Germs of smooth functions

Jordan Bell

April 4, 2016

1 Sheafs

Let $M=\mathbb{R}^{m}$. For an open set U in M, write $\mathcal{F}(U)=C^{\infty}(U)$, which is a commutative ring with unity $1_{M}(x)=1$. For open sets $V \subset U$ in M, define $r_{U, V}: \mathcal{F}(U) \rightarrow \mathcal{F}(V)$ by $r_{U, V} f=\left.f\right|_{V}$, which is a homomorphism of rings. \mathcal{F} is a presheaf, a contravariant functor from the category of open sets in M to the category of commutative unital rings. For \mathcal{F} to be a sheaf means the following:

1. If $U_{i}, i \in I$, is an open cover of an open set U and if $f, g \in \mathcal{F}(U)$ satisfy $r_{U, U_{i}} f=r_{U, U_{i}} g$ for all $i \in I$, then $f=g$.
2. If $U_{i}, i \in I$, is an open cover of an open set U and for each $i \in I$ there is some $f_{i} \in \mathcal{F}\left(U_{i}\right)$ such that for all $i, j \in I, r_{U_{i}, U_{i} \cap U_{j}} f_{i}=r_{U_{j}, U_{i} \cap U_{j}} f_{j}$, then there is some $f \in \mathcal{F}(U)$ such that $r_{U, U_{i}} f=f_{i}$ for each $i \in I$.

For the first condition, let $p \in U$. As U_{i} is an open cover of U, there is some i for which $p \in U_{i}$. As $\left.f\right|_{U_{i}}=\left.g\right|_{U_{i}}, f(p)=g(p)$. Therefore $f=g$. For the second condition, let $p \in U$. If $p \in U_{i}$ and $p \in U_{j}$, then $f_{i}(p)=f_{j}(p)$. This shows that it makes sense to define $f: U \rightarrow \mathbb{R}$ by $f(p)=f_{i}(p)$, for any i such that $p \in U_{i}$. Then $\left.f\right|_{U_{i}}=f_{i}$, which implies that $f \in \mathcal{F}(U)$: for each $p \in U$, there is some open neighborhood U_{i} of p on which f is smooth. Therefore \mathcal{F} is a sheaf.

2 Stalks and germs

For $p \in M$, let \mathcal{U}_{p} be the set of open neighborhoods of p. For $U, V \in \mathcal{U}_{p}$, say $U \leq V$ when $V \subset U$. For $U \leq V \leq W$ and $f \in \mathcal{F}(U)$,

$$
\left(r_{V, W} \circ r_{U, V}\right)(f)=\left.r_{V, W} f\right|_{V}=f_{W}=r_{U, W} f
$$

For $f \in \mathcal{F}(U)$ and $g \in \mathcal{F}(V)$, say $f \sim_{p} g$ if there is some $W \in \mathcal{U}_{p}, W \geq U$, $W \geq V$, such that $r_{U, W} f=r_{V, W} g$. Let

$$
\mathcal{R}_{p}=\bigsqcup_{U \in \mathcal{U}_{p}} \mathcal{F}(U)
$$

and let \mathcal{F}_{p} be the direct limit of the direct system $\mathcal{F}(U), r_{U, V}$ of commutative unital rings:

$$
\mathcal{F}_{p}=\mathcal{R}_{p} / \sim_{p}
$$

We call \mathcal{F}_{p} the stalk of \mathcal{F} at p. An element of \mathcal{F}_{p} is called a germ of \mathcal{F} at p. In other words, for $f \in \mathcal{R}_{p}$, let $[f]_{p}$ be the set of those $g \in \mathcal{R}_{p}$ such that $f \sim_{p} g$, equivalently, $\left.f\right|_{U_{f} \cap U_{g}}=\left.g\right|_{U_{f} \cap U_{g}}$. A germ of \mathcal{F} at p is such an equivalence class $[f]_{p}$, and

