}
$$

[^0]and because $|\lambda| \epsilon<1$, it follows that $S_{n} \in A$ is a Cauchy sequence and so converges to some $S \in A, S=\sum_{n=0}^{\infty} \lambda^{k} x^{k}$. Now,
\[

$$
\begin{aligned}
(e-\lambda x) S & =(e-\lambda x) S_{n}+(e-\lambda x)\left(S-S_{n}\right) \\
& =S_{n}-\lambda x S_{n}+(e-\lambda x)\left(S-S_{n}\right) \\
& =S_{n}-\sum_{j=1}^{n+1} \lambda^{j} x^{j}+(e-\lambda x)\left(S-S_{n}\right) \\
& =e-\lambda^{n+1} x^{n+1}+(e-\lambda x)\left(S-S_{n}\right) .
\end{aligned}
$$
\]

Because x is quasinilpotent it follows that $\|(e-\lambda x) S-e\| \rightarrow 0$.
For $x \in A$ and $\lambda \in \rho(x)$, let

$$
R_{x}(\lambda)=(x-\lambda e)^{-1}
$$

Lemma 2. If $x \in A$ is quasinilpotent and $\lambda \in \mathbb{C}$ then

$$
(e-\lambda x)^{-1}=\sum_{n=0}^{\infty} \lambda^{n} x^{n}
$$

and if $|\lambda|>0$ then

$$
R_{x}(\lambda)=-\lambda^{-1}\left(e-\lambda^{-1} x\right)^{-1}=-\lambda^{-1} \sum_{n=0}^{\infty} \lambda^{-n} x^{n}
$$

2 Volterra integral operators

Let $I=[0,1]$ and let μ be Lebesgue measure on $I . C(I)$ is a Banach space with the norm

$$
\|f\|_{\infty}=\sup _{x \in I}|f(x)|, \quad f \in C(I)
$$

$L^{1}(I)$ is a Banach space with the norm

$$
\|f\|_{L^{1}}=\int_{I}|f(x)| d x, \quad f \in L^{1}(I)
$$

For $f: I \rightarrow \mathbb{C}$, let

$$
|f|_{\text {Lip }}=\sup _{x, y \in I, x \neq y} \frac{|f(x)-f(y)|}{|x-y|} .
$$

Let $\operatorname{Lip}(I)$ be the set of those $f: I \rightarrow \mathbb{C}$ with $|f|_{\text {Lip }}<\infty$. It is a fact that $\operatorname{Lip}(I)$ is a Banach space with the norm $\|f\|_{\text {Lip }}=\|f\|_{\infty}+|f|_{\text {Lip. }}{ }^{3}$

$$
\operatorname{Lip}(I) \subset C(I) \subset L^{1}(I)
$$

[^1]$A=\mathscr{L}(C(I))$ is a Banach algebra with unit element $e(f)=f$ and with the operator norm:
$$
\|T\|=\sup _{f \in C(I),\|f\|_{\infty} \leq 1}\|T f\|_{\infty}, \quad T \in A
$$

For $K: I \times I \rightarrow \mathbb{C}$ and for $x, y \in I$ define

$$
K_{x}(y)=K(x, y), \quad K^{y}(x)=K(x, y)
$$

Let $K \in C(I \times I)$. For $f \in L^{1}(I)$ define $V_{K} f: I \rightarrow \mathbb{C}$ by

$$
V_{K} f(x)=\int_{0}^{x} K(x, y) f(y) d y, \quad x \in I
$$

Lemma 3. If $K \in C(I \times I)$ and $f \in C(I)$ then $V_{K} f \in C(I)$.
Proof. For $x_{1}, x_{2} \in I, x_{1}>x_{2}$,

$$
\begin{aligned}
V_{K} f\left(x_{1}\right)-V_{K} f\left(x_{2}\right) & =\int_{0}^{x_{1}} K\left(x_{1}, y\right) f(y) d y-\int_{0}^{x_{1}} K\left(x_{2}, y\right) f(y) d y \\
& +\int_{0}^{x_{1}} K\left(x_{2}, y\right) f(y) d y-\int_{0}^{x_{2}} K\left(x_{2}, y\right) f(y) d y \\
& =\int_{0}^{x_{1}}\left[K\left(x_{1}, y\right)-K\left(x_{2}, y\right)\right] f(y) d y+\int_{x_{2}}^{x_{1}} K\left(x_{2}, y\right) f(y) d y
\end{aligned}
$$

Let $\epsilon>0$. Because $K: I \times I \rightarrow \mathbb{C}$ is uniformly continuous, there is some $\delta_{1}>0$ such that $\left|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right| \leq \delta_{1}$ implies $\left|K\left(x_{1}, y_{1}\right)-K\left(x_{2}, y_{2}\right)\right| \leq \epsilon$. By the absolute continuity of the Lebesgue integral, there is some $\delta_{2}>0$ such that $\mu(E) \leq \delta_{2}$ implies $\int_{E}|f| d \mu \leq \epsilon .{ }^{4}$ Therefore if $\left|x_{1}-x_{2}\right|<\delta=\min \left(\delta_{1}, \delta_{2}\right)$ then

$$
\begin{aligned}
\left|V_{K} f\left(x_{1}\right)-V_{K} f\left(x_{2}\right)\right| & \leq \int_{0}^{x_{1}} \epsilon|f(y)| d y+\|K\|_{\infty} \int_{x_{2}}^{x_{1}}|f(y)| d y \\
& \leq \epsilon\|f\|_{L^{1}}+\|K\|_{\infty} \epsilon
\end{aligned}
$$

It follows that $V_{K} f: I \rightarrow \mathbb{C}$ is uniformly continuous, so $V_{K} f \in C(I)$.
$\left\|V_{K} f\right\|_{\infty} \leq\|K\|_{\infty}\|f\|_{\infty}$ so $\left\|V_{K}\right\| \leq\|K\|_{\infty}$, hence $V_{K}: C(I) \rightarrow C(I)$ is a bounded linear operator, namely $V_{K} \in A$. We call V_{K} a Volterra integral operator.

