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1 Completely regular spaces and Tychonoff spaces

A topological space X is said to be completely regular if whenever F is a
nonempty closed set and x ∈ X \F , there is a continuous function f : X → [0, 1]
such that f(x) = 0 and f(F ) = {1}. A completely regular space need not be
Hausdorff. For example, ifX is any set with more than one point, then the trivial
topology, in which the only closed sets are ∅ and X, is vacuously completely
regular, but not Hausdorff. A topological space is said to be a Tychonoff space
if it is completely regular and Hausdorff.

Lemma 1. A topological space X is completely regular if and only if for any
nonempty closed set F , any x ∈ X \ F , and any distinct a, b ∈ R, there is a
continuous function f : X → R such f(x) = a and f(F ) = {b}.

Theorem 2. If X is a Hausdorff space and A ⊂ X, then A with the subspace
topology is a Hausdorff space. If {Xi : i ∈ I} is a family of Hausdorff spaces,
then

∏
i∈I Xi is Hausdorff.

Proof. Suppose that a, b are distinct points in A. Because X is Hausdorff, there
are disjoint open sets U, V in X with a ∈ U, b ∈ V . Then U ∩ A, V ∩ A are
disjoint open sets in A with the subspace topology and a ∈ U ∩ A, b ∈ V ∩ A,
showing that A is Hausdorff.

Suppose that x, y are distinct elements of
∏

i∈I Xi. x and y being distinct
means there is some i ∈ I such that x(i) ̸= y(i). Then x(i), y(i) are distinct
points in Xi, which is Hausdorff, so there are disjoint open sets Ui, Vi in Xi with
x(i) ∈ Ui, y(i) ∈ Vi. Let U = π−1

i (Ui), V = π−1
i (Vi), where πi is the projection

map from the product to Xi. U and V are disjoint, and x ∈ U, y ∈ V , showing
that

∏
i∈I Xi is Hausdorff.

We prove that subspaces and products of completely regular spaces are com-
pletely regular.1

1Stephen Willard, General Topology, p. 95, Theorem 14.10.
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Theorem 3. If X is Hausdorff and A ⊂ X, then A with the subspace topology
is completely regular. If {Xi : i ∈ I} is a family of completely regular spaces,
then

∏
i∈I Xi is completely regular.

Proof. Suppose that F is closed in A with the subspace topology and x ∈ A\F .
There is a closed set G in X with F = G ∩ A. Then x ̸∈ G, so there is a
continuous function f : X → [0, 1] satisfying f(x) = 0 and f(F ) = {1}. The
restriction of f to A with the subspace topology is continuous, showing that A
is completely regular.

Suppose that F is a closed subset of X =
∏

i∈I Xi and that x ∈ X \ F . A
base for the product topology consists of intersections of finitely many sets of
the form π−1

i (Ui) where i ∈ I and Ui is an open subset of Xi, and because X \F
is an open neighborhood of x, there is a finite subset J of I and open sets Uj

in Xj for j ∈ J such that

x ∈
⋂
j∈J

π−1
j (Uj) ⊂ X \ F.

For each j ∈ J , Xj \ Uj is closed in Xj and x(j) ∈ Uj , and because Xj is
completely regular there is a continuous function fj : Xj → [0, 1] such that
fj(x(j)) = 0 and fj(Xj \ Uj) = {1}. Define g : X → [0, 1] by

g(y) = max
j∈J

(fj ◦ πj)(y), y ∈ X.

In general, suppose that Y is a topological space and denote by C(Y ) the
set of continuous functions Y → R. It is a fact that C(Y ) is a lattice with the
partial order F ≤ G when F (y) ≤ G(y) for all y ∈ Y . Hence, the maximum of
finitely many continuous functions is also a continuous functions, hence g : X →
[0, 1] is continuous. Because (fj ◦ πj)(x) = 0 for each j ∈ J , g(x) = 0. On the
other hand, F ⊂ X \

⋂
j∈J π−1

j (Uj), so if y ∈ F then there is some j ∈ J such
that πj(y) ∈ Xj \ Uj and then (fj ◦ πj)(y) = 1. Hence, for any y ∈ F we have
g(y) = 1. Thus we have proved that g : X → [0, 1] is a continuous function such
that g(x) = 0 and g(F ) = {1}, which shows that X is completely regular.

Therefore, subspaces and products of Tychonoff spaces are Tychonoff.
If X is a normal topological space, it is immediate from Urysohn’s lemma

that X is completely regular. A metrizable space is normal and Hausdorff,
so a metrizable space is thus a Tychonoff space. Let X be a locally compact
Hausdorff space. Either X or the one-point compactification of X is a compact
Hausdorff space Y of which X is a subspace. Y being a compact Hausdorff space
implies that it is normal and hence completely regular. But X is a subspace
of Y and being completely regular is a hereditary property, so X is completely
regular, and therefore Tychonoff. Thus, we have proved that a locally compact
Hausdorff space is Tychonoff.
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2 Initial topologies

Suppose that X is a set, Xi, i ∈ I, are topological spaces, and fi : X → Xi are
functions. The initial topology on X induced by {fi : i ∈ I} is the coarsest
topology onX such that each fi is continuous. A subbase for the initial topology
is the collection of those sets of the form f−1

i (Ui), i ∈ I and Ui open in Xi.
If fi : X → Xi, i ∈ I, are functions, the evaluation map is the function

e : X →
∏

i∈I Xi defined by

(πi ◦ e)(x) = fi(x), i ∈ I.

We say that a collection {fi : i ∈ I} of functions on X separates points
if x ̸= y implies that there is some i ∈ I such that fi(x) ̸= fi(y). We remind
ourselves that if X and Y are topological spaces and ϕ : X → Y is a function,
ϕ is called an embedding when ϕ : X → ϕ(X) is a homeomorphism, where
ϕ(X) has the subspace topology inherited from Y . The following theorem gives
conditions on when X can be embedded into the product of the codomains of
the fi.