$$
\mathcal{F}_{p}=\left\{[f]_{p}: f \in \mathcal{R}_{p}\right\}
$$

3 Maximal ideals

For $p \in M$, and $f, g \in \mathcal{R}_{p}$ with $f \sim_{p} g, f(p)=g(p)$. Thus it makes sense to define $\operatorname{ev}_{p}: \mathcal{F}_{p} \rightarrow \mathbb{R}$ by $\operatorname{ev}_{p}[f]_{p}=f(p)$. Now, for $[f]_{p},[g]_{p} \in \mathcal{F}_{p}$,

$$
\begin{gathered}
\operatorname{ev}_{p}\left([f]_{p}+[g]_{p}\right)=\operatorname{ev}_{p}\left([f+g]_{p}\right)=(f+g)(p)=f(p)+g(p)=\operatorname{ev}_{p}[f]_{p}+\operatorname{ev}_{p}[g]_{p}, \\
\operatorname{ev}_{p}\left([f]_{p}[g]_{p}\right)=\operatorname{ev}_{p}\left([f g]_{p}\right)=(f g)(p)=f(p) g(p)=\operatorname{ev}_{p}[f]_{p} \cdot \operatorname{ev}_{p}[g]_{p},
\end{gathered}
$$

$\operatorname{ev}_{p}\left[1_{M}\right]_{p}=1$. This means that $\operatorname{ev}_{p}: \mathcal{F}_{p} \rightarrow \mathbb{R}$ is a homomorphism of unital rings. It is straightforward that ev_{p} is surjective. Write $\mathfrak{m}_{p}=\operatorname{kerev}_{p}$. By the first isomorphism theorem, there is an isomorphism of unital rings $\mathcal{F}_{p} / \mathfrak{m}_{p} \rightarrow \mathbb{R}$. Therefore \mathfrak{m}_{p} is a maximal ideal in \mathcal{F}_{p}. Now, if $[f]_{p} \in \mathcal{F}_{p} \backslash \mathfrak{m}_{p}$ then $\mathrm{ev}_{p}[f]_{p} \neq 0$, hence $f(p) \neq 0$. Then there is some $U \in \mathcal{U}_{p}$ such that $f(x) \neq 0$ for $x \in U$, and $(1 / f)(x)=\frac{1}{f(x)}$ belongs to $\mathcal{F}(U)$. Then $[1 / f]_{p} \in \mathcal{F}_{p}$ and $[f]_{p} \cdot[1 / f]_{p}=$ $[f \cdot 1 / f]_{p}=\left[1_{M}\right]_{p}$, which shows that if $[f]_{p} \in \mathcal{F}_{p} \backslash \mathfrak{m}_{p}$ then $[f]_{p}$ has an inverse $[1 / f]_{p}$ in \mathcal{F}_{p}. This means \mathfrak{m}_{p} is the set of noninvertible elements of \mathcal{F}_{p}, which means that \mathcal{F}_{p} is a local ring.

For $1 \leq i \leq m$ define the coordinate function $x^{i}: M \rightarrow \mathbb{R}$ by $x^{i}(p)=p_{i}$, which belongs to $\mathcal{F}(M)$. Because $\mathrm{ev}_{0} x^{i}=0,\left[x^{i}\right]_{0} \in \mathfrak{m}_{0}$. We prove Hadamard's lemma, that the ring \mathfrak{m}_{0} is generated by the germs of the coordinate functions at $0 .{ }^{1}$

Lemma 1 (Hadamard's lemma). The ideal \mathfrak{m}_{0} is generated by the set $\left\{\left[x^{i}\right]_{0}\right.$: $1 \leq i \leq m\}$.

Proof. Let $[f]_{0} \in \mathfrak{m}_{0}$ with $f \in \mathcal{F}\left(B_{r}\right)$ for some $r>0$. For $y \in B_{r}$, using the fundamental theorem of calculus and using the chain rule,
$f(y)=f(y)-f(0)=\int_{0}^{1} \frac{d}{d s} f(s y) d s=\int_{0}^{1} \sum_{i=1}^{m} x^{i}(y)\left(\partial_{i} f\right)(s y) d s=\sum_{i=1}^{m} x^{i}(y) u_{i}(y)$,
and $u_{i} \in \mathcal{F}\left(B_{r}\right)$. This means that $[f]_{0}=\sum_{i=1}^{m}\left[x^{i}\right]_{0}\left[u_{i}\right]_{0}$, which shows that $[f]_{0}$ belongs to the ideal generated by the set $\left\{\left[x^{i}\right]_{0}: 1 \leq i \leq m\right\}$.

