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1 Locally integrable functions and distributions

Let λ be Lebesgue measure on R. We denote by L 1
loc(λ) the collection of Borel

measurable functions f : R → R such that for each compact subset K of R,

NK(f) =

∫
K

|f |dλ =

∫
R
1K |f |dλ < ∞.

We denote by L1
loc(λ) the collection of equivalence classes of elements of L 1

loc(λ)
where f ∼ g when f = g almost everywhere.

Write B(x, r) = {y ∈ R : |y − x| < r} = (x− r, x+ r). For f ∈ L 1
loc(λ) and

x ∈ R, we say that x is a Lebesgue point of f if

lim
r→0

1

λ(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dλ(y) = 0.

It is immediate that if f is continuous at x then x is a Lebesgue point of f .
The Lebesgue differentiation theorem1 states that for f ∈ L 1

loc(λ), almost
every x ∈ R is a Lebesgue point of f . A sequence of Borel sets En is said
to shrink nicely to x if there is some α > 0 and a sequence rn → 0 such
that En ⊂ B(x, rn) and λ(En) ≥ α · λ(B(x, rn)). The sequence B(x, n−1) =
(x− n−1, x+ n−1) shrinks nicely to x, the sequence [x, x+ n−1] shrinks nicely
to x, and the sequence [x − n−1, x] shrinks nicely to x. It is proved that if
f ∈ L 1

loc(λ) and for each x ∈ R, En(x) is a sequence that shrinks nicely to x,
then

f(x) = lim
n→∞

1

λ(En)

∫
En(x)

fdλ

at each Lebesgue point of f .2

For a nonempty open set Ω in R, we denote by Ck
c (Ω) the collection of Ck

functions ϕ : R → R such that

suppϕ = {x ∈ R : ϕ(x) ̸= 0}
1Walter Rudin, Real and Complex Analysis, third ed., p. 138, Theorem 7.7.
2Walter Rudin, Real and Complex Analysis, third ed., p. 140, Theorem 7.10.
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is compact and is contained in Ω. We write D(Ω) = C∞
c (Ω), whose elements

are called called test functions. The following statement is called the funda-
mental lemma of the calculus of variations or the Du Bois-Reymond
Lemma.3

Theorem 1. If f ∈ L 1
loc(λ) and

∫
R fϕdλ = 0 for all ϕ ∈ D(R), then f = 0

almost everywhere.

Proof. There is some η ∈ D(−1, 1) with
∫
R ηdλ = 1. We can explicitly write

this out:

η(x) =

{
c−1 exp

(
1

x2−1

)
|x| < 1

0 |x| ≥ 1,

where

c =

∫ 1

−1

exp

(
1

y2 − 1

)
dλ(y) = 0.443994 . . . .

For x a Lebesgue point of f and for 0 < r < 1,

f(x) = f(x) ·
∫
R
η(y)dλ(y)

= f(x) · 1
r

∫
R
η
(y
r

)
dλ(y)

= f(x) · 1
r

∫
R
η

(
x− y

r

)
dλ(y)

=
1

r

∫
R
(f(x)− f(y))η

(
x− y

r

)
dλ(y) +

1

r

∫
R
f(y)η

(
x− y

r

)
dλ(y)

=
1

r

∫
R
(f(x)− f(y))η

(
x− y

r

)
dλ(y)

=
1

r

∫
(x−r,x+r)

(f(x)− f(y))η

(
x− y

r

)
dλ(y).

Then

|f(x)| ≤ ∥η∥∞ · 1
r

∫
(x−r,x+r)

|f(y)− f(x)|dλ(y) → 0, r → 0,

meaning that f(x) = 0. This is true for almost all x ∈ R, showing that f = 0
almost everywhere.

For f ∈ L 1
loc(λ), define Λf : D(R) → R by

Λf (ϕ) =

∫
R
fϕdλ.

3Lars Hörmander, The Analysis of Linear Partial Differential Operators I, second ed.,
p. 15, Theorem 1.2.5.
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D(R) is a locally convex space, and one proves that Λf is continuous and thus
belongs to the dual space D ′(R), whose elements are called distributions.4 We
say that a distribution Λ is induced by f ∈ L 1

loc(λ) if Λ = Λf . For Λ ∈ D ′(R),
we define DΛ : D(R) → R by

(DΛ)(ϕ) = −Λ(ϕ′).

