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1 Critical points

Let U be a nonempty open subset of Rn and let ϕ : U → R be smooth. Then
ϕ′ : U → L (Rn;R) = (Rn)∗. For each x ∈ U , gradϕ(x) is the unique element
of Rn satisfying1

⟨gradϕ(x), y⟩ = ϕ′(x)(y), y ∈ Rn,

and gradϕ : U → Rn is itself smooth. Hessϕ : U → L (Rn;Rn) is the derivative
of gradϕ. One checks that

ϕ′′(x)(u)(v) = ⟨Hessϕ(x)(u), v⟩ , x ∈ U, u, v ∈ Rn,

and (Hessϕ(x))∗ = Hessϕ(x).
We call p ∈ U a critical point of ϕ when gradϕ(p) = 0, and we denote the

set of critical points of ϕ by Cϕ. For p ∈ Cϕ and λ ∈ R let v(p, λ) denote the
dimension of the kernel of Hessϕ(p)− λ, and we then define the Morse index
of p to be

mϕ(p) =
∑
λ<0

v(p, λ).

In other words, mϕ(p) is the number of negative eigenvalues of Hessϕ(p) counted
according to geometric multiplicity. We say that p ∈ Cϕ is nondegenerate when
Hessϕ(p) ∈ L (Rn;Rn) is invertible.

For A ∈ L (Rn;Rn) self-adjoint and for λ ∈ R, let v(λ) be the dimension of
the kernel of A−λ. Let ν+ =

∑
λ>0 v(λ), let ν− =

∑
λ<0 v(λ), and let ν0 = v(0).

Because A is self-adjoint, ν+ + ν− + ν0 = n. We define the signature of A as
sgn (A) = ν+−ν−. In other words, sgn (A) is the number of positive eigenvalues
of A counted according to geometric multiplicity minus the number of negative
eigenvalues of A counted according to geometric multiplicity.2

1http://individual.utoronto.ca/jordanbell/notes/gradienthilbert.pdf
2cf. Sylvester’s law of inertia, http://individual.utoronto.ca/jordanbell/notes/

principalaxis.pdf
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We can connect the notions of Morse index and signature. For p ∈ Cϕ,
write A = Hessϕ(p). For p to be a nondegenerate critical point means that A
is invertible and because Rn is finite-dimensional this is equivalent to ν0 = 0.
Then ν+ = n− ν− which yields sgn (A) = n− 2ν− = n− 2mϕ(p).

The Morse lemma3 states that if 0 is a nondegenerate critical point of ϕ
then there is an open subset V of U with 0 ∈ V and a C∞-diffeomorphism
Φ : V → V , Φ(0) = 0, such that

ϕ(x) = ϕ(0) +
1

2
⟨Hessϕ(0)(Φ(x)),Φ(x)⟩ , x ∈ V.

2 Stationary phase

Let U be a nonempty connected open subset of Rn, and let a, ϕ : U → R
be smooth functions such that a has compact support. Suppose that each
p ∈ Cϕ ∩ supp a is nondegenerate.4 The stationary phase approximation
states that∫

U

a(x)eitϕ(x)dx =
∑

p∈Cϕ∩supp a

(
2π

t

)n/2
e

iπsgn (Hessϕ(p))
4

|detHessϕ(p)|1/2
eitϕ(p)a(p)

+O(t−
n
2 −1)

as t → ∞.5

Let A ∈ L (Rn;Rn) be self-adjoint and invertible and define

ϕ(x) =
1

2
⟨Ax, x⟩ , x ∈ U.

We calculate gradϕ(x) = Ax, so Cϕ = {0}. The Hessian of ϕ is Hessϕ(x) = A,
and because A is invertible, 0 is indeed a nondegenerate critical point of ϕ. Thus
we have the following.

Theorem 1. For a nonempty connected open subset of Rn and for smooth
functions a, ϕ : U → R such that a has compact support and such that each
p ∈ Cϕ is nondegenerate,∫

U

a(x)e
1
2 ⟨Ax,x⟩dx =

(
2π

t

)n/2
e

iπsgn (A)
4

|detA|1/2
e

1
2 it⟨Ap,p⟩a(p) +O(t−

n
2 −1)

as t → ∞.

3Serge Lang, Differential and Riemannian Manifolds, p. 182, chapter VII, Theorem 5.1.
4In particular, ϕ is called a Morse function if it has no degenerate critical points, and in

this case of course each p ∈ Cϕ ∩ supp a is nondegenerate.
5Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 183, Proposition 3.88.
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3 The Fourier transform

ForA ∈ L (Rn;Rn) self-adjoint, the spectral theorem tells us that are λ1, . . . , λn ∈
R and an orthonormal basis {v1, . . . , vn} for Rn such that Avj = λjvj .

We callA ∈ L (Rn;Rn) positive when it is self-adjoint and satisfies ⟨Ax, x⟩ ≥
0 for all x ∈ Rn. In this case, the eigenvalues of A are nonnegative, thus the
signature of A is σ(A) = n. Suppose furthermore that A is invertible, and let
P = (v1, . . . , vn) and Λ = diag(λ1, . . . , λn). Then

PTAP = Λ, Λ1/2 = diag(λ
1/2
1 , . . . , λ1/2

n ), A1/2 = PΛ1/2PT .