[^0]For a multi-index $\alpha \in \mathbb{Z}_{\geq 0}^{m}$, write

$$
|\alpha|=\sum_{i=1}^{m} \alpha_{i}, \quad \alpha!=\alpha_{1}!\cdots \alpha_{m}!
$$

and

$$
\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{m}^{\alpha_{m}}, \quad x^{\alpha}=\left(x^{1}\right)^{\alpha_{1}} \cdots\left(x^{m}\right)^{\alpha_{m}}
$$

and say $\alpha \leq \beta$ if $\alpha_{i} \leq \beta_{i}$ for each i. We shall use the fact that

$$
\partial^{\alpha} x^{\beta}= \begin{cases}\frac{\beta!}{(\beta-\alpha)!} x^{\beta-\alpha} & \alpha \leq \beta \\ 0 & \text { otherwise } .\end{cases}
$$

Lemma 2. For $f \in \mathcal{R}_{0}$, if $\left(\partial^{\alpha} f\right)(0)=0$ for all $|\alpha|<k$, then $[f]_{0} \in \mathfrak{m}_{0}^{k}$.
Proof. For $k=1$, if $\left(\partial^{\alpha} f\right)(0)=0$ for $\alpha=(0, \ldots, 0)$ then $\mathrm{ev}_{0} f=f(0)=0$, hence $[f]_{0} \in \mathfrak{m}_{0}$. Suppose the claim is true for some $k \geq 1$, and suppose that $f \in \mathcal{R}_{0}$ and that $\left(\partial^{\alpha} f\right)(0)=0$ for all $|\alpha|<k+1$. A fortiori, $\left(\partial^{\alpha} f\right)(0)=0$ for all $|\alpha|<k$ and then by the induction hypothesis we get $[f]_{0} \in \mathfrak{m}_{0}^{k}$. Now, Lemma 1 tells us that the ideal \mathfrak{m}_{0} is generated by the set $\left\{\left[x^{i}\right]_{0}: 1 \leq i \leq m\right\}$, and then the product ideal \mathfrak{m}_{0}^{k} is generated by the set

$$
\begin{aligned}
\left\{\left[x^{i_{1}}\right]_{0} \cdots\left[x^{i_{k}}\right]_{0}: 1 \leq i_{1}, \ldots, i_{k} \leq m\right\} & =\left\{\left[x^{i_{1}} \cdots x^{i_{k}}\right]_{0}: 1 \leq i_{1}, \ldots, i_{k} \leq m\right\} \\
& =\left\{\left[x^{\alpha}\right]_{0}:|\alpha|=k\right\}
\end{aligned}
$$

for $x^{\alpha}=\left(x^{1}\right)^{\alpha_{1}} \cdots\left(x^{m}\right)^{\alpha_{m}}$. As $[f]_{0} \in \mathfrak{m}^{k}$, there are $\left[u_{\alpha}\right]_{0} \in \mathcal{F}_{0},|\alpha|=k$, such that

$$
[f]_{0}=\sum_{|\alpha|=k}\left[u_{\alpha}\right]_{0}\left[x^{\alpha}\right]_{0}
$$

For $|\alpha|=k$, on some set in \mathcal{U}_{0}, using the Leibniz rule,

$$
\partial^{\alpha} f=\sum_{|\beta|=k} \partial^{\alpha}\left(u_{\beta} x^{\beta}\right)=\sum_{|\beta|=k} \sum_{\gamma \leq \alpha}\binom{\alpha}{\gamma}\left(\partial^{\alpha-\gamma} u_{\beta}\right)\left(\partial^{\gamma} x^{\beta}\right)
$$