2

Theorem 4. Let X be a topological space, let Xi, i ∈ I, be topological spaces,
and let fi : X → Xi be functions. The evaluation map e : X →

∏
i∈I Xi is an

embedding if and only if both (i) X has the initial topology induced by the family
{fi : i ∈ I} and (ii) the family {fi : i ∈ I} separates points in X.

Proof. Write P =
∏

i∈I Xi and let pi : e(X) → Xi be the restriction of πi : X →
Xi to e(X). A subbase for e(X) with the subspace topology inherited from P
consists of those sets of the form π−1

i (Ui)∩ e(X), i ∈ I and Ui open in Xi. But
π−1
i (Ui) ∩ e(X) = p−1

i (Ui), and the collection of sets of this form is a subbase
for e(X) with the initial topology induced by the family {pi : i ∈ I}, so these
topologies are equal.

Assume that e : X → e(X) is a homeomorphism. Because e is a homeo-
morphism and fi = πi ◦ e = pi ◦ e, e(X) having the initial topology induced by
{pi : i ∈ I} implies thatX has the initial topology induced by {fi : i ∈ I}. If x, y
are distinct elements of X then there is some i ∈ I such that pi(e(x)) ̸= pi(e(y)),
i.e. fi(x) ̸= fi(y), showing that {fi : i ∈ I} separates points in X.

Assume that X has the initial topology induced by {fi : i ∈ I} and that the
family {fi : i ∈ I} separates points in X. We shall prove that e : X → e(X) is
a homeomorphism, for which it suffices to prove that e : X → P is one-to-one
and continuous and that e : X → e(X) is open. If x, y ∈ X are distinct then
because the fi separate points, there is some i ∈ I such that fi(x) ̸= fi(y), and
so e(x) ̸= e(y), showing that e is one-to-one.

For each i ∈ I, fi is continuous and fi = πi ◦ e. The fact that this is true for
all i ∈ I implies that e : X → P is continuous. (Because the product topology
is the initial topology induced by the family of projection maps, a map to a
product is continuous if and only if its composition with each projection map is
continuous.)

2Stephen Willard, General Topology, p. 56, Theorem 8.12.
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A subbase for the topology of X consists of those sets of the form V =
f−1
i (Ui), i ∈ I and Ui open in Xi. As fi = pi ◦ e we can write this as

V = (pi ◦ e)−1(Ui) = e−1(p−1
i (Ui)),

which implies that e(V ) = p−1
i (Ui), which is open in e(X) and thus shows that

e : X → e(X) is open.

We say that a collection {fi : i ∈ I} of functions on a topological space X
separates points from closed sets if whenever F is a closed subset of X
and x ∈ X \ F , there is some i ∈ I such that fi(x) ̸∈ fi(F ), where fi(F ) is the
closure of fi(F ) in the codomain of f .

Theorem 5. Assume that X is a topological space and that fi : X → Xi, i ∈ I,
are continuous functions. This family separates points from closed sets if and
only if the collection of sets of the form f−1

i (Ui), i ∈ I and Ui open in Xi, is a
base for the topology of X.

Proof. Assume that the family {fi : i ∈ I} separates points from closed sets in
X. Say x ∈ X and that U is an open neighborhood of x. Then F = X \ U is
closed so there is some i ∈ I such that fi(x) ̸∈ fi(F ). Thus Ui = Xi \ fi(F ) is
open in Xi, hence f−1

i (Ui) is open in X. On the one hand, f(xi) ∈ Ui yields
xi ∈ f−1

i (Ui). On the other hand, if y ∈ f−1
i (Ui) then fi(y) ∈ Ui, which tells us

that y ̸∈ F and so y ∈ U , giving f−1
i (Ui) ⊂ U . This shows us that the collection

of sets of the form f−1
i (Ui), i ∈ I and Ui open in Xi, is a base for the topology

of X.
Assume that the collection of sets of the form f−1

i (Ui), i ∈ I and Ui open
in Xi, is a base for the topology of X, and suppose that F is a closed subset
of X and that x ∈ X \ F . Because X \ F is an open neighborhood of x,
there is some i ∈ I and open Ui in Xi such that x ∈ f−1

i (Ui) ⊂ X \ F ,
so fi(x) ∈ Ui. Suppose by contradiction that there is some y ∈ F such that
fi(y) ∈ Ui. This gives y ∈ f−1

i (Ui) ⊂ X \F , which contradicts y ∈ F . Therefore
Ui∩ fi(F ) = ∅, and hence Xi \Ui is a closed set that contains fi(F ), which tells
us that fi(F ) ⊂ Xi \ Ui, i.e. fi(F ) ∩ Ui = ∅. But fi(x) ∈ Ui, so we have proved
that {fi : i ∈ I} separates points from closed sets.

A T1 space is a topological space in which all singletons are closed.

Theorem 6. If X is a T1 space, Xi, i ∈ I, are topological spaces, fi : X → Xi

are continuous functions, and {fi : i ∈ I} separates points from closed sets in
X, then the evaluation map e : X →

∏
i∈I Xi is an embedding.

Proof. By Theorem 5, there is a base for the topology of X consisting of sets
of the form f−1

i (Ui), i ∈ I and Ui open in Xi. Since this collection of sets is
a base it is a fortiori a subbase, and the topology generated by this subbase is
the initial topology for the family of functions {fi : i ∈ I}. Because X is T1,
singletons are closed and therefore the fact that {fi : i ∈ I} separates points
and closed sets implies that it separates points in X. Therefore we can apply
Theorem 4, which tells us that the evaluation map is an embedding.
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3 Bounded continuous functions

For any setX, we denote by ℓ∞(X) the set of all bounded functionsX → R, and
we take as known that ℓ∞(X) is a Banach space with the supremum norm

∥f∥∞ = sup
x∈X

|f(x)|, f ∈ ℓ∞(X).

