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1 Sheafs

Let M = Rm. For an open set U in M , write F(U) = C∞(U), which is a
commutative ring with unity 1M (x) = 1. For open sets V ⊂ U in M , define
rU,V : F(U) → F(V ) by rU,V f = f |V , which is a homomorphism of rings. F is
a presheaf, a contravariant functor from the category of open sets in M to the
category of commutative unital rings. For F to be a sheaf means the following:

1. If Ui, i ∈ I, is an open cover of an open set U and if f, g ∈ F(U) satisfy
rU,Ui

f = rU,Ui
g for all i ∈ I, then f = g.

2. If Ui, i ∈ I, is an open cover of an open set U and for each i ∈ I there is
some fi ∈ F(Ui) such that for all i, j ∈ I, rUi,Ui∩Uj

fi = rUj ,Ui∩Uj
fj , then

there is some f ∈ F(U) such that rU,Ui
f = fi for each i ∈ I.

For the first condition, let p ∈ U . As Ui is an open cover of U , there is some i
for which p ∈ Ui. As f |Ui = g|Ui , f(p) = g(p). Therefore f = g. For the second
condition, let p ∈ U . If p ∈ Ui and p ∈ Uj , then fi(p) = fj(p). This shows that
it makes sense to define f : U → R by f(p) = fi(p), for any i such that p ∈ Ui.
Then f |Ui

= fi, which implies that f ∈ F(U): for each p ∈ U , there is some
open neighborhood Ui of p on which f is smooth. Therefore F is a sheaf.

2 Stalks and germs

For p ∈ M , let Up be the set of open neighborhoods of p. For U, V ∈ Up, say
U ≤ V when V ⊂ U . For U ≤ V ≤ W and f ∈ F(U),

(rV,W ◦ rU,V )(f) = rV,W f |V = fW = rU,W f.

For f ∈ F(U) and g ∈ F(V ), say f ∼p g if there is some W ∈ Up, W ≥ U ,
W ≥ V , such that rU,W f = rV,W g. Let

Rp =
⊔

U∈Up

F(U),
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and let Fp be the direct limit of the direct system F(U), rU,V of commutative
unital rings:

Fp = Rp/ ∼p .

We call Fp the stalk of F at p. An element of Fp is called a germ of F at p.
In other words, for f ∈ Rp, let [f ]p be the set of those g ∈ Rp such that f ∼p g,
equivalently, f |Uf∩Ug

= g|Uf∩Ug
. A germ of F at p is such an equivalence class

[f ]p, and
Fp = {[f ]p : f ∈ Rp} .

3 Maximal ideals

For p ∈ M , and f, g ∈ Rp with f ∼p g, f(p) = g(p). Thus it makes sense to
define evp : Fp → R by evp[f ]p = f(p). Now, for [f ]p, [g]p ∈ Fp,

evp([f ]p + [g]p) = evp([f + g]p) = (f + g)(p) = f(p) + g(p) = evp[f ]p + evp[g]p,

evp([f ]p[g]p) = evp([fg]p) = (fg)(p) = f(p)g(p) = evp[f ]p · evp[g]p,

evp[1M ]p = 1. This means that evp : Fp → R is a homomorphism of unital
rings. It is straightforward that evp is surjective. Write mp = ker evp. By the
first isomorphism theorem, there is an isomorphism of unital rings Fp/mp → R.
Therefore mp is a maximal ideal in Fp. Now, if [f ]p ∈ Fp \mp then evp[f ]p ̸= 0,
hence f(p) ̸= 0. Then there is some U ∈ Up such that f(x) ̸= 0 for x ∈ U ,
and (1/f)(x) = 1

f(x) belongs to F(U). Then [1/f ]p ∈ Fp and [f ]p · [1/f ]p =

[f · 1/f ]p = [1M ]p, which shows that if [f ]p ∈ Fp \ mp then [f ]p has an inverse
[1/f ]p in Fp. This means mp is the set of noninvertible elements of Fp, which
means that Fp is a local ring.

For 1 ≤ i ≤ m define the coordinate function xi : M → R by xi(p) = pi,
which belongs to F(M). Because ev0x

i = 0, [xi]0 ∈ m0. We proveHadamard’s
lemma, that the ring m0 is generated by the germs of the coordinate functions
at 0.1

Lemma 1 (Hadamard’s lemma). The ideal m0 is generated by the set {[xi]0 :
1 ≤ i ≤ m}.