It is proved that DΛ ∈ D ′(R).5
Let f, g ∈ L 1

loc(λ). If DΛf = Λg, we call g a distributional derivative
of f . In other words, for f ∈ L 1

loc(λ) to have a distributional derivative means
that there is some g ∈ L 1

loc(λ) such that for all ϕ ∈ D(R),

−
∫
R
fϕ′dλ =

∫
R
gϕdλ.

If g1, g2 ∈ L 1
loc(λ) are distributional derivatives of f then

∫
R(g1−g2)ϕdλ = 0 for

all ϕ ∈ D(R), which by Theorem 1 implies that g1 = g2 almost everywhere. It
follows that if f has a distributional derivative then the distributional derivative
is unique in L1

loc(λ), and is denoted Df ∈ L1
loc(λ):

−
∫
R
fϕ′dλ =

∫
R
(Df) · ϕdλ, ϕ ∈ D(R).

2 The Sobolev space H1(R)
We denote by L 2(λ) the collection of Borel measurable functions f : R → R
such that

∫
R |f |2dλ < ∞, and we denote by L2(λ) the collection of equivalence

classes of elements of L 2(λ) where f ∼ g when f = g almost everywhere, and
write

⟨f, g⟩L2 =

∫
R
fgdλ.

It is a fact that L2(λ) is a Hilbert space.
We define the Sobolev space H1(R) to be the set of f ∈ L2(λ) that have a

distributional derivative that satisfiesDf ∈ L2(λ). We remark that the elements
of H1(R) are equivalence classes of elements of L 2(λ). We define

⟨f, g⟩H1 = ⟨f, g⟩L2 + ⟨Df,Dg⟩L2 .

Let f, g ∈ H1(R) and let ϕ ∈ D(R). Because f, g have distributional derivatives
Df,Dg,

−
∫
R
(f + g)ϕ′dλ = −

∫
R
fϕ′dλ−

∫
R
gϕ′dλ

=

∫
R
Df · ϕdλ+

∫
R
Dg · ϕdλ

=

∫
R
(Df +Dg)ϕdλ.

4Walter Rudin, Functional Analysis, second ed., p. 157, §6.11.
5Walter Rudin, Functional Analysis, second ed., p. 158, §6.12.
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This means that f + g has a distributional derivative, D(f + g) = Df + Dg.
Thus H1(R) is a linear space. If ⟨f, f⟩H1 = 0 then

∫
R |f |2dλ = 0, which implies

that f = 0 as an element of L2(λ). Therefore ⟨·, ·⟩H1 is an inner product on
H1(R).

If fn is a Cauchy sequence in H1(R), then fn is a Cauchy sequence in L2(λ)
and Dfn is a Cauchy sequence in L2(λ), and hence these sequences have limits
f, g ∈ L2(λ). For ϕ ∈ D(R),

−
∫
R
fϕ′dλ = − lim

n→∞

∫
R
fnϕ

′dλ

= lim
n→∞

∫
R
(Dfn) · ϕdλ

=

∫
R
gϕdλ.

This means that f has distributional derivative, Df = g. Because f,Df ∈ L2(λ)
it is the case that f ∈ H1(R). Furthermore,

∥fn − f∥2H1 = ∥fn − f∥2L2 + ∥Dfn −Df∥2L2 = ∥fn − f∥2L2 + ∥Dfn − g∥2L2 → 0,

meaning that fn → f in H1(R), which shows that H1(R) is a Hilbert space.

3 Absolutely continuous functions

We prove a lemma that gives conditions under which a function, for which
integration by parts needs not make sense, is equal to a particular constant
almost everywhere.6

Lemma 2. If f ∈ L 1
loc(λ) and∫

R
fϕ′dλ = 0, ϕ ∈ D(R),

then there is some c ∈ R such that f = c almost everywhere.

Proof. Fix η ∈ D(R) with
∫
R ηdλ = 1. Let w ∈ D(R) and define

h = w − η ·
∫
R
wdλ,

which belongs to D(R) and satisfies
∫
R hdλ = 0. Define ϕ : R → R by

ϕ(x) =

∫ x

−∞
hdλ.

6Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
p. 204, Lemma 8.1.
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Using ϕ′(x) = h(x) for all x and ϕ(x) →
∫
R hdλ = 0 as x → ∞, check that

ϕ ∈ D(R). Then by hypothesis,
∫
R fϕ′dλ = 0, i.e.

0 =

∫
R
fhdλ

=

∫
R

(
fw − fη ·

∫
R
wdλ

)
dλ

=

∫
R

(
f −

∫
R
fηdλ

)
· wdλ.

Because this is true for all w ∈ D(R), by Theorem 1 we get that f =
∫
R fηdλ

almost everywhere.

Lemma 3. Let g ∈ L 1
loc(λ), let a ∈ R, and define f : R → R by

f(x) =

∫ x

a

g(y)dλ(y).

Then ∫
R
fϕ′dλ = −

∫
R
gϕdλ

for all ϕ ∈ D(R).

Proof. Using Fubini’s theorem,∫
R
f(x)ϕ′(x)dλ(x) = −

∫ a

−∞

(∫ a

x

g(y)dλ(y)

)
ϕ′(x)dλ(x)

+

∫ ∞

a

(∫ x

a

g(y)dλ(y)

)
ϕ′(x)dλ(x)

= −
∫ a

−∞

(∫ y

−∞
ϕ′(x)dλ(x)

)
g(y)dλ(y)

+

∫ ∞

a

(∫ ∞

y

ϕ′(x)dλ(x)

)
g(y)dλ(y)

= −
∫ a

−∞
ϕ(y)g(y)dλ(y)−

∫ ∞

a

ϕ(y)g(y)dλ(y)

= −
∫
R
g(y)ϕ(y)dλ(y).

For real numbers a, b with a < b, we say that a function f : [a, b] → R
is absolutely continuous if for all ϵ > 0 there is some δ > 0 such that
whenever (a1, b1), . . . , (an, bn) are disjoint intervals each contained in [a, b] with∑

(bk − ak) < δ it holds that
∑

|f(bk) − f(ak)| < ϵ. We say that a function
f : R → R is locally absolutely continuous if for each nonempty compact
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interval [a, b], the restriction of f to [a, b] is absolutely continuous. We denote
the collection of locally absolutely continuous by ACloc(R).

Let f ∈ H1(R), let a ∈ R, and define h : R → R by

h(x) =

∫ x

a

Dfdλ.

By Lemma 3 and by the definition of a distributional derivative,∫
R
hϕ′dλ = −

∫
R
(Df) · ϕdλ =

∫
R
fϕ′dλ, ϕ ∈ D(R).

Hence
∫
R(f − h)ϕ′dλ = 0 for all ϕ ∈ D(R), which by Lemma 2 implies that

there is some c ∈ R such that f − h = c almost everywhere. Let f̃ = c + h.
On the one hand, the fact that Df ∈ L1

loc(λ) implies that h ∈ ACloc(R) and

so f̃ ∈ ACloc(R). On the other hand, f̃ = f almost everywhere. Furthermore,

because f̃ is locally absolutely continuous, integration by parts yields∫
R
f̃ϕ′dλ = −

∫
R
f̃ ′ϕdλ,

and by definition of a distributional derivative,∫
R
f̃ϕ′dλ = −

∫
R
(Df̃)ϕdλ.

Therefore by Theorem 1, f̃ ′ = Df̃ almost everywhere. But the fact that f̃ = f
almost everywhere implies thatDf̃ = Df almost everywhere, so f̃ ′ = Df almost
everywhere. In particular, f̃ ′ ∈ L2(λ).

Theorem 4. For f ∈ H1(R), there is a function f̃ ∈ ACloc(R) such that f̃ = f

almost everywhere and f̃ ′ = Df almost everywhere. The function f̃ is 1
2 -Hölder

continuous.

Proof. For x, y ∈ R,7

f̃(x)− f̃(y) =

∫ x

y

f̃ ′dλ,

and using the Cauchy-Schwarz inequality,

|f̃(x)− f̃(y)| ≤
∫ x

y

|f̃ ′|dλ

≤ |x− y|1/2
(∫ x

y

|f̃ ′|2dλ
)1/2

≤ ∥Df∥L2 |x− y|1/2.

7cf. Giovanni Leoni, A First Course in Sobolev Spaces, p. 222, Theorem 7.13.
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