IfX is a topological space, we denote by Cb(X) the set of bounded continuous
functions X → R. Cb(X) ⊂ ℓ∞(X), and it is apparent that Cb(X) is a linear
subspace of ℓ∞(X). One proves that Cb(X) is closed in ℓ∞(X) (i.e., that if a
sequence of bounded continuous functions converges to some bounded function,
then this function is continuous), and hence with the supremum norm, Cb(X)
is a Banach space.

The following result shows that the Banach space Cb(X) of bounded contin-
uous functions X → R is a useful collection of functions to talk about.3

Theorem 7. Let X be a topological space. X is completely regular if and only
if X has the initial topology induced by Cb(X).

Proof. Assume that X is completely regular. If F is a closed subset of X and
x ∈ X \F , then there is a continuous function f : X → [0, 1] such that f(x) = 0
and f(F ) = {1}. Then f ∈ Cb(X), and f(x) = 0 ̸∈ {1} = f(F ). This shows
that Cb(X) separates points from closed sets in X. Applying Theorem 5, we
get that X has the initial topology induced by Cb(X). (This would follow if the
collection that Theorem 5 tells us is a base were merely a subbase.)

Assume thatX has the initial topology induced by Cb(X). Suppose that F is
a closed subset of X and that x ∈ U = X \F . A subbase for the initial topology
induced by Cb(X) consists of those sets of the form f−1(V ) for f ∈ Cb(X) and
V an open ray in R (because the open rays are a subbase for the topology
of R), so because U is an open neighborhood of x, there is a finite subset J of
Cb(X) and open rays Vf in R for each f ∈ J such that

x ∈
⋂
f∈J

f−1(Vf ) ⊂ U.

If some Vj is of the form (−∞, af ), then with g = −f we have f−1(−∞, af ) =
g−1(−af ,∞). We therefore suppose that in fact Vf = (af ,∞) for each f ∈ J .
For each f ∈ J , define gf : X → R by

gf (x) = sup{f(x)− af , 0},

which is continuous and ≥ 0, and satisfies f−1(af ,∞) = g−1
f (0,∞), so that

x ∈
⋂
f∈J

g−1
f (0,∞) ⊂ U.

3Stephen Willard, General Topology, p. 96, Theorem 14.12.
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Define g =
∏

f∈J gf , which is continuous because each factor is continuous. This
function satisfies g(x) =

∏
f∈J gf (x) > 0 because this is a product of finitely

many factors each of which are> 0. If y ∈ g−1(0,∞) then y ∈
⋂

f∈J g−1
f (0,∞) ⊂

U , so g−1(0,∞) ⊂ U . But g is nonnegative, so this tells us that g(X \U) = {0},
i.e. g(F ) = {0}. By Lemma 1 this suffices to show that X is completely
regular.

A cube is a topological space that is homeomorphic to a product of compact
intervals in R. Any product is homeomorphic to the same product without
singleton factors, (e.g. R× R× {3} is homeomorphic to R× R) and a product
of nonsingleton compact intervals with index set I is homeomorphic to [0, 1]I .
We remind ourselves that to say that a topological space is homeomorphic to a
subspace of a cube is equivalent to saying that the space can be embedded into
the cube.

Theorem 8. A topological space X is a Tychonoff space if and only if it is
homeomorphic to a subspace of a cube.

Proof. Suppose that I is a set and that X is homeomorphic to a subspace Y
of [0, 1]I . [0, 1] is Tychonoff so the product [0, 1]I is Tychonoff, and hence the
subspace Y is Tychonoff, thus X is Tychonoff.

Suppose that X is Tychonoff. By Theorem 7, X has the initial topology
induced by Cb(X). For each f ∈ Cb(X), let If = [−∥f∥∞ , ∥f∥∞], which is a
compact interval in R, and f : X → If is continuous. Because X is Tychonoff,
it is T1 and the functions f : X → If , f ∈ Cb(X), separate points and closed
sets, we can now apply Theorem 6, which tells us that the evaluation map
e : X →

∏
f∈Cb(X) If is an embedding.

4 Compactifications

In §1 we talked about the one-point compactification of a locally compact Haus-
dorff space. A compactification of a topological space X is a pair (K,h) where
(i) K is a compact Hausdorff space, (ii) h : X → K is an embedding, and (iii)
h(X) is a dense subset of K. For example, if X is a compact Hausdorff space
then (X, idX) is a compactification of X, and if X is a locally compact Hausdorff
space, then the one-point compactification X∗ = X ∪ {∞}, where ∞ is some
symbol that does not belong to X, together with the inclusion map X → X∗ is
a compactification.

Suppose that X is a topological space and that (K,h) is a compactification
of X. Because K is a compact Hausdorff space it is normal, and then Urysohn’s
lemma tells us that K is completely regular. But K is Hausdorff, so in fact
K is Tychonoff. A subspace of a Tychonoff space is Tychonoff, so h(X) with
the subspace topology is Tychonoff. But X and h(X) are homeomorphic, so
X is Tychonoff. Thus, if a topological space has a compactification then it is
Tychonoff.
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In Theorem 8 we proved that any Tychonoff space can be embedded into a
cube. Here review our proof of this result. Let X be a Tychonoff space, and
for each f ∈ Cb(X) let If = [−∥f∥∞ , ∥f∥∞], so that f : X → If is continuous,
and the family of these functions separates points in X. The evaluation map for
this family is e : X →

∏
f∈Cb(X) If defined by (πf ◦e)(x) = f(x) for f ∈ Cb(X),

and Theorem 6 tells us that e : X →
∏

f∈Cb(X) If is an embedding. Because

each interval If is a compact Hausdorff space (we remark that if f = 0 then
If = {0}, which is indeed compact), the product

∏
f∈Cb(X) If is a compact

Hausdorff space, and hence any closed subset of it is compact. We define βX to
be the closure of e(X) in

∏
f∈Cb(X) If , and the Stone-Čech compactification

of X is the pair (βX, e), and what we have said shows that indeed this is a
compactification of X.