For $x \in I$,
$V_{K}^{2} f(x)=\int_{0}^{x} K\left(x, y_{1}\right) V_{K} f\left(y_{1}\right) d y_{1}=\int_{0}^{x} K\left(x, y_{1}\right)\left(\int_{0}^{y_{1}} K\left(y_{1}, y_{2}\right) f\left(y_{2}\right) d y_{2}\right) d y_{1}$.

[^2]\[

$$
\begin{aligned}
V_{K}^{3} f(x) & =V_{K}^{2} V_{K} f(x) \\
& =\int_{0}^{x} K\left(x, y_{1}\right) \int_{0}^{y_{1}} K\left(y_{1}, y_{2}\right) V_{K} f\left(y_{2}\right) d y_{2} d y_{1} \\
& =\int_{0}^{x} K\left(x, y_{1}\right) \int_{0}^{y_{1}} K\left(y_{1}, y_{2}\right) \int_{0}^{y_{2}} K\left(y_{2}, y_{3}\right) f\left(y_{3}\right) d y_{3} d y_{2} d y_{1} .
\end{aligned}
$$
\]

For $n \geq 2$,
$V_{K}^{n} f(x)=\int_{y_{1}=0}^{x} \int_{y_{2}=0}^{y_{1}} \cdots \int_{y_{n}=0}^{y_{n-1}} K\left(x, y_{1}\right) K\left(y_{1}, y_{2}\right) \cdots K\left(y_{n-1}, y_{n}\right) f\left(y_{n}\right) d y_{n} \cdots d y_{1}$.
We prove that V_{K} is quasinilpotent. ${ }^{5}$
Theorem 4. If $K \in C(I \times I)$ then

$$
\left\|V_{K}^{n}\right\| \leq \frac{\|K\|_{\infty}^{n}}{n!}
$$

and thus $V_{K} \in A=\mathscr{L}(C(I))$ is quasinilpotent.
Proof. Let

$$
\begin{aligned}
\Phi_{n}(x) & =\int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}} d y_{n} \cdots d y_{1} \\
& =\int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-2}} y_{n-1} d y_{n-1} \cdots d y_{1} \\
& =\int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-3}} \frac{y_{n-2}^{2}}{2} d y_{n-2} \cdots d y_{1} \\
& =\int_{0}^{x} \frac{y_{1}^{n-1}}{(n-1)!} d y_{1} \\
& =\frac{x^{n}}{n!} .
\end{aligned}
$$

For $x \in I$,

$$
\begin{aligned}
\left|V_{K}^{n} f(x)\right| & \leq\|K\|_{\infty}^{n}\|f\|_{\infty} \int_{0}^{x} \int_{0}^{y_{1}} \cdots \int_{0}^{y_{n-1}} d y_{n} \cdots d y_{1} \\
& =\|K\|_{\infty}^{n}\|f\|_{\infty} \Phi_{n}(x) \\
& =\|K\|_{\infty}^{n}\|f\|_{\infty} \frac{x^{n}}{n!}
\end{aligned}
$$

Hence

$$
\left\|V_{K}^{n}\right\| \leq \frac{\|K\|_{\infty}^{n}}{n!}
$$

[^3]Then

$$
\left\|V_{K}^{n}\right\|^{1 / n} \leq \frac{\|K\|_{\infty}}{(n!)^{1 / n}}
$$

Using $(n!)^{1 / n} \rightarrow \infty$ we get $\left\|V_{K}^{n}\right\|^{1 / n} \rightarrow 0$. Thus $V_{K} \in A$ is quasinilpotent.
Theorem 4 tells us that V_{K} is quasinilpotent and then Lemma 2 then tells us that for $\lambda \in \mathbb{C}$,

$$
\begin{equation*}
\left(e-\lambda V_{K}\right)^{-1}=\sum_{n=0}^{\infty} \lambda^{n} V_{K}^{n} \in A \tag{1}
\end{equation*}
$$

3 Sturm-Liouville theory

Let $Q \in C(I)$ and for $u \in C^{2}(I)$ define

$$
L_{Q} u=-u^{\prime \prime}+Q u
$$

Lemma 5. If $u \in C^{2}(I)$ and

$$
L_{Q} u=0, \quad u(0)=0, \quad u^{\prime}(0)=1
$$

then

$$
u(x)=x+\int_{0}^{x}(x-y) Q(y) u(y) d y, \quad x \in I
$$

Proof. For $y \in I$, by the fundamental theorem of calculus ${ }^{6}$ and using $u^{\prime}(0)=1$,

$$
\int_{0}^{y} u^{\prime \prime}(t) d t=u^{\prime}(y)-u^{\prime}(0)=u^{\prime}(y)-1
$$

Using $L_{Q} u=0$,

$$
u^{\prime}(y)=1+\int_{0}^{y} u^{\prime \prime}(t) d t=1+\int_{0}^{y} Q(t) u(t) d t
$$

For $x \in I$, by the fundamental theorem of calculus and using $u(0)=0$,

$$
\int_{0}^{x} u^{\prime}(y) d y=u(x)-u(0)=u(x)
$$

Thus

$$
\begin{aligned}
u(x) & =\int_{0}^{x} u^{\prime}(y) d y \\
& =\int_{0}^{x}\left(1+\int_{0}^{y} Q(t) u(t) d t\right) d y \\
& =x+\int_{0}^{x}\left(\int_{0}^{y} Q(t) u(t) d t\right) d y
\end{aligned}
$$

[^4]Applying Fubini's theorem,

$$
\begin{aligned}
u(x) & =x+\int_{0}^{x} Q(t) u(t)\left(\int_{t}^{x} d y\right) d t \\
& =x+\int_{0}^{x} Q(t) u(t)(x-t) d t
\end{aligned}
$$

Lemma 6. If $u \in C(I)$ and

$$
u(x)=x+\int_{0}^{x}(x-y) Q(y) u(y) d y, \quad x \in I
$$

then $u \in C^{2}(I)$ and

$$
L_{Q} u=0, \quad u(0)=0, \quad u^{\prime}(0)=1
$$

Proof.

