The Gottschalk-Hedlund theorem, cocycles, and small divisors

Jordan Bell

July 23, 2014

1 Introduction

This note consists of my working through details in the paper Resonances and small divisors by Étienne Ghys. ${ }^{1}$ Aside from containing mathematics, Ghys makes thoughtful remarks about the history of physics, unlike the typically thoughtless statements people make about the Ptolemaic system. He insightfully states "Kepler's zeroth law": "If the orbit of a planet is bounded, then it is periodic." I can certainly draw a three dimensional bounded curve that is not closed, but that curve is not the orbit of a planet. It is also intellectually lazy to scorn Kepler's correspondence between orbits and the Platonic solids ("Kepler's fourth law").

2 Almost periodic functions

Suppose that $f: \mathbb{R} \rightarrow \mathbb{C}$ is continuous. For $\epsilon>0$, we call $T \in \mathbb{R}$ an ϵ-period of f if

$$
|f(t+T)-f(t)|<\epsilon, \quad t \in \mathbb{R} .
$$

T is a period of f if and only if it is an ϵ-period for all $\epsilon>0$.
We say that f is almost periodic if for every $\epsilon>0$ there is some $M_{\epsilon}>0$ such that if I is an interval of length $>M_{\epsilon}$ then there is an ϵ-period in I.

If f is periodic, then there is some $M>0$ such that if I an interval of length $>M$ then at least one multiple T of M lies in I, and hence for any $t \in \mathbb{R}$ we have $f(t+T)-f(t)=f(t)-f(t)=0$. Thus, for every $\epsilon>0$, if I is an interval of length $>M$ then there is an ϵ-period in I. Therefore, with a periodic function, the length of the intervals I need not depend on ϵ, while for an almost periodic function they may.

[^0]
3 The Gottschalk-Hedlund theorem

The Gottschalk-Hedlund theorem is stated and proved in Katok and Hasselblatt. ${ }^{2}$ The following case of the Gottschalk-Hedlund theorem is from Ghys. We denote by

$$
\pi_{1}: \mathbb{R} / \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}, \quad \pi_{2}: \mathbb{R} / \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}
$$

the projection maps.
Theorem 1 (Gottschalk-Hedlund theorem). Suppose that $u: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ is continuous, that

$$
\int_{0}^{1} u(x) d x=0
$$

that $x_{0} \in \mathbb{R} / \mathbb{Z}$, and that α is irrational. If there is some C such that

$$
\begin{equation*}
\left|\sum_{k=0}^{n} u\left(x_{0}+k \alpha\right)\right| \leq C, \quad n \geq 0 \tag{1}
\end{equation*}
$$

then there is a continuous function $v: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ such that

$$
u(x)=v(x+\alpha)-v(x), \quad x \in \mathbb{R} / \mathbb{Z}
$$

Proof. Say there is some $C>0$ satisfying (1). Define $g: \mathbb{R} / \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z} \times \mathbb{R}$ by

$$
g(x, y)=(x+\alpha, y+u(x)), \quad x \in \mathbb{R} / \mathbb{Z}
$$

For $n \geq 0$,

$$
g^{n}\left(x_{0}, 0\right)=\left(x_{0}+n \alpha, \sum_{k=0}^{n} u\left(x_{0}+k \alpha\right)\right)
$$

The set $\left\{g^{n}\left(x_{0}, 0\right): n \geq 0\right\}$, namely the orbit of $\left(x_{0}, 0\right)$ under g, is contained in $\mathbb{R} / \mathbb{Z} \times[-C, C]$. Let K be the closure of this orbit. Because K is a metrizable topological space, for $(x, y) \in K$ there is a sequence $a(n)$ such that $g^{a(n)}\left(x_{0}, 0\right) \rightarrow(x, y)$. As g is continuous we get $g^{a(n)+1}\left(x_{0}, 0\right) \rightarrow g(x, y)$, which implies that $g(x, y) \in K$. This shows that K is invariant under g. Let \mathscr{K} be the collection of nonempty compact sets contained in K and invariant under g. Thus $K \in \mathscr{K}$, so \mathscr{K} is nonempty. We order \mathscr{K} by $A \prec B$ when $A \subset B$. If $\mathscr{C} \subset \mathscr{K}$ is a chain, let $C_{0}=\bigcap_{C \in \mathscr{C}} C$. It follows from K being compact that C_{0} is nonempty, hence $C_{0} \in \mathscr{K}$ and is a lower bound for the chain \mathscr{C}. Since every chain in \mathscr{K} has a lower bound in \mathscr{K}, by Zorn's lemma there exists a minimal element M in $\mathscr{K}:$ for every $A \in \mathscr{K}$ we have $M \prec A$, i.e. $M \subset A$. To say that M is invariant under g means that $g(M) \subset M$, and M being a nonempty compact set contained in K implies that $g(M)$ is a nonempty compact set contained in K, hence by the minimality of M we obtain $g(M)=M$.