For ξ ∈ Rn and t > 0, using the change of variables formula with the fact that
|detP | = 1 and then using Fubini’s theorem,∫

Rn

exp

(
−1

2
t ⟨Ax, x⟩ − i ⟨Pξ, x⟩

)
dx

=

∫
Rn

exp

(
−1

2
t
〈
Λ1/2PTx,Λ1/2PTx

〉
− i ⟨Pξ, x⟩

)
dx

=

∫
Rn

exp

(
−1

2
t
〈
Λ1/2PTPy,Λ1/2PTPy

〉
− i ⟨Pξ, Py⟩

)
|detP |dy

=

∫
Rn

exp

(
−1

2
t
∥∥∥Λ1/2y

∥∥∥2 − i ⟨ξ, y⟩
)
dy

=

n∏
j=1

∫
R
exp

(
−1

2
tλjy

2
j − iξjyj

)
dyj .

Using6 ∫
R
e−ax2+bx+cdx =

√
π

a
exp

(
b2

4a
+ c

)
, Re a > 0, b, c ∈ C,

gives ∫
R
exp

(
−1

2
tλjy

2
j − iξjyj

)
dyj =

1

λ
1/2
j

(
2π

t

)1/2

exp

(
−

ξ2j
2tλj

)
,

and using detA =
∏n

j=1 λj we have∫
Rn

exp

(
−1

2
t ⟨Ax, x⟩ − i ⟨Pξ, x⟩

)
dx

=

n∏
j=1

1

λ
1/2
j

(
2π

t

)1/2

exp

(
−

ξ2j
2tλj

)

=(detA)−1/2

(
2π

t

)n/2

exp

− 1

2t

n∑
j=1

ξ2j
λj

 ,

6http://individual.utoronto.ca/jordanbell/notes/bochnertheorem.pdf
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and because

Λ−1ξ =

n∑
j=1

ξj
λj

ej ,
〈
Λ−1ξ, ξ

〉
=

n∑
j=1

ξ2j
λj

this becomes ∫
Rn

exp

(
−1

2
t ⟨Ax, x⟩ − i ⟨Pξ, x⟩

)
dx

=(detA)−1/2

(
2π

t

)n/2

exp

(
− 1

2t

〈
Λ−1ξ, ξ

〉)
=(detA)−1/2

(
2π

t

)n/2

exp

(
− 1

2t

〈
A−1Pξ, Pξ

〉)
,

and so, as P is invertible we get the following.

Theorem 2. When A ∈ L (Rn;Rn) is positive and invertible, for t > 0 and
ξ ∈ Rn we have ∫

Rn

exp

(
−1

2
t ⟨Ax, x⟩ − i ⟨ξ, x⟩

)
dx

=(detA)−1/2
(
2πt−1

)n/2
exp

(
− 1

2t

〈
A−1ξ, ξ

〉)
.

4 Gaussian integrals

Let A ∈ L (Rn;Rn) be positive and invertible and let b ∈ Rn. As above,∫
Rn

exp

(
−1

2
⟨Ax, x⟩+ ⟨Pb, x⟩

)
dx =

∫
Rn

exp

(
−1

2

∥∥∥Λ1/2
∥∥∥2 + ⟨b, y⟩

)
dy

=

n∏
j=1

∫
R
exp

(
−1

2
λjy

2
j + bjyj

)
dyj

=

n∏
j=1

(2π)1/2

λ
1/2
j

exp

(
b2j
2λj

)

= (detA)−1/2(2π)n/2 exp

1

2

n∑
j=1

b2j
λj


= (detA)−1/2(2π)n/2 exp

(
1

2

〈
A−1Pb, Pb

〉)
,

which gives the following.7

Theorem 3. If A ∈ L (Rn;Rn) is positive and invertible, then for b ∈ Rn,∫
Rn

exp

(
−1

2
⟨Ax, x⟩+ ⟨b, x⟩

)
dx = (detA)−1/2(2π)n/2 exp

(
1

2

〈
A−1b, b

〉)
.

7cf. Gaussian measures on Rn: http://individual.utoronto.ca/jordanbell/notes/

gaussian.pdf
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5 Laplace’s method

Let D be the open ball in Rn with center 0 and radius 1 and let S : D → R be
smooth, attain its minimum value only at 0, and satisfy detHessS(x) > 0 for
all x ∈ D. Let g : D → R be smooth and for t > 0 let

J(t) =

∫
D

e−tS(x)g(x)dx.

Laplace’s method8 tells us

J(t) = (2πt−1)n/2(detHessS(0))−1/2e−tS(0)g(0)(1 +O(t−1))

as t → ∞.
Let A ∈ L (Rn;Rn) be positive and invertible. Define S : D → R by

S(x) =
1

2
⟨Ax, x⟩ .

Then as above PTAP = Λ, with which S(x) = 1
2

〈
PΛPTx, x

〉
= 1

2

∥∥Λ1/2PTx
∥∥2.

We get the following from according Laplace’s method.

Theorem 4. Let A ∈ L (Rn;Rn) be positive and invertible and let g : D → R
be smooth. Then

J(t) = (2πt−1)n/2(detA)−1/2g(0)(1 +O(t−1)),

as t → ∞.

8Peter D. Miller, Applied Asymptotic Analysis, p. 92, Exercise 3.16 and R. Wong, Asymp-
totic Approximations of Integrals, p. 495, Theorem 3.
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