The Stone-Čech compactification of a Tychonoff space is useful beyond dis-
playing that every Tychonoff space has a compactification. We prove in the
following that any continuous function from a Tychonoff space to a compact
Hausdorff space factors through its Stone-Čech compactification.4

Theorem 9. If X is a Tychonoff space, K is a compact Hausdorff space, and
ϕ : X → K is continuous, then there is a unique continuous function Φ : βX →
K such that ϕ = Φ ◦ e.

Proof. K is Tychonoff because a compact Hausdorff space is Tychonoff, so
the evaluation map eK : K →

∏
g∈Cb(K) Ig is an embedding. Write F =∏

f∈Cb(X) If , G =
∏

g∈Cb(K) Ig, and let pf : F → If , qg : G → Ig be the
projection maps.

We define H : F → G for t ∈ F by (qg ◦H)(t) = t(g ◦ϕ) = pg◦ϕ(t). For each
g ∈ G, the map qg ◦H : F → Ig◦ϕ is continuous, so H is continuous.

For x ∈ X, we have

(qg ◦H ◦ e)(x) = (qg ◦H)(e(x))

= pg◦ϕ(e(x))

= (pg◦ϕ ◦ e)(x)
= (g ◦ ϕ)(x)
= g(ϕ(x))

= (qg ◦ eK)(ϕ(x))

= (qg ◦ eK ◦ ϕ)(x),

so
H ◦ e = eK ◦ ϕ. (1)

On the one hand, because K is compact and eK is continuous, eK(K) is
compact and hence is a closed subset of G (G is Hausdorff so a compact subset
is closed). From (1) we know H(e(X)) ⊂ eK(K), and thus

H(e(X)) ⊂ eK(K) = eK(K).

4Stephen Willard, General Topology, p. 137, Theorem 19.5.
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On the other hand, because βX is compact and H is continuous, H(βX) is
compact and hence is a closed subset of G. As e(X) is dense in βX and H is
continuous, H(e(X)) is dense in H(βX), and thus

H(e(X)) = H(βX) = H(βX).

Therefore we have
H(βX) ⊂ eK(K).

Let h be the restriction of H to βX, and define Φ : βX → K by Φ = e−1
K ◦h,

which makes sense because eK : K → eK(K) is a homeomorphism and h takes
values in eK(K). Φ is continuous, and for x ∈ X we have, using (1),

(Φ ◦ e)(x) = (e−1
K ◦ h ◦ e)(x) = (e−1

K ◦H ◦ e)(x) = ϕ(x),

showing that Φ ◦ e = ϕ.
If Ψ : βX → K is a continuous function satisfying f = Ψ ◦ e, let y ∈ e(X).

There is some x ∈ X such that y = e(x), and f(x) = (Ψ ◦ e)(x) = Ψ(y),
f(x) = (Φ ◦ e)(x) = Φ(y), showing that for all y ∈ e(X), Ψ(y) = Φ(y). Since Ψ
and Φ are continuous and are equal on e(X), which is a dense subset of βX, we
get Ψ = Φ, which completes the proof.

If X is a Tychonoff space with Stone-Čech compactification (βX, e), then
because βX is a compact space, C(βX) with the supremum norm is a Banach
space. We show in the following that the extension in Theorem 9 produces an
isometric isomorphism Cb(X) → C(βX).

Theorem 10. If X is a Tychonoff space with Stone-Čech compactification
(βX, e), then there is an isomorphism of Banach spaces Cb(X) → C(βX).

Proof. Let f, g ∈ Cb(X), let α be a scalar, and letK = [−|α| ∥f∥−∥g∥ , |α| ∥f∥+
∥g∥], which is a compact set. Define ϕ = αf + g, and then Theorem 9 tells us
that there is a unique continuous function F : βX → K such that f = F ◦ e,
a unique continuous function G : βX → K such that g = G ◦ e, and a unique
continuous function Φ : βX → K such that ϕ = Φ ◦ e. For y ∈ e(X) and x ∈ X
such that y = e(x),

Φ(y) = ϕ(x) = αf(x) + g(x) = αF (y) +G(y).

Since Φ and αF + G are continuous functions βX → K that are equal on the
dense set e(X), we get Φ = αF +G. Therefore, the map that sends f ∈ Cb(X)
to the unique F ∈ C(βX) such that f = F ◦ e is linear.

Let f ∈ Cb(X) and let F be the unique element of C(βX) such that f = F ◦e.
For any x ∈ X, |f(x)| = |(F ◦ e)(x)|, so

∥f∥∞ = sup
x∈X

|f(x)| = sup
x∈X

|(F ◦ e)(x)| = sup
y∈e(X)

|F (y)|.

Because F is continuous and e(X) is dense in βX,

sup
y∈e(X)

|F (y)| = sup
y∈βX

|F (y)| = ∥F∥∞ ,
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so ∥f∥∞ = ∥F∥∞, showing that f 7→ F is an isometry.
For Φ ∈ C(βX), define ϕ = Φ ◦ e. Φ is bounded so ϕ is also, and ϕ is a

composition of continuous functions, hence ϕ ∈ Cb(X). Thus ϕ 7→ Φ is onto,
completing the proof.