$$
u(x)=x+\int_{0}^{x}(x-y) Q(y) u(y) d y, \quad x \in I
$$

then

$$
u(x)=x+x \int_{0}^{x} Q(y) u(y) d y-\int_{0}^{x} y Q(y) u(y) d y
$$

and using the fundamental theorem of calculus,

$$
u^{\prime}(x)=1+\int_{0}^{x} Q(y) u(y) d y+x Q(x) u(x)-x Q(x) u(x)=1+\int_{0}^{x} Q(y) u(y) d y
$$

hence

$$
u^{\prime \prime}(x)=Q(x) u(x)
$$

and so

$$
L_{Q} u=-u^{\prime \prime}+Q u=-Q u+Q u=0
$$

$u(0)=0$ and $u^{\prime}(0)=1$, so

$$
L_{Q} u=0, \quad u(0)=0, \quad u^{\prime}(0)=1
$$

Lemma 7. Let $Q \in C(I)$ and let $K(x, y)=(x-y) Q(y), K \in C(I \times I)$. Let $u_{0}(x)=x, u_{0} \in C(I)$. Then $\sum_{j=0}^{n} V_{K}^{j}$ is a Cauchy sequence in $A=\mathscr{L}(C(I))$, and $u=\sum_{n=0}^{\infty} V_{K}^{n} u_{0} \in C(I)$ satisfies $u=\left(e-V_{K}\right)^{-1} u_{0}$.

Proof. $V_{K} \in C(I)$ is quasinilpotent so applying (1) with $\lambda=1$,

$$
\left(e-V_{K}\right)^{-1}=\lim _{n \rightarrow \infty} \sum_{j=0}^{n} V_{K}^{j} \in A .
$$

Then

$$
\left(e-V_{K}\right)^{-1} u_{0}=\left(\lim _{n \rightarrow \infty} \sum_{j=0}^{n} V_{K}^{j}\right) u_{0}=\lim _{n \rightarrow \infty}\left(V_{K}^{j} u_{0}\right)=\sum_{n=0}^{\infty} V_{K}^{n} u_{0}
$$

Hence $u=\left(1-V_{K}\right)^{-1} u_{0}$, and so $\left(1-V_{K}\right) u=u_{0}$, i.e. $u=u_{0}+V_{K} u$, i.e. for $x \in I$,

$$
u(x)=u_{0}(x)+\int_{0}^{x} K(x, y) u(y) d y
$$

Theorem 8. Let $Q \in C(I)$ and let $K(x, y)=(x-y) Q(y), K \in C(I \times I)$. Let $u_{0}(x)=x, u_{0} \in C(I)$. Then $\sum_{j=0}^{n} V_{K}^{j}$ is a Cauchy sequence in $A=\mathscr{L}(C(I))$, and $u=\sum_{n=0}^{\infty} V_{K}^{n} u_{0} \in C(I)$ satisfies $u \in C^{2}(I)$,

$$
L_{Q} u=0, \quad u(0)=0, \quad u^{\prime}(0)=1
$$

Proof. By Lemma $7, u=\left(e-V_{K}\right)^{-1} u_{0}$, i.e. $\left(e-V_{K}\right) u=u_{0}$, i.e. $u-V_{K} u=u_{0}$, i.e. for $x \in I$,

$$
u(x)=x+V_{K} u(x)=x+\int_{0}^{x} K(x, y) u(y) d y=x+\int_{0}^{x}(x-y) Q(y) u(y) d y
$$

Lemma 6 then tells us that $u \in C^{2}(I)$ and

$$
L_{Q} u=0, \quad u(0)=0, \quad u^{\prime}(0)=1
$$

4 Gronwall's inequality

Let $f \in L^{1}(I)$. We say that $x \in I$ is a Lebesgue point of f if

$$
\frac{1}{r} \int_{x}^{x+r}|f(y)-f(x)| d y \rightarrow 0, \quad r \rightarrow 0
$$

which implies

$$
\frac{1}{r} \int_{x}^{x+r} f(y) d y \rightarrow f(x), \quad r \rightarrow 0
$$

The Lebesgue differentiation theorem ${ }^{7}$ states that for almost all $x \in I, x$ is a Lebesgue point of f. Let

$$
F(x)=\int_{0}^{x} f(y) d y, \quad x \in I
$$

so

$$
F(x+r)-F(x)=\int_{x}^{x+r} f(y) d y
$$

If x is a Lebesgue point of f then

$$
\frac{F(x+r)-F(x)}{r}=\frac{1}{r} \int_{x}^{x+r} f(y) d y \rightarrow f(x),
$$

which means that if x is a Lebesgue point of f then

$$
F^{\prime}(x)=f(x)
$$

We now prove Gronwall's inequality. ${ }^{8}$
Theorem 9 (Gronwall's inequality). Let $g \in L^{1}(I), g \geq 0$ almost everywhere and let $f: I \rightarrow \mathbb{R}$ be continuous. If $y: I \rightarrow \mathbb{R}$ is continuous and

$$
y(t) \leq f(t)+\int_{0}^{t} g(s) y(s) d s, \quad t \in I
$$

then

$$
y(t) \leq f(t)+\int_{0}^{t} f(s) g(s) \exp \left(\int_{s}^{t} g(u) d u\right) d s, \quad t \in I
$$

If f is increasing then

$$
y(t) \leq f(t) \exp \left(\int_{0}^{t} g(s) d s\right), \quad t \in I
$$

Proof. Let $z(t)=g(t) y(t)$ and

$$
Z(t)=\int_{0}^{t} z(s) d s, \quad t \in I
$$

By hypothesis, $g \geq 0$ almost everywhere, and by the Lebesgue differentiation theorem, $Z^{\prime}(t)=z(t)$ for almost all $t \in I$. Therefore for almost all $t \in I$,

$$
Z^{\prime}(t)=z(t)=g(t) y(t) \leq g(t)\left(f(t)+\int_{0}^{t} g(s) y(s) d s\right)=g(t) f(t)+g(t) Z(t)
$$