[^1]The set M is nonempty, so take $(x, y) \in M$. Because M is invariant under $g,\left\{g^{n}(x, y): n \geq 0\right\} \subset M$. The set

$$
\pi_{1}\left\{g^{n}(x, y): n \geq 0\right\}=\{x+n \alpha: n \geq 0\}
$$

is dense in \mathbb{R} / \mathbb{Z}, hence $\pi_{1}(M)$ is dense in \mathbb{R} / \mathbb{Z}. Moreover, M being compact implies that $\pi_{1}(M)$ is closed, so $\pi_{1}(M)=\mathbb{R} / \mathbb{Z}$.

For $t \in \mathbb{R}$, define $\tau_{t}: \mathbb{R} / \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z} \times \mathbb{R}$ by $\tau_{t}(x, y)=(x, y+t)$. For any t, $\tau_{t} \circ g(x, y)=\tau_{t}(x+\alpha, y+u(x))=(x+\alpha, y+u(x)+t)=g(x, y+t)=g \circ \tau_{t}(x, y)$,
so $\tau_{t} \circ g=g \circ \tau_{t}$. Hence, if $A \subset \mathbb{R} / \mathbb{Z} \times \mathbb{R}$ and $g(A) \subset A$, then $g\left(\tau_{t}(A)\right)=$ $\tau_{t} \circ g(A) \subset \tau_{t}(A)$, namely, if A is invariant under g then $\tau_{t}(A)$ is invariant under g. Therefore $\tau_{t}(M)$ is invariant under g, and so $M \cap \tau_{t}(M)$ is invariant under g. This intersection is compact and is contained in K, so either $M \cap \tau_{t}(M)=\emptyset$ or by the minimality of $M, M \cap \tau_{t}(M)=M$. Suppose by contradiction that for some nonzero $t, M \cap \tau_{t}(M)=M$. Then using $g(M)=M$ we get $\tau_{t}(M)=M$, and hence for any positive integer k we have $\tau_{k t}(M)=\tau_{t}^{k}(M)=M$. But because M is compact, $\pi_{2}(M)$ is contained in some compact interval I, and then there is some positive integer k such that $\pi_{2}\left(\tau_{k t}(M)\right)$ is not contained in I, a contradiction. Therefore, when $t \neq 0$ we have $M \cap \tau_{t}(M)=\emptyset$. Let $x \in \mathbb{R} / \mathbb{Z}$. If there were distinct $y_{1}, y_{2} \in \mathbb{R}$ such that $\left(x, y_{1}\right),\left(x, y_{2}\right) \in M$, then with $t=y_{2}-y_{1} \neq 0$ we get $\tau_{t}\left(x, y_{1}\right)=\left(x, y_{2}\right) \in M$, contradicting $M \cap \tau_{t}(M)=\emptyset$. This shows that for each $x \in \mathbb{R} / \mathbb{Z}$ there is a unique $y \in \mathbb{R}$ such that $(x, y) \in M$, and we denote this y by $v(x)$, thus defining a function $v: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$. Then M is the graph of v, and because M is compact, it follows that the function v is continuous. Let $(x, v(x)) \in M$. As M is invariant under g,

$$
(x+\alpha, v(x)+u(x))=g(x, v(x)) \in M,
$$

and as M is the graph of v we get $v(x)+u(x)=v(x+\alpha)$ and hence $v(x+\alpha)-$ $v(x)=u(x)$, completing the proof.