5 Spaces of continuous functions

If X is a topological space, we denote by C(X) the set of continuous functions
X → R. For K a compact set in X (in particular a singleton) and f ∈ C(X),
define pK(f) = supx∈K |f(x)|. The collection of pK for all compact subsets of
K of X is a separating family of seminorms, because if f is nonzero there
is some x ∈ X for which f(x) ̸= 0 and then p{x}(f) > 0. Hence C(X) with the
topology induced by this family of seminorms is a locally convex space. (If X is
σ-compact then the seminorm topology is induced by countably many of the
seminorms, and then C(X) is metrizable.) However, since we usually are not
given that X is compact (in which case C(X) is normable with pX) and since it
is often more convenient to work with normed spaces than with locally convex
spaces, we shall talk about subsets of C(X).

For X a topological space, we say that a function f : X → R vanishes at
infinity if for each ϵ > 0 there is a compact set K such that |f(x)| < ϵ whenever
x ∈ X \K, and we denote by C0(X) the set of all continuous functions X → R
that vanish at infinity.

The following theorem shows first that C0(X) is contained in Cb(X), second
that C0(X) is a linear space, and third that it is a closed subset of Cb(X).
With the supremum norm Cb(X) is a Banach space, so this shows that C0(X)
is a Banach subspace. We work through the proof in detail because it is often
proved with unnecessary assumptions on the topological space X.

Theorem 11. Suppose that X is a topological space. Then C0(X) is a closed
linear subspace of Cb(X).

Proof. If f ∈ C0(X), then there is a compact set K such that x ∈ X \K implies
that |f(x)| < 1. On the other hand, because f is continuous, f(K) is a compact
subset of the scalar field and hence is bounded, i.e., there is some M ≥ 0 such
that x ∈ K implies that |f(x)| ≤ M . Therefore f is bounded, showing that
C0(X) ⊂ Cb(X).

Let f, g ∈ C0(X) and let ϵ > 0. There is a compact set K1 such that
x ∈ X \K1 implies that |f(x)| < ϵ

2 and a compact set K2 such that x ∈ X \K2

implies that |g(x)| < ϵ
2 . Let K = K1 ∪ K2, which is a union of two compact

sets hence is itself compact. If x ∈ X \K, then x ∈ X \K1 implying |f(x)| < ϵ
2

and x ∈ X \K2 implying |g(x)| < ϵ
2 , hence |f(x) + g(x)| ≤ |f(x)|+ |g(x)| < ϵ.

This shows that f + g ∈ C0(X).
If f ∈ C0(X) and α is a nonzero scalar, let ϵ > 0. There is a compact set K

such that x ∈ X \K implies that |f(x)| < ϵ
|α| , and hence |(αf)(x)| = |α||f(x)| <

ϵ, showing that αf ∈ C0(X). Therefore C0(X) is a linear subspace of Cb(X).
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Suppose that fn is a sequence of elements of C0(X) that converges to some
f ∈ Cb(X). For ϵ > 0, there is some nϵ such that n ≥ nϵ implies that
∥fn − f∥∞ < ϵ

2 , that is,

sup
x∈X

|fn(x)− f(x)| < ϵ

2
.

For each n, let Kn be a compact set in X such that x ∈ X \ Kn implies that
|fn(x)| < ϵ

2 ; there are such Kn because fn ∈ C0(X). If x ∈ X \Knϵ , then

|f(x)| ≤ |fnϵ
(x)− f(x)|+ |fnϵ

(x)| < ϵ

2
+

ϵ

2
= ϵ,

showing that f ∈ C0(X).

If X is a topological space and f : X → R is a function, the support of f
is the set

supp f = {x ∈ X : f(x) ̸= 0}.

If supp f is compact we say that f has compact support, and we denote by
Cc(X) the set of all continuous functions X → R with compact support.

Suppose that X is a topological space and let f ∈ Cc(X). For any ϵ > 0, if
x ∈ X \ supp f then |f(x)| = 0 < ϵ, showing that f ∈ C0(X). Therefore

Cc(X) ⊂ C0(X),

and this makes no assumptions about the topology of X.
We can prove that if X is a locally compact Hausdorff space then Cc(X) is

dense in C0(X).5

Theorem 12. If X is a locally compact Hausdorff space, then Cc(X) is a dense
subset of C0(X).

Proof. Let f ∈ C0(X), and for each n ∈ N define

Cn =

{
x ∈ X : |f(x)| ≥ 1

n

}
.

For n ∈ N, because f ∈ C0(X) there is a compact set Kn such that x ∈ X \Kn

implies that |f(x)| < 1
n , and hence Cn ⊂ Kn. Because x 7→ |fn(x)| is continuous,

Cn is a closed set in X, and it follows that Cn, being contained in the compact
set Kn, is compact. (This does not use that X is Hausdorff.)

Let n ∈ N. Because X is a locally compact Hausdorff space and Cn is
compact, Urysohn’s lemma6 tells us that there is a compact set Dn containing
Cn and a continuous function gn : X → [0, 1] such that gn(Cn) = {1} and
gn(X \Dn) ⊂ {0}. That is, gn ∈ Cc(X), 0 ≤ gn ≤ 1, and gn(Cn) = {1}. Define

5Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, p. 132,
Proposition 4.35.

6Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, p. 131,
Lemma 4.32.
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fn = gnf ∈ Cc(X). (A product of continuous functions is continuous, and
because f is bounded and gn has compact support, gnf has compact support.)
For x ∈ Cn, fn(x)− f(x) = (gn(x)− 1)f(x) = 0, and for x ∈ X \ Cn, |fn(x)−
f(x)| = |gn(x)− 1||f(x)| ≤ 1 · 1

n . Therefore

∥fn − f∥∞ ≤ 1

n
,

and hence fn is a sequence in Cc(X) that converges to f , showing that Cc(X)
is dense in C0(X).