That is, there is a Borel set $E \subset I, \mu(E)=1$, such that for $t \in I, Z$ is differentiable at t and

$$
Z^{\prime}(t)-g(t) Z(t) \leq g(t) f(t)
$$

[^5]For $s \in E$, using the product rule,

$$
\left[\exp \left(-\int_{0}^{s} g(u) d u\right) Z(s)\right]^{\prime}=\exp \left(-\int_{0}^{s} g(u) d u\right)\left[Z^{\prime}(s)-g(t) Z(s)\right]
$$

For $t \in I$, as $\mu(E)=1$,

$$
\begin{aligned}
& \int_{0}^{t}\left[\exp \left(-\int_{0}^{s} g(u) d u\right) Z(s)\right]^{\prime} d s \\
= & \int_{[0, t] \cap E}\left[\exp \left(-\int_{0}^{s} g(u) d u\right) Z(s)\right]^{\prime} d s \\
= & \int_{[0, t] \cap E} \exp \left(-\int_{0}^{s} g(u) d u\right)\left[Z^{\prime}(s)-g(s) Z(s)\right] d s \\
\leq & \int_{[0, t] \cap E} \exp \left(-\int_{0}^{s} g(u) d u\right) g(s) f(s) d s \\
= & \int_{0}^{t} g(s) f(s) \exp \left(-\int_{0}^{s} g(u) d u\right) d s .
\end{aligned}
$$

But

$$
\begin{aligned}
\int_{0}^{t}\left[\exp \left(-\int_{0}^{s} g(u) d u\right) Z(s)\right]^{\prime} d s & =\left.\left[\exp \left(-\int_{0}^{s} g(u) d u\right) Z(s)\right]\right|_{0} ^{t} \\
& =\exp \left(-\int_{0}^{t} g(u) d u\right) Z(t)
\end{aligned}
$$

So

$$
\exp \left(-\int_{0}^{t} g(u) d u\right) Z(t) \leq \int_{0}^{t} g(s) f(s) \exp \left(-\int_{0}^{s} g(u) d u\right) d s
$$

Therefore,

$$
\begin{aligned}
y(t) & \leq f(t)+\int_{0}^{t} g(s) y(s) d s \\
& =f(t)+Z(t) \\
& \leq f(t)+\exp \left(\int_{0}^{t} g(u) d u\right) \int_{0}^{t} g(s) f(s) \exp \left(-\int_{0}^{s} g(u) d u\right) d s \\
& =f(t)+\int_{0}^{t} g(s) f(s) \exp \left(\int_{0}^{t} g(u) d u-\int_{0}^{s} g(u) d u\right) d s \\
& =f(t)+\int_{0}^{t} g(s) f(s) \exp \left(\int_{s}^{t} g(u) d u\right) d s
\end{aligned}
$$

Suppose that f is increasing. Let

$$
G(s)=\int_{0}^{s} g(u) d u, \quad s \in I
$$

For $t \in I$,

$$
\begin{aligned}
y(t) & \leq f(t)+\int_{0}^{t} g(s) f(s) \exp \left(\int_{s}^{t} g(u) d u\right) d s \\
& \leq f(t)+\int_{0}^{t} g(s) f(t) \exp \left(\int_{s}^{t} g(u) d u\right) d s \\
& =f(t)\left[1+\int_{0}^{t} g(s) \exp \left(\int_{s}^{t} g(u) d u\right) d s\right] \\
& =f(t)\left[1+\int_{0}^{t} g(s) e^{G(t)-G(s)} d s\right] \\
& =f(t)\left[1+e^{G(t)} \int_{0}^{t} g(s) e^{-G(s)} d s\right]
\end{aligned}
$$

Let $H(s)=e^{-G(s)}$, with which

$$
y(t) \leq f(t)\left[1+\frac{1}{H(t)} \int_{0}^{t} g(s) H(s) d s\right]
$$

If s is a Lebesgue point of g then

$$
H^{\prime}(s)=-G^{\prime}(s) e^{-G(s)}=-g(s) H(s)
$$

Hence

$$
\begin{aligned}
y(t) & \leq f(t)\left[1-\frac{1}{H(t)} \int_{0}^{t} H^{\prime}(s) d s\right] \\
& =f(t)\left[1-\frac{1}{H(t)}[H(t)-H(0)]\right] \\
& =f(t)\left[1-1+\frac{H(0)}{H(t)}\right] \\
& =f(t) e^{G(t)} \\
& =f(t) \exp \left(\int_{0}^{t} g(u) d u\right)
\end{aligned}
$$

Let $K(x, y)=(x-y) Q(y)$. Let $u=\sum_{n=0}^{\infty} V_{K}^{n} u_{0} \in C(I)$. Lemma 7 tells us that $u=\left(e-V_{K}\right)^{-1} u_{0}$, i.e. $\left(e-V_{K}\right) u=u_{0}$, i.e. $u=u_{0}+V_{K} u$, i.e. for $x \in I$,

$$
u(x)=x+\int_{0}^{x}(x-y) Q(y) u(y) d y
$$

Then

$$
|u(x)| \leq x+\int_{0}^{x}|x-y\|Q(y)\| u(y)| d y \leq x+\int_{0}^{x}|Q(y) \| u(y)| d y
$$

Applying Gronwall's inequality we get

$$
\begin{equation*}
|u(x)| \leq x \exp \left(\int_{0}^{x}|Q(y)| d y\right), \quad x \in I \tag{2}
\end{equation*}
$$

5 The spectral theorem for positive compact operators

The following is the spectral theorem for positive compact operators. ${ }^{9}$
Theorem 10 (Spectral theorem for positive compact operators). Let H be a separable complex Hilbert space and let $T \in \mathscr{L}(H)$ be positive and compact. There are countable sets $\Phi, \Psi \subset H$ and $\lambda_{\phi}>0$ for $\phi \in \Phi$ such that (i) $\Phi \cup \Psi$ is an orthonormal basis for H, (ii) $T \phi=\lambda_{\phi} \phi$ for $\phi \in \Phi$, (iii) $T \psi=0$ for $\psi \in \Psi$, (iv) if Φ is infinite then 0 is a limit point of Λ and is the only limit point of Λ.

