Germs of smooth functions

Jordan Bell
April 4, 2016

1 Sheafs

Let M = R™. For an open set U in M, write F(U) = C*°(U), which is a
commutative ring with unity 1p7(x) = 1. For open sets V. C U in M, define
ruy : F(U) = F(V) by ru,v f = flv, which is a homomorphism of rings. F is
a presheaf, a contravariant functor from the category of open sets in M to the
category of commutative unital rings. For F to be a sheaf means the following:

1. If U;, i € I, is an open cover of an open set U and if f,g € F(U) satisty
ruu,f =ruu,g foralli € I, then f =g.

2. If U;, i € I, is an open cover of an open set U and for each i € I there is
some f; € F(U;) such that for all 4,5 € I, 7y, v,~v, fi = 7v,,v,nv, fj, then
there is some f € F(U) such that ry y, f = f; for each i € I.

For the first condition, let p € U. As U; is an open cover of U, there is some 14
for which p € U;. As flu, = glu,, f(p) = g(p). Therefore f = g. For the second
condition, let p € U. If p € U; and p € Uj, then f;(p) = f;(p). This shows that
it makes sense to define f : U — R by f(p) = fi(p), for any i such that p € U;.
Then f|y, = fi, which implies that f € F(U): for each p € U, there is some
open neighborhood U; of p on which f is smooth. Therefore F is a sheaf.

2 Stalks and germs

For p € M, let U, be the set of open neighborhoods of p. For U,V € U, say
U<V whenV CU. ForU<V <W and f € F(U),

(rviw oruv)(f) =rvwflv = fw = row f.
For f € F(U) and g € F(V), say f ~, g if there is some W € U,, W > U,
w > V, such that TU,Wf =Trvwg- Let

RP = |_| ‘F(U)v
Uel,



and let F, be the direct limit of the direct system F(U), ry,v of commutative
unital rings:

]:p:Rp/Nzw

We call F, the stalk of F at p. An element of F,, is called a germ of F at p.
In other words, for f € R, let [f], be the set of those g € R, such that f ~,, g,
equivalently, f|v;nv, = glv;nu,- A germ of F at p is such an equivalence class
[f]p, and

Fp=Alflp: f €Rp}.

3 Maximal ideals

For p € M, and f,g € R, with f ~, g, f(p) = g(p). Thus it makes sense to
define ev, : F, = R by ev,[f], = f(p). Now, for [f],,[g]p € Fp,

evp([flp + [9lp) = evp([f +glp) = (f +9)(p) = f(p) +9(p) = evplfly +evplgly,
evp([flplalp) = evp([fylp) = (f9)(p) = f(p)g(p) = evp[flp - evp[gly,

evp[lp]p, = 1. This means that ev, : F, — R is a homomorphism of unital
rings. It is straightforward that ev, is surjective. Write m, = kerev,. By the
first isomorphism theorem, there is an isomorphism of unital rings F,,/m, — R.
Therefore m,, is a maximal ideal in F,. Now, if [f], € F, \ m, then ev,[f], # 0,
hence f(p) # 0. Then there is some U € U, such that f(z) # 0 for € U,
and (1/f)(z) = ﬁ belongs to F(U). Then [1/f], € F, and [f], - [1/f], =
[f - 1/f]p = [1m]p, which shows that if [f], € F, \ m, then [f], has an inverse
[1/f]p in Fp. This means m, is the set of noninvertible elements of F,,, which
means that F, is a local ring.

For 1 < i < m define the coordinate function ' : M — R by z'(p) = p;,
which belongs to F(M). Because evoz® = 0, [z']g € mg. We prove Hadamard’s
lemma, that the ring mg is generated by the germs of the coordinate functions
at 0.1

Lemma 1 (Hadamard’s lemma). The ideal mg is generated by the set {[x']o
1<i<m}

Proof. Let [f]lo € mg with f € F(B,) for some r > 0. For y € B,, using the
fundamental theorem of calculus and using the chain rule,

=150 = [ 50 syds—/ D)(@:f)(sy ds_zx

and u; € F(B,). This means that [f]o = > .~ [z]o[u;]o, which shows that [f]o
belongs to the ideal generated by the set {[z%]g : 1 <i < m}. O

1Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 14, Lemma 1.13.