If X is a Hausdorff space, then we prove that Cc(X) is a linear subspace of
C0(X). When X is a locally compact Hausdorff space then combined with the
above this shows that Cc(X) is a dense linear subspace of C0(X).

Lemma 13. Suppose that X is a Hausdorff space. Then Cc(X) is a linear
subspace of C0(X).

Proof. If f, g ∈ Cc(X) and α is a scalar, let K = supp f ∪ supp g, which is
a union of two compact sets hence compact. If x ∈ X \ K, then f(x) = 0
because x ̸∈ supp f and g(x) = 0 because x ̸∈ supp g, so (αf + g)(x) = 0.
Therefore {x ∈ X : (αf + g)(x) ̸= 0} ⊂ K and hence supp (αf + g) ⊂ K. But
as X is Hausdorff, K being compact implies that K is closed in X, so we get
supp (αf + g) ⊂ K. Because supp (αf + g) is closed and is contained in the
compact set K, it is itself compact, so αf + g ∈ Cc(X).

Let X be a topological space, and for x ∈ X define δx : Cb(X) → R by
δx(f) = f(x). For each x ∈ X, δx is linear and |δx(f)| = |f(x)| ≤ ∥f∥∞, so
δx is continuous and hence belongs to the dual space Cb(X)∗. Moreover, the
constant function f(x) = 1 shows that ∥δx∥ = 1. We define ∆ : X → Cb(X)∗ by
∆(x) = δx. Suppose that xi is a net in X that converges to some x ∈ X. Then
for every f ∈ Cb(X) we have f(xi) → f(x), and this means that δxi

weak-*
converges to δx in Cb(X)∗. This shows that with Cb(X)∗ assigned the weak-*
topology, ∆ : X → Cb(X)∗ is continuous. We now characterize when ∆ is an
embedding.7

Theorem 14. Suppose that X is a topological space and assign Cb(X)∗ the
weak-* topology. Then the map ∆ : X → ∆(X) is a homeomorphism if and
only if X is Tychonoff, where ∆(X) has the subspace topology inherited from
Cb(X)∗.

Proof. Suppose that X is Tychonoff. If x, y ∈ X are distinct, then there is some
f ∈ Cb(X) such that f(x) = 0 and f(y) = 1, and then δx(f) = 0 ̸= 1 = δy(f),
so ∆(x) ̸= ∆(y), showing that ∆ is one-to-one. To show that ∆ : X → ∆(X)
is a homeomorphism, it suffices to prove that ∆ is an open map, so let U be an
open subset of X. For x0 ∈ U , because X \U is closed there is some f ∈ Cb(X)
such that f(x0) = 0 and f(X \ U) = {1}. Let

V1 = {µ ∈ Cb(X)∗ : µ(f) < 1}.
7John B. Conway, A Course in Functional Analysis, second ed., p. 137, Proposition 6.1.
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This is an open subset of Cb(X)∗ as it is the inverse image of (−∞, 1) under the
map µ 7→ µ(f), which is continuous Cb(X)∗ → R by definition of the weak-*
topology. Then

V = V1 ∩∆(X) = {δx : f(x) < 1}
is an open subset of the subspace ∆(X), and we have both δx0

∈ V and V ⊂
∆(U). This shows that for any element δx0 of ∆(U), there is some open set V in
the subspace ∆(X) such that δx0 ∈ V ⊂ ∆(U), which tells us that ∆(U) is an
open set in the subspace ∆(U), showing that ∆ is an open map and therefore a
homeomorphism.

Suppose that ∆ : X → ∆(X) is a homeomorphism. By the Banach-Alaoglu
theorem we know that the closed unit ball B1 in Cb(X)∗ is compact. (We remind
ourselves that we have assigned Cb(X)∗ the weak-* topology.) That is, with the
subspace topology inherited from Cb(X)∗, B1 is a compact space. It is Hausdorff
because Cb(X)∗ is Hausdorff, and a compact Hausdorff space is Tychonoff. But
∆(X) is contained in the surface ofB1, in particular ∆(X) is contained inB1 and
hence is itself Tychonoff with the subspace topology inherited from B1, which is
equal to the subspace topology inherited from Cb(X)∗. Since ∆ : X → ∆(X) is a
homeomorphism, we get that X is a Tychonoff space, completing the proof.

The following result shows when the Banach space Cb(X) is separable.8

Theorem 15. Suppose that X is a Tychonoff space. Then the Banach space
Cb(X) is separable if and only if X is compact and metrizable.

Proof. Assume that X is compact and metrizable, with a compatible metric d.
For each n ∈ N there are open balls Un,1, . . . , Un,Nn

of radius 1
n that cover X.

As X is metrizable it is normal, so there is a partition of unity subordinate
to the cover {Un,k : 1 ≤ k ≤ Nn}.9 That is, there are continuous functions

fn,1, . . . , fn,Nn
: X → [0, 1] such that

∑Nn

k=1 fn,k = 1 and such that x ∈ X \Un,k

implies that fn,k(x) = 0. Then {fn,k : n ∈ N, 1 ≤ k ≤ Nn} is countable,
so its span D over Q is also countable. We shall prove that D is dense in
C(X) = Cb(X), which will show that Cb(X) is separable.

Let f ∈ C(X) and let ϵ > 0. Because (X, d) is a compact metric space, f is
uniformly continuous, so there is some δ > 0 such that d(x, y) < δ implies that
|f(x) − f(y)| < ϵ

2 . Let n ∈ N be > 2
δ , and for each 1 ≤ k ≤ Nn let xk ∈ Un,k.