Suppose that H is infinite dimensional and that T is a positive compact operator with $\operatorname{ker}(T)=0$. The spectral theorem for positive compact operators then says that there is a a countable set $\Phi \subset H$ and $\lambda_{\phi}>0$ for $\phi \in \Phi$ such that Φ is an orthonormal basis for $H, T \phi=\lambda_{\phi} \phi$ for $\phi \in \Phi$, and the unique limit point of $\left\{\lambda_{\phi}: \phi \in \Phi\right\}$ is 0 . Let $\Phi=\left\{\phi_{n}: n \geq 1\right\}, \phi_{n} \neq \phi_{m}$ for $n \geq m$, such that $n \geq m$ implies $\lambda_{\phi_{n}} \leq \lambda_{\phi_{m}}$. Let $\lambda_{n}=\lambda_{\phi_{n}}$. Then $\lambda_{n} \downarrow 0$. Summarizing, there is an orthonormal basis $\left\{\phi_{n}: n \geq 1\right\}$ for H and $\lambda_{n}>0$ such that $T \phi_{n}=\lambda_{n} \phi_{n}$ for $n \geq 1$ and $\lambda_{n} \downarrow 0$.

$6 \quad Q>0$, Green's function for L_{Q}

Suppose $Q \in C(I)$ with $Q(x)>0$ for $0<x<1$. Let $K(x, y)=(x-y) Q(y)$, $K \in C(I \times I)$, and $u_{0}(x)=x, u_{0} \in C(I)$. Let

$$
u=\sum_{n=0}^{\infty} V_{K}^{n} u_{0} \in C(I)
$$

By Theorem $8, u \in C^{2}(I)$ and

$$
L_{Q} u=0, \quad u(0)=0, \quad u^{\prime}(0)=1
$$

If $f \in C(I)$ and $f(x)>0$ for $0<x<1$ then

$$
V_{K} f(x)=\int_{0}^{x}(x-y) Q(y) f(y) d y>0
$$

By induction, for $0<x<1$ and for $n \geq 1$ we have $V_{K}^{n} f(x)>0$. Hence for $0<x<1$,

$$
u(x)=\sum_{n=0}^{\infty}\left(V_{K}^{n} u_{0}\right)(x)>0
$$

For $x \in I$,

$$
u(x)=x+\int_{0}^{x}(x-y) Q(y) u(y) d y=x+x \int_{0}^{x} Q(y) u(y) d y-\int_{0}^{x} y Q(y) u(y) d y
$$

[^6]Using the fundamental theorem of calculus,

$$
u^{\prime}(x)=1+\int_{0}^{x} Q(y) u(y) d y
$$

Then because $Q(y)>0$ for $0<y<1$ and $u(y)>0$ for $0<y<1$,

$$
u^{\prime}(x)>1, \quad 0<x<1 .
$$

Using $u(x)=x+\int_{0}^{x}(x-y) Q(y) u(y) d y$ and $Q>0$ we get

$$
u(x)>x, \quad 0<x<1
$$

Let $u_{1}(x)=u(x)$ and $u_{2}(x)=u(1-x)$. Then

$$
L_{Q} u_{1}=0, \quad u_{1}(0)=0, \quad u_{1}^{\prime}(0)=1
$$

and

$$
L_{Q} u_{2}=0, \quad u_{2}(1)=0, \quad u_{2}^{\prime}(1)=-1 .
$$

A fortiori,

$$
u_{1}(x)>0, \quad u_{1}^{\prime}(x)>0, \quad 0<x<1
$$

and as $u_{2}^{\prime}(x)=-u^{\prime}(1-x)$,

$$
u_{2}(x)>0, \quad u_{2}^{\prime}(x)<0, \quad 0<x<1
$$

For $0<x<1$ let

$$
W(x)=u_{1}^{\prime}(x) u_{2}(x)-u_{1}(x) u_{2}^{\prime}(x)
$$

$u_{1}^{\prime}>0, u_{2}>0$ so $u_{1}^{\prime} u_{2}>0 . u_{1}>0, u_{2}^{\prime}<0$ so $-u_{1} u_{2}^{\prime}>0$, hence $W>0$.

$$
\begin{aligned}
W^{\prime} & =\left(u_{1}^{\prime} u_{2}-u_{1} u_{2}^{\prime}\right)^{\prime} \\
& =u_{1}^{\prime \prime} u_{2}+u_{1}^{\prime} u_{2}^{\prime}-u_{1}^{\prime} u_{2}^{\prime}-u_{1} u_{2}^{\prime \prime} \\
& =u_{1}^{\prime \prime} u_{2}-u_{1} u_{2}^{\prime \prime} \\
& =\left(Q u_{1}\right) u_{2}-u_{1}\left(Q u_{2}\right) \\
& =0
\end{aligned}
$$

Therefore there is some $W_{0}>0$ such that $W(x)=W_{0}$ for all $0<x<1$.
Define

$$
G(x, y)=\frac{u_{1}(x \wedge y) u_{2}(x \vee y)}{W_{0}}, \quad(x, y) \in I \times I
$$