For a multi-index o € Z7), write

m
|04\:ZC%, al = aq!l - ap,!
i=1
and
% =07 o, at = () (2™,

and say a < 8 if a; < f3; for each i. We shall use the fact that

gogh _ | Frame? " a<B
0 otherwise.

Lemma 2. For f € Rg, if (0%f)(0) = 0 for all |a| < k, then [f]o € mk.

Proof. For k = 1, if (0“f)(0) = 0 for a = (0,...,0) then evof = f(0) = 0,
hence [f]o € mg. Suppose the claim is true for some k& > 1, and suppose that
f € Ro and that (0%f)(0) = 0 for all |a| < k+1. A fortiori, (0% f)(0) = 0 for all
|a| < k and then by the induction hypothesis we get [f]o € mf§. Now, Lemma 1
tells us that the ideal mg is generated by the set {[z%]o : 1 < i < m}, and then
the product ideal m{ is generated by the set
{[x™o - [2"™]o 1 1 <dpyevnyipg <m} = {[z" - 2%]g: 1 <iq,... 5, <m}
={[z%0 : la] =k},

for x* = (x!)® ... (2™)%. As [f]o € m*, there are [ua]o € Fo, |a| = k, such

that
[flo = Z [ualo[z%]o-

|a|=k

For |a| = k, on some set in Uy, using the Leibniz rule,
0% f =Y g’y =Y Y (a> (0 Tug)(872").
1Bl=k |Bl=kv<a N7
And for v # 3, (0727)(0) = 0, so
8af € U 0%z* + h, [h]o € mg.

But (0%f)(0) = 0, so us(0) = 0, which means that u, € mg. And

(20 = [1]g" - [a™)5 € mg™ = m,
50 [uaJo[z%]o € mET!) showing that [f]o € m{™". This completes the proof by

induction. O



4 Hessians

For an open set U in R™ and ¢ € F(U), ¢’ : U - L(R™,R),and V¢ : U — R™
satisfies

(Vo(z),v) = ¢'(z)(v), x€U, veR™
x € U is a critical point of ¢ if ¢'(x) = 0, equivalently V¢(x) = 0. Define
Hess¢ : U — Z(R™,R™) by

Hess ¢ = (Vo)'.
This satisfies?
¢"(@)(w)(v) = (v, Hess (@) (), @€V,  wov,eR™

A critical point z of ¢ is called nondegenerate if Hess ¢(z) is invertible in
Z(R™ R™).
For ¢ € R, let Jy be the ideal in the ring F, generated by the set

{[0i]p : 1 < i < m}.

We call Jy the Jacobian ideal of ¢ at p. If p is a critical point of ¢, then
(0;¢)(p) = 0 for each i, hence [9;¢], € m,, for each i.
If 0 is a nondegenerate critical point of ¢, we prove that mg C J¢.3

Theorem 3. Let U be an open set in R™ containing 0 and let ¢ € F(U). If 0
is a nondegenerate critical point of ¢, then Jy = myg.

Proof. Let f = V¢, which is a smooth function U — R™. Because 0 is a
nondegenerate critical point of ¢, f/(0) is invertible in Z(R™,R™) and hence
by the inverse function theorem,* f is a local C* isomorphism at z: there
is some open set V, x € V and V C U, such that W = f(V) is open in R™, and
there is a smooth function g : W — V such that go f =idy and fog =idy. O

2http://individual .utoronto.ca/jordanbell/notes/gradienthilbert . pdf
3Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 15, Lemma 1.15.
4Serge Lang, Real and Functional Analysis, third ed., p. 361, chapter XIV, Theorem 1.2.