For each k there is some αk ∈ Q such that |αk − f(xk)| < ϵ
2 , and we define

g =

Nn∑
k=1

αkfn,k ∈ D.

Because
∑Nn

k=1 fn,k = 1 we have f =
∑Nn

k=1 ffn,k. Let x ∈ X, and then

|f(x)− g(x)| =

∣∣∣∣∣
Nn∑
k=1

(f(x)− αk)fn,k(x)

∣∣∣∣∣ ≤
Nn∑
k=1

|f(x)− αk|fn,k(x).

8John B. Conway, A Course in Functional Analysis, second ed., p. 140, Theorem 6.6.
9John B. Conway, A Course in Functional Analysis, second ed., p. 139, Theorem 6.5.
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For each 1 ≤ k ≤ Nn, either x ∈ Un,k or x ̸∈ Un,k. In the first case, since x and
xk are then in the same open ball of radius 1

n , d(x, xk) <
2
n < δ, so

|f(x)− αk| ≤ |f(x)− f(xk)|+ |f(xk)− αk| <
ϵ

2
+

ϵ

2
= ϵ.

In the second case, fn,k(x) = 0. Therefore,

Nn∑
k=1

|f(x)− αk|fn,k(x) ≤
Nn∑
k=1

ϵfn,k(x) = ϵ,

showing that |f(x) − g(x)| ≤ ϵ. This shows that D is dense in C(X), and
therefore that Cb(X) = C(X) is separable.

Suppose that Cb(X) is separable. Because X is Tychonoff, by Theorem
10 there is an isometric isomorphism between the Banach spaces Cb(X) and
C(βX), where (βX, e) is the Stone-Čech compactification of X. Hence C(βX)
is separable. But it is a fact that a compact Hausdorff space Y is metrizable
if and only if the Banach space C(Y ) is separable.10 (This is proved using the
Stone-Weierstrass theorem.) As βX is a compact Hausdorff space and C(βX)
is separable, we thus get that βX is metrizable.

It is a fact that if Y is a Banach space and B1 is the closed unit ball in the
dual space Y ∗, then B1 with the subspace topology inherited from Y ∗ with the
weak-* topology is metrizable if and only if Y is separable.11 Thus, the closed
unit ball B1 in Cb(X)∗ is metrizable. Theorem 14 tells us there is an embedding
∆ : X → B1, and B1 being metrizable implies that ∆(X) is metrizable. As
∆ : X → ∆(X) is a homeomorphism, we get that X is metrizable.

Because βX is compact and metrizable, to prove that X is compact and
metrizable it suffices to prove that βX\e(X) = ∅, so we suppose by contradiction
that there is some τ ∈ βX \ e(X). e(X) is dense in βX, so there is a sequence
xn ∈ X, for which we take xn ̸= xm when n ̸= m, such that e(xn) → τ . If xn

had a subsequence xa(n) that converged to some y ∈ X, then e(xa(n)) → e(y)
and hence e(y) = τ , a contradiction. Therefore the sequence xn has no limit
points, so the sets A = {xn : n odd} and B = {xn : n even} are closed and
disjoint. Because X is metrizable it is normal, hence by Urysohn’s lemma there
is a continuous function ϕ : X → [0, 1] such that ϕ(a) = 0 for all a ∈ A and
ϕ(b) = 1 for all b ∈ B. Then, by Theorem 9 there is a unique continuous
Φ : X → [0, 1] such that ϕ = Φ ◦ e. Then we have, because a subsequence of a

10Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 353, Theorem 9.14.

11John B. Conway, A Course in Functional Analysis, second ed., p. 134, Theorem 5.1.
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convergent sequence has the same limit,

Φ(τ) = Φ
(
lim
n→∞

e(xn)
)

= Φ
(
lim
n→∞

e(x2n+1)
)

= lim
n→∞

(Φ ◦ e)(x2n+1)

= lim
n→∞

ϕ(x2n+1)

= 0,

and likewise
Φ(τ) = lim

n→∞
ϕ(x2n) = 1,

a contradiction. This shows that βX \e(X) = ∅, which completes the proof.

6 C∗-algebras and the Gelfand transform

A C∗-algebra is a complex Banach algebra A with a map ∗ : A → A such that

1. a∗∗ = a for all a ∈ A (namely, ∗ is an involution),

2. (a+ b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a ∈ A,

3. (λa)∗ = λa∗ for all a ∈ A and λ ∈ C,

4. ∥a∗a∥ = ∥a∥2 for all a ∈ A.

We do not require that a C∗-algebra be unital. If a = 0 then ∥a∗∥ = ∥0∥ = ∥a∥.
Otherwise,

∥a∥2 = ∥a∗a∥ ≤ ∥a∗∥ ∥a∥

gives ∥a∥ ≤ ∥a∗∥ and

∥a∗∥2 = ∥a∗∗a∗∥ = ∥aa∗∥ ≤ ∥a∥ ∥a∗∥

gives ∥a∗∥ ≤ ∥a∥, showing that ∗ is an isometry.
We now take Cb(X) to denote Cb(X,C) rather than Cb(X,R), and likewise

for C(X), C0(X), and Cc(X). It is routine to verify that everything we have
asserted about these spaces when the codomain is R is true when the codomain
is C, but this is not obvious. In particular, Cb(X) is a Banach space with the
supremum norm and C0(X) is a closed linear subspace, whatever the topological
space X. It is then straightforward to check that with the involution f∗ = f
they are commutative C∗-algebras.