$x \wedge y=\min (x, y), x \vee y=\max (x, y)$. Because $(x, y) \mapsto x \wedge y$ and $(x, y) \mapsto x \vee y$ are each continuous $I \times I \rightarrow I$, it follows that $G \in C(I \times I) . G(x, y)=G(y, x)$.
G is the Green's function for L_{Q}. Let $(x, y) \in I \times I$. If $x>y$ then

$$
G^{y}(x)=\frac{u_{1}(y) u_{2}(x)}{W_{0}}
$$

and so

$$
L_{Q} G^{y}(x)=\frac{u_{1}(y)}{W_{0}} L_{Q} u_{2}(x)=0
$$

If $x<y$ then

$$
G^{y}(x)=\frac{u_{1}(x) u_{2}(y)}{W_{0}}
$$

and so

$$
L_{Q} G^{y}(x)=\frac{u_{2}(y)}{W_{0}} L_{Q} u_{1}(x)=0
$$

$7 \quad Q>0, L^{2}(I)$

$L^{2}(I)$ is a separable complex Hilbert space with the inner product

$$
\langle f, g\rangle=\int_{I} f \bar{g} d \mu, \quad f, g \in L^{2}(I)
$$

Define $T_{Q}: L^{2}(I) \rightarrow L^{2}(I)$ by

$$
\left(T_{Q} g\right)(x)=\int_{I} G(x, y) g(y) d y
$$

$T_{Q}: L^{2}(I) \rightarrow L^{2}(I)$ is a Hilbert-Schmidt operator. ${ }^{10}$
It is immediate that $G(y, x)=G(x, y)$ and $\bar{G}=G$. Then by Fubini's theorem, for $f, g \in L^{2}(I)$,

$$
\begin{aligned}
\left\langle T_{Q} g, f\right\rangle & =\int_{I}\left(T_{Q} g\right)(x) \overline{f(x)} d x \\
& =\int_{I}\left(\int_{I} G(x, y) g(y) d y\right) \overline{f(x)} d x \\
& =\int_{I} g(y) \overline{\left(\int_{I} G(y, x) f(x) d x\right)} d y \\
& =\int_{I} g(y) \overline{\left(T_{Q} f\right)(y)} d y \\
& =\left\langle g, T_{Q} f\right\rangle .
\end{aligned}
$$

Therefore $T_{Q}: L^{2}(I) \rightarrow L^{2}(I)$ is self-adjoint.
We now establish properties of $T_{Q} \cdot{ }^{11}$ Let

$$
N^{k}(I)=\left\{f \in C^{k}(I): f(0)=0, f(1)=0\right\}
$$

[^7]Lemma 11. Let $Q \in C(I), Q(x)>0$ for $0<x<1$. Let $g \in L^{2}(I)$ and let $f=T_{Q} g$,

$$
f(x)=\left(T_{Q} g\right)(x)=\int_{I} G(x, y) g(y) d y=\int_{I} G_{x} g d \mu
$$

Then $f \in N^{0}(I)$.
If $g \in C(I)$ then $f \in C^{2}(I)$ and

$$
L_{Q} f=g
$$

Proof. For $x \in I$,

$$
\begin{aligned}
f(x) & =\int_{0}^{x} \frac{u_{1}(x \wedge y) u_{2}(x \vee y)}{W_{0}} g(y) d y+\int_{x}^{1} \frac{u_{1}(x \wedge y) u_{2}(x \vee y)}{W_{0}} g(y) d y \\
& =\int_{0}^{x} \frac{u_{1}(y) u_{2}(x)}{W_{0}} g(y) d y+\int_{x}^{1} \frac{u_{1}(x) u_{2}(y)}{W_{0}} g(y) d y \\
& =u_{2}(x) \int_{0}^{x} \frac{u_{1}(y) g(y)}{W_{0}} d y+u_{1}(x) \int_{x}^{1} \frac{u_{2}(y) g(y)}{W_{0}} d y .
\end{aligned}
$$

It follows that $f \in C(I)$.
Suppose $g \in C(I)$. Then by the fundamental theorem of calculus,

$$
\begin{aligned}
f^{\prime}(x) & =u_{2}^{\prime}(x) \int_{0}^{x} \frac{u_{1}(y) g(y)}{W_{0}} d y+u_{2}(x) \frac{u_{1}(x) g(x)}{W_{0}} \\
& +u_{1}^{\prime}(x) \int_{x}^{1} \frac{u_{2}(y) g(y)}{W_{0}} d y-u_{1}(x) \frac{u_{2}(x) g(x)}{W_{0}} \\
& =u_{2}^{\prime}(x) \int_{0}^{x} \frac{u_{1}(y) g(y)}{W_{0}} d y+u_{1}^{\prime}(x) \int_{x}^{1} \frac{u_{2}(y) g(y)}{W_{0}} d y
\end{aligned}
$$

Because $u_{1}^{\prime}, u_{2}^{\prime} \in C(I)$ it follows that $f^{\prime} \in C(I)$, i.e. $f \in C^{1}(I)$. Then

$$
\begin{aligned}
f^{\prime \prime}(x) & =u_{2}^{\prime \prime}(x) \int_{0}^{x} \frac{u_{1}(y) g(y)}{W_{0}} d y+u_{2}^{\prime}(x) \frac{u_{1}(x) g(x)}{W_{0}} \\
& +u_{1}^{\prime \prime}(x) \int_{x}^{1} \frac{u_{2}(y) g(y)}{W_{0}} d y-u_{1}^{\prime}(x) \frac{u_{2}(x) g(x)}{W_{0}} \\
& =u_{2}^{\prime \prime}(x) \int_{0}^{x} \frac{u_{1}(y) g(y)}{W_{0}} d y+u_{1}^{\prime \prime}(x) \int_{x}^{1} \frac{u_{2}(y) g(y)}{W_{0}} d y-\frac{W(x) g(x)}{W_{0}} \\
& =u_{2}^{\prime \prime}(x) \int_{0}^{x} \frac{u_{1}(y) g(y)}{W_{0}} d y+u_{1}^{\prime \prime}(x) \int_{x}^{1} \frac{u_{2}(y) g(y)}{W_{0}} d y-g(x) .
\end{aligned}
$$

Because $g \in C(I)$ it follows that $f^{\prime \prime} \in C(I)$, i.e. $f \in C^{2}(I)$. Furthermore, because $u_{1}^{\prime \prime}=Q u_{1}$ and $u_{2}^{\prime \prime}=Q u_{2}$,

$$
\begin{aligned}
f^{\prime \prime}(x) & =Q(x) u_{2}(x) \int_{0}^{x} \frac{u_{1}(y) g(y)}{W_{0}} d y+Q(x) u_{1}(x) \int_{x}^{1} \frac{u_{2}(y) g(y)}{W_{0}} d y-g(x) \\
& =Q(x) f(x)-g(x)
\end{aligned}
$$

We now establish more facts about $T_{Q} .^{12}$
Lemma 12. Let $Q \in C(I), Q(x)>0$ for $0<x<1$.