And for $\gamma \neq \beta,\left(\partial^{\gamma} x^{\beta}\right)(0)=0$, so

$$
\partial^{\alpha} f \in u_{\alpha} \partial^{\alpha} x^{\alpha}+h, \quad[h]_{0} \in \mathfrak{m}_{0}
$$

But $\left(\partial^{\alpha} f\right)(0)=0$, so $u_{\alpha}(0)=0$, which means that $u_{\alpha} \in \mathfrak{m}_{0}$. And

$$
\left[x^{\alpha}\right]_{0}=\left[x^{1}\right]_{0}^{\alpha_{1}} \cdots\left[x^{m}\right]_{0}^{\alpha_{m}} \in \mathfrak{m}_{0}^{|\alpha|}=\mathfrak{m}_{0}^{k}
$$

so $\left[u_{\alpha}\right]_{0}\left[x^{\alpha}\right]_{0} \in \mathfrak{m}_{0}^{k+1}$, showing that $[f]_{0} \in \mathfrak{m}_{0}^{k+1}$. This completes the proof by induction.

4 Hessians

For an open set U in \mathbb{R}^{m} and $\phi \in \mathcal{F}(U), \phi^{\prime}: U \rightarrow \mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, and $\nabla \phi: U \rightarrow \mathbb{R}^{m}$ satisfies

$$
\langle\nabla \phi(x), v\rangle=\phi^{\prime}(x)(v), \quad x \in U, \quad v \in \mathbb{R}^{m}
$$

$x \in U$ is a critical point of ϕ if $\phi^{\prime}(x)=0$, equivalently $\nabla \phi(x)=0$. Define Hess $\phi: U \rightarrow \mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ by

$$
\operatorname{Hess} \phi=(\nabla \phi)^{\prime}
$$

This satisfies ${ }^{2}$

$$
\phi^{\prime \prime}(x)(u)(v)=\langle v, \operatorname{Hess} \phi(x)(u)\rangle, \quad x \in U, \quad u, v, \in \mathbb{R}^{m}
$$

A critical point x of ϕ is called nondegenerate if Hess $\phi(x)$ is invertible in $\mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.

For $\phi \in \mathcal{R}_{p}$, let J_{ϕ} be the ideal in the ring \mathcal{F}_{p} generated by the set

$$
\left\{\left[\partial_{i} \phi\right]_{p}: 1 \leq i \leq m\right\}
$$

We call J_{ϕ} the Jacobian ideal of ϕ at p. If p is a critical point of ϕ, then $\left(\partial_{i} \phi\right)(p)=0$ for each i, hence $\left[\partial_{i} \phi\right]_{p} \in \mathfrak{m}_{p}$ for each i.

If 0 is a nondegenerate critical point of ϕ, we prove that $\mathfrak{m}_{0} \subset J_{\phi} .{ }^{3}$
Theorem 3. Let U be an open set in \mathbb{R}^{m} containing 0 and let $\phi \in \mathcal{F}(U)$. If 0 is a nondegenerate critical point of ϕ, then $J_{\phi}=\mathfrak{m}_{0}$.

Proof. Let $f=\nabla \phi$, which is a smooth function $U \rightarrow \mathbb{R}^{m}$. Because 0 is a nondegenerate critical point of $\phi, f^{\prime}(0)$ is invertible in $\mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ and hence by the inverse function theorem, ${ }^{4} f$ is a local C^{∞} isomorphism at x : there is some open set $V, x \in V$ and $V \subset U$, such that $W=f(V)$ is open in \mathbb{R}^{m}, and there is a smooth function $g: W \rightarrow V$ such that $g \circ f=\mathrm{id}_{V}$ and $f \circ g=\mathrm{id}_{W}$.

[^1]
[^0]: ${ }^{1}$ Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 14, Lemma 1.13.

[^1]: ${ }^{2}$ http://individual.utoronto.ca/jordanbell/notes/gradienthilbert.pdf
 ${ }^{3}$ Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 15, Lemma 1.15.
 ${ }^{4}$ Serge Lang, Real and Functional Analysis, third ed., p. 361, chapter XIV, Theorem 1.2.