A homomorphism of C∗-algebras is an algebra homomorphism f : A →
B, where A and B are C∗-algebras, such that f(a∗) = f(a)∗ for all a ∈ A. It
can be proved that ∥f∥ ≤ 1.12 We define an isomorphism of C∗-algebras to

12José M. Gracia-Bond́ıa, Joseph C. Várilly and Héctor Figueroa, Elements of Noncommu-
tative Geometry, p. 29, Lemma 1.16.
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be an algebra isomorphism f : A → B such that f(a∗) = f(a)∗ for all a ∈ A.
It follows that ∥f∥ ≤ 1 and because f is bijective, the inverse f−1 is a C∗-
algebra homomorphism, giving

∥∥f−1
∥∥ ≤ 1 and therefore ∥f∥ = 1. Thus, an

isomorphism of C∗-algebras is an isometric isomorphism.
Suppose that A is a commutative C∗-algebra, which we do not assume to

be unital. A character of A is a nonzero algebra homomorphism A → C.
We denote the set of characters of A by σ(A), which we call the Gelfand
spectrum of A. We make some assertions in the following text that are proved
in Folland.13 It is a fact that for every h ∈ σ(A), ∥h∥ ≤ 1, so σ(A) is contained
in the closed unit ball of A∗, where A∗ denotes the dual of the Banach space A.
Furthermore, one can prove that σ(A) ∪ {0} is a weak-* closed set in A∗, and
hence is weak-* compact because it is contained in the closed unit ball which we
know to be weak-* compact by the Banach-Alaoglu theorem. We assign σ(A)
the subspace topology inherited from A∗ with the weak-* topology. Depending
on whether 0 is or is not an isolated point in σ(A) ∪ {0}, σ(A) is a compact
or a locally compact Hausdorff space; in any case σ(A) is a locally compact
Hausdorff space.

TheGelfand transform is the map Γ : A → C0(σ(A)) defined by Γ(a)(h) =
h(a); that Γ(a) is continuous follows from σ(A) having the weak-* topology, and
one proves that in fact Γ(a) ∈ C0(σ(A)).14 TheGelfand-Naimark theorem15

states that Γ : A → C0(σ(A)) is an isomorphism of C∗-algebras.
It can be proved that two commutative C∗-algebras are isomorphic as C∗-

algebras if and only if their Gelfand spectra are homeomorphic.16

7 Multiplier algebras

An ideal of a C∗-algebra A is a closed linear subspace I of A such that IA ⊂ I
and AI ⊂ I. An ideal I is said to be essential if I ∩ J ̸= {0} for every nonzero
ideal J of A. In particular, A is itself an essential ideal.

Suppose that A is a C∗-algebra. The multiplier algebra of A, denoted
M(A), is a C∗-algebra containing A as an essential ideal such that if B is a C∗-
algebra containing A as an essential ideal then there is a unique homomorphism
of C∗-algebras π : B → M(A) whose restriction to A is the identity. We have
not shown that there is a multiplier algebra of A, but we shall now prove that
this definition is a universal property: that any C∗-algebra satisfying the
definition is isomorphic as a C∗-algebra to M(A), which allows us to talk about
“the” multiplier algebra rather than “a” multiplier algebra.

Suppose that C is a C∗-algebra containing A as an essential ideal such that
if B is a C∗-algebra containing A as an essential ideal then there is a unique
C∗-algebra homomorphism π : B → C whose restriction to A is the identity.

13Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 12, §1.3.
14Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 15.
15Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 16, Theorem 1.31.
16José M. Gracia-Bond́ıa, Joseph C. Várilly and Héctor Figueroa, Elements of Noncommu-

tative Geometry, p. 11, Proposition 1.5.
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Hence there is a unique homomorphism of C∗-algebras π1 : C → M(A) whose
restriction to A is the identity, and there is a unique homomorphism of C∗-
algebras π2 : M(A) → C whose restriction to A is the identity. Then π2 ◦ π1 :
C → C and π1 ◦ π2 : M(A) → M(A) are homomorphisms of C∗-algebras
whose restrictions to A are the identity. But the identity maps idC : C → C
and idM(A) : M(A) → M(A) are also homomorphisms of C∗-algebras whose
restrictions to A are the identity. Therefore, by uniqueness we get that π2◦π1 =
idC and π1 ◦ π2 = idM(A). Therefore π1 : C → M(A) is an isomorphism of C∗-
algebras.

One can prove that if A is unital then M(A) = A.17 It can be proved that
for any C∗-algebra A, the multiplier algebra M(A) is unital.18 For a locally
compact Hausdorff space X, it can be proved that M(C0(X)) = Cb(X).19 This
last assertion is the reason for my interest in multiplier algebras. We have
seen that if X is a locally compact Hausdorff space then Cc(X) is a dense
linear subspace of C0(X), and for any topological space C0(X) is a closed linear
subspace of Cb(X), but before talking about multiplier algebras we did not have
a tight fit between the C∗-algebras C0(X) and Cb(X).

8 Riesz representation theorem for compact Haus-
dorff spaces

There is a proof due to D. J. H. Garling of the Riesz representation theorem for
compact Hausdorff spaces that uses the Stone-Čech compactification of discrete
topological spaces. This proof is presented in Carothers’ book.20

17Paul Skoufranis, An Introduction to Multiplier Algebras, http://www.math.ucla.edu/

~pskoufra/OANotes-MultiplierAlgebras.pdf, p. 4, Lemma 1.9.
18Paul Skoufranis, An Introduction to Multiplier Algebras, http://www.math.ucla.edu/

~pskoufra/OANotes-MultiplierAlgebras.pdf, p. 9, Corollary 2.8.
19Eberhard Kaniuth, A Course in Commutative Banach Algebras, p. 29, Example 1.4.13;

José M. Gracia-Bond́ıa, Joseph C. Várilly and Héctor Figueroa, Elements of Noncommutative
Geometry, p. 14, Proposition 1.10.

20N. L. Carothers, A Short Course on Banach Space Theory, Chapter 16, pp. 156–165.
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