1. If $f_{1}, f_{2} \in N^{2}(I)$ then

$$
\int_{I} f_{1} L_{Q} f_{2} d x=\int_{I}\left(f_{1}^{\prime} f_{2}^{\prime}+Q f_{1} f_{2}\right) d x
$$

2. If $f \in N^{2}(I)$ and $L_{Q} f=0$, then $f=0$.
3. If $f \in N^{2}(I)$ then $f=T_{Q} L_{Q} f$.
4. $T_{Q} \geq 0$.
5. $\operatorname{ker} T_{Q}=0$.

Proof. First, doing integration by parts,

$$
\begin{aligned}
\int_{I} f_{1}\left(-f_{2}^{\prime \prime}+Q f_{2}\right) d x & =-\int_{\partial I} f_{1} f_{2}^{\prime}+\int_{I} f_{1}^{\prime} f_{2}^{\prime} d x+\int_{I} Q f_{1} f_{2} d x \\
& =\int_{I} f_{1}^{\prime} f_{2}^{\prime} d x+\int_{I} Q f_{1} f_{2} d x \\
& =\int_{I}\left(f_{1}^{\prime} f_{2}^{\prime}+Q f_{1} f_{2}\right) d x
\end{aligned}
$$

Second, using the above with $f_{1}=f$ and $f_{2}=f$, with $f \in C^{2}(I)$ real-valued,

$$
\int_{I} f\left(-f^{\prime \prime}+Q f\right) d x=\int_{I}\left(\left|f^{\prime}\right|^{2}+Q|f|^{2}\right) d x
$$

Using $-f^{\prime \prime}+Q f=0$,

$$
\int_{I}\left(\left|f^{\prime}\right|^{2}+Q|f|^{2}\right) d x=0
$$

Because $Q(x)>0$ for $0<x<1$, it follows that $|f|=0$ almost everywhere. But f is continuous so $f=0$. For $f=f_{1}+i f_{2}$, if $-f^{\prime \prime}+Q f=0$ and $f(0)=$ $0, f(1)=0$ then as Q is real-valued, we get $f_{1}=0$ and $f_{2}=0$ hence $f=0$.

Third, say $f \in C^{2}(I)$ is real-valued, $f(0)=0, f(1)=0$, and $g=L_{Q} f=$ $-f^{\prime \prime}+Q f \in C(I)$. Let $h=T_{Q} g$. By Lemma 11, $h \in C^{2}(I)$ and

$$
-h^{\prime \prime}+Q h=g, \quad h(0)=0, \quad h(1)=0
$$

Let $F=f-h$. Then using $-f^{\prime \prime}+Q f=g$ we get

$$
F^{\prime \prime}=f^{\prime \prime}-h^{\prime \prime}=(Q f-g)-(Q h-g)=Q(f-h)=Q F
$$

[^8]Furthermore,

$$
F(0)=f(0)-h(0)=0-0=0, \quad F(1)=f(1)-h(1)=0-0=0 .
$$

Because f is real-valued so is g, and because g is real-valued it follows that $h=T_{Q} g$ is real-valued. Thus F is real-valued and so by the above, $F=0$. That is, $f=h$, i.e. $f=T_{Q} g$. For $f=f_{1}+i f_{2}$, if $f(0)=0, f(1)=0$ and $g=-f^{\prime \prime}+Q f$, let $g=g_{1}+i g_{2}$. As Q is real-valued we get $g_{1}=-f_{1}^{\prime \prime}+Q f_{1}$ and $g_{2}=-f_{2}^{\prime \prime}+Q f_{2}$. Then $f_{1}=T_{Q} g_{1}$ and $f_{2}=T_{Q} g_{2}$. Thus

$$
f=f_{1}+i f_{2}=T_{Q} g_{1}+i T_{Q} g_{2}=T_{Q}\left(g_{1}+i g_{2}\right)=T_{Q} g
$$

Fourth, let $g \in C(I)$ and let $f=T_{Q} g$. By Lemma 11, $f \in C^{2}(I)$ and

$$
-f^{\prime \prime}+Q f=g, \quad f(0)=0, \quad f(1)=0
$$

Then using the above,

$$
\begin{aligned}
\left\langle g, T_{Q} g\right\rangle & =\left\langle-f^{\prime \prime}+Q f, f\right\rangle \\
& =\int_{I}\left(-f^{\prime \prime}+Q f\right) \bar{f} d x \\
& =\int_{I}\left(\bar{f}^{\prime} f^{\prime}+Q \bar{f} f\right) d x \\
& =\int_{I}\left(\left|f^{\prime}\right|^{2}+Q|f|^{2}\right) d x
\end{aligned}
$$

Because $Q \geq 0$ we have $\left\langle g, T_{Q} g\right\rangle \geq 0$. For $g \in L^{2}(I)$ let $g_{n} \in C(I)$ with $\left\|g_{n}-g\right\|_{L^{2}} \rightarrow 0$. Then $\left\langle g_{n}, T_{Q} g_{n}\right\rangle \rightarrow\left\langle g, T_{Q} g\right\rangle$ as $n \rightarrow \infty$, and because $\left\langle g_{n}, T_{Q} g_{n}\right\rangle \geq$ 0 it follows that $\left\langle g, T_{Q} g\right\rangle \geq 0$. Therefore $T_{Q} \geq 0$, namely T_{Q} is a positive operator.