Proof. Let [f ]0 ∈ m0 with f ∈ F(Br) for some r > 0. For y ∈ Br, using the
fundamental theorem of calculus and using the chain rule,

f(y) = f(y)−f(0) =

∫ 1

0

d

ds
f(sy)ds =

∫ 1

0

m∑
i=1

xi(y)(∂if)(sy)ds =

m∑
i=1

xi(y)ui(y),

and ui ∈ F(Br). This means that [f ]0 =
∑m

i=1[x
i]0[ui]0, which shows that [f ]0

belongs to the ideal generated by the set {[xi]0 : 1 ≤ i ≤ m}.
1Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 14, Lemma 1.13.
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For a multi-index α ∈ Zm
≥0, write

|α| =
m∑
i=1

αi, α! = α1! · · ·αm!

and
∂α = ∂α1

1 · · · ∂αm
m , xα = (x1)α1 · · · (xm)αm ,

and say α ≤ β if αi ≤ βi for each i. We shall use the fact that

∂αxβ =

{
β!

(β−α)!x
β−α α ≤ β

0 otherwise.

Lemma 2. For f ∈ R0, if (∂
αf)(0) = 0 for all |α| < k, then [f ]0 ∈ mk

0 .

Proof. For k = 1, if (∂αf)(0) = 0 for α = (0, . . . , 0) then ev0f = f(0) = 0,
hence [f ]0 ∈ m0. Suppose the claim is true for some k ≥ 1, and suppose that
f ∈ R0 and that (∂αf)(0) = 0 for all |α| < k+1. A fortiori, (∂αf)(0) = 0 for all
|α| < k and then by the induction hypothesis we get [f ]0 ∈ mk

0 . Now, Lemma 1
tells us that the ideal m0 is generated by the set {[xi]0 : 1 ≤ i ≤ m}, and then
the product ideal mk

0 is generated by the set

{[xi1 ]0 · · · [xik ]0 : 1 ≤ i1, . . . , ik ≤ m} = {[xi1 · · ·xik ]0 : 1 ≤ i1, . . . , ik ≤ m}
= {[xα]0 : |α| = k},

for xα = (x1)α1 · · · (xm)αm . As [f ]0 ∈ mk, there are [uα]0 ∈ F0, |α| = k, such
that

[f ]0 =
∑
|α|=k

[uα]0[x
α]0.

For |α| = k, on some set in U0, using the Leibniz rule,

∂αf =
∑
|β|=k

∂α(uβx
β) =

∑
|β|=k

∑
γ≤α

(
α

γ

)
(∂α−γuβ)(∂

γxβ).

And for γ ̸= β, (∂γxβ)(0) = 0, so

∂αf ∈ uα∂
αxα + h, [h]0 ∈ m0.

But (∂αf)(0) = 0, so uα(0) = 0, which means that uα ∈ m0. And

[xα]0 = [x1]α1
0 · · · [xm]αm

0 ∈ m
|α|
0 = mk

0 ,

so [uα]0[x
α]0 ∈ mk+1

0 , showing that [f ]0 ∈ mk+1
0 . This completes the proof by

induction.
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4 Hessians

For an open set U in Rm and ϕ ∈ F(U), ϕ′ : U → L (Rm,R), and ∇ϕ : U → Rm

satisfies
⟨∇ϕ(x), v⟩ = ϕ′(x)(v), x ∈ U, v ∈ Rm.

x ∈ U is a critical point of ϕ if ϕ′(x) = 0, equivalently ∇ϕ(x) = 0. Define
Hessϕ : U → L (Rm,Rm) by

Hessϕ = (∇ϕ)′.

This satisfies2

ϕ′′(x)(u)(v) = ⟨v,Hessϕ(x)(u)⟩ , x ∈ U, u, v,∈ Rm.

A critical point x of ϕ is called nondegenerate if Hessϕ(x) is invertible in
L (Rm,Rm).

For ϕ ∈ Rp, let Jϕ be the ideal in the ring Fp generated by the set

{[∂iϕ]p : 1 ≤ i ≤ m}.

We call Jϕ the Jacobian ideal of ϕ at p. If p is a critical point of ϕ, then
(∂iϕ)(p) = 0 for each i, hence [∂iϕ]p ∈ mp for each i.

If 0 is a nondegenerate critical point of ϕ, we prove that m0 ⊂ Jϕ.
3

Theorem 3. Let U be an open set in Rm containing 0 and let ϕ ∈ F(U). If 0
is a nondegenerate critical point of ϕ, then Jϕ = m0.

Proof. Let f = ∇ϕ, which is a smooth function U → Rm. Because 0 is a
nondegenerate critical point of ϕ, f ′(0) is invertible in L (Rm,Rm) and hence
by the inverse function theorem,4 f is a local C∞ isomorphism at x: there
is some open set V , x ∈ V and V ⊂ U , such that W = f(V ) is open in Rm, and
there is a smooth function g : W → V such that g◦f = idV and f ◦g = idW .

2http://individual.utoronto.ca/jordanbell/notes/gradienthilbert.pdf
3Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 15, Lemma 1.15.
4Serge Lang, Real and Functional Analysis, third ed., p. 361, chapter XIV, Theorem 1.2.
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