Let $f \in N^{2}$ and let $g=-f^{\prime \prime}+Q f$. Then $f=T_{Q} g$. This means that $N^{2} \subset \operatorname{Ran}\left(T_{Q}\right)$. One checks that N^{2} is dense in $L^{2}(I)$, so $\operatorname{Ran}\left(T_{Q}\right)$ is dense in $L^{2}(I)$. If $f \in \operatorname{ker}\left(T_{Q}\right)$ and $g \in L^{2}(I)$ then $\left\langle f, T_{Q}^{*} g\right\rangle=\left\langle T_{Q} f, g\right\rangle=0$. Hence $\operatorname{ker}\left(T_{Q}\right) \perp \operatorname{Ran}\left(T_{Q}^{*}\right) . \quad$ But T_{Q} is self-adjoint which implies that $\operatorname{ker}\left(T_{Q}\right) \perp$ $\operatorname{Ran}\left(T_{Q}\right)$. Because $\operatorname{Ran}\left(T_{Q}\right)$ is dense in $L^{2}(I)$ it follows that $\operatorname{ker}\left(T_{Q}\right)=0$.

We now prove the Sturm-Liouville theorem. ${ }^{13}$
Theorem 13 (Sturm-Liouville theorem). Let $Q \in C(I), Q(x)>0$ for $0<x<$ 1. There is an orthonormal basis $\left\{u_{n}: n \geq 1\right\} \subset N^{2}(I)$ for $L^{2}(I)$ and $\lambda_{n}>0$, $\lambda_{m}<\lambda_{n}$ for $m<n$ and $\lambda_{n} \rightarrow \infty$, such that

$$
L_{Q} u_{n}=\lambda_{n} u_{n}, \quad n \geq 1
$$

[^9]Proof. We have established that T_{Q} is a positive compact operator with $\operatorname{ker} T_{Q}=$ 0 . The spectral theorem for positive compact operators then tells us that there is an orthonormal basis $\left\{\phi_{n}: n \geq 1\right\}$ for $L^{2}(I)$ and $\gamma_{n}>0$ such that $T_{Q} \phi_{n}=\gamma_{n} \phi_{n}$ for $n \geq 1$ and $\gamma_{n} \downarrow 0$. By Lemma 11, $T_{Q} \phi_{n} \in N^{0}(I)$. Let

$$
u_{n}=\frac{1}{\gamma_{n}} T_{Q} \phi_{n} \in N^{0}(I)
$$

Because $T_{Q} \phi_{n}=\gamma_{n} \phi_{n}$ we have $u_{n}=\phi_{n}$ in $L^{2}(I)$ and so

$$
u_{n}=\frac{1}{\gamma_{n}} T_{Q} u_{n} .
$$

Let $v_{n}=T_{Q} u_{n}$. Because $u_{n} \in C(I)$, Lemma 11 tells us that $v_{n} \in N^{2}(I)$ and $L_{Q} v_{n}=u_{n}$. But $u_{n}=\frac{1}{\gamma_{n}} v_{n}$ so $u_{n} \in N^{2}(I)$ and

$$
L_{Q} u_{n}=\frac{1}{\gamma_{n}} L_{Q} v_{n}=\frac{1}{\gamma_{n}} u_{n} .
$$

Let $\lambda_{n}=\frac{1}{\gamma_{n}}$. Then $\lambda_{n}>0, \lambda_{m} \leq \lambda_{n}$ for $m \leq n, \lambda_{n} \rightarrow \infty$, and

$$
L_{Q} u_{n}=\lambda_{n} u_{n}, \quad n \geq 1 .
$$

To prove the claim it remains to show that the sequence λ_{n} is strictly increasing.
Let $\lambda>0$ and suppose that $f, g \in N^{2}(I)$ satisfy

$$
L_{Q} f=\lambda f, \quad L_{Q} g=\lambda g .
$$

Let $W(x)=f(x) g^{\prime}(x)-g(x) f^{\prime}(x)$, the Wronskian of f and g. Either $W(x)=0$ for all $x \in I$ or $W(x) \neq 0$ for all $x \in I$. Using $f(0)=0$ and $g(0)=0$ we get $W(0)=0$. Therefore $W(x)=0$ for all $x \in I$ and $W=0$ implies that f, g are linearly dependent.

Suppose by contradiction that $\lambda_{n}=\lambda_{m}$ for some $n \neq m$. Applying the above with $\lambda=\lambda_{n}=\lambda_{m}, f=u_{n}, g=u_{m}$ we get that u_{n}, u_{m} are linearly dependent, contradicting that $\left\{u_{n}: n \geq 1\right\}$ is an orthonormal set. Therefore $m \neq n$ implies that $\lambda_{m} \neq \lambda_{n}$.

8 Other results in Sturm-Liouville theory

14

[^10]
[^0]: ${ }^{1}$ Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.
 ${ }^{2}$ We say that $x \in A$ is nilpotent if there is some $n \geq 1$ such that $x^{n}=0$, and if x is nilpotent then by the spectral radius formula, x is quasinilpotent.

[^1]: ${ }^{3}$ Walter Rudin, Real and Complex Analysis, third ed., p. 113, Exercise 11.

[^2]: ${ }^{4}$ http://individual.utoronto.ca/jordanbell/notes/L0.pdf, p. 8, Theorem 8.

[^3]: ${ }^{5}$ Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 53, Example 2.2.13.

[^4]: ${ }^{6}$ Walter Rudin, Real and Complex Analysis, third ed., p. 149, Theorem 7.21.

[^5]: ${ }^{7}$ Walter Rudin, Real and Complex Analysis, third ed., p. 138, Theorem 7.7
 ${ }^{8}$ Anton Zettl, Sturm-Liouville Theory, p. 8, Theorem 1.4.1.

[^6]: ${ }^{9}$ Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 102, Theorem 3.2.1.

[^7]: ${ }^{10}$ Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 96, Theorem 3.1.16.
 ${ }^{11}$ Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 106, Proposition 3.2.8.

[^8]: ${ }^{12}$ Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 107, Proposition 3.2.9.

[^9]: ${ }^{13}$ Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 105, Theorem 3.2.7, p. 110, Exercise 7.

[^10]: ${ }^{14}$ B. M. Levitan and I. S. Sargsjan, Spectral Theory: Selfadjoint Ordinary Differential Operators, p. 11.