4 Cohomology

In this section I am following Tao. ${ }^{3}$ Suppose that a group (G, \cdot) acts on a set X and that $(A,+)$ is an abelian group. A cocycle is a function $\rho: G \times X \rightarrow A$ such that

$$
\begin{equation*}
\rho(g h, x)=\rho(h, x)+\rho(g, h x), \quad g, h \in G, \quad x \in X . \tag{2}
\end{equation*}
$$

If $F: X \rightarrow A$ is a function, we call the function $\rho(g, x)=F(g x)-F(x)$ a coboundary. This satisfies
$\rho(g h, x)-\rho(g, h x)=F((g h) x)-F(x)-F(g(h x))+F(h x)=F(h x)-F(x)=\rho(h, x)$,

[^2]showing that a coboundary is a cocycle. We now show how to fit the notions of cocycle and coboundary into a general sitting of cohomology. We show that they correspond respectively to a 1-cocycle and a 1-coboundary.

For $n \geq 0$, an n-simplex is an element of $G^{n} \times X$, i.e., a thing of the form $\left(g_{1}, \ldots, g_{n}, x\right)$, for $g_{1}, \ldots, g_{n} \in G$ and $x \in X$. We denote by $C_{n}(G, X)$ the free abelian group generated by the collection of all n-simplices, and an element of $C_{n}(G, X)$ is called an n-chain. In particular, the elements of $C_{0}(G, X)$ are formal \mathbb{Z}-linear combinations of elements of X. For $n<0$, we define $C_{n}(G, X)$ to be the trivial group.

For $n>0$, we define the boundary map $\partial: C_{n}(G, X) \rightarrow C_{n-1}(G, X)$ by

$$
\begin{aligned}
\partial\left(g_{1}, \ldots, g_{n}, x\right)= & \left(g_{1}, \ldots, g_{n-1}, g_{n} x\right) \\
& +\sum_{k=1}^{n-1}(-1)^{n-k}\left(g_{1}, \ldots, g_{k-1}, g_{k} g_{k+1}, g_{k+2}, \ldots, g_{n}, x\right) \\
& +(-1)^{n}\left(g_{2}, \ldots, g_{n}, x\right)
\end{aligned}
$$

For $n \leq 0$ we define $\partial: C_{n}(G, X) \rightarrow C_{n-1}(G, X)$ to be the trivial map. If $n \leq 1$ then of course $\partial^{2}=0$. If $n \geq 2$, one writes out $\partial^{2}\left(g_{1}, \ldots, g_{n}, x\right)$ and checks that it is equal to 0 , and hence that $\partial^{2}=0$. Thus the sequence of abelian groups $C_{n}(G, X)$ and the boundary maps $\partial: C_{n}(G, X) \rightarrow C_{n-1}(G, X)$ are a chain complex.

We denote the kernel of $\partial: C_{n}(G, X) \rightarrow C_{n-1}(G, X)$ by $Z_{n}(G, X)$, and elements of $Z_{n}(G, X)$ are called n-cycles. We denote the image of $\partial: C_{n+1}(G, X) \rightarrow$ $C_{n}(G, X)$ by $B_{n}(G, X)$, and elements of $B_{n}(G, X)$ are called n-boundaries. Because $\partial^{2}=0$, an n-boundary is an n-cycle. $Z_{n}(G, X)$ and $B_{n}(G, X)$ are abelian groups and $B_{n}(G, X)$ is contained in $Z_{n}(G, X)$, and we write

$$
H_{n}(G, X)=Z_{n}(G, X) / B_{n}(G, X)
$$

and call $H_{n}(G, X)$ the nth homology group.
We define $C^{n}(G, X, A)=\operatorname{Hom}\left(C_{n}(G, X), A\right)$, which is an abelian group. Elements of $C^{n}(G, X, A)$ are called n-cochains. That is, an n-cochain is a group homomorphism $C_{n}(G, X) \rightarrow A$. Because $C_{n}(G, X)$ is a free abelian group generated by the collection of all n-simplices, an n-cochain is determined by the values it assigns to n-simplices. We thus identity n-cochains with functions $G^{n} \times X \rightarrow A$.

We define the coboundary $\operatorname{map} \delta: C^{n-1}(G, X, A) \rightarrow C^{n}(G, X, A)$ by

$$
(\delta F)(c)=F(\partial c), \quad F \in C^{n-1}(G, X, A), c \in C_{n}(G, X)
$$

Explicitly, for $F \in C^{n-1}(G, X, A)$ and for an n-simplex $\left(g_{1}, \ldots, g_{n}, x\right)$,

$$
\begin{aligned}
(\delta F)\left(g_{1}, \ldots, g_{n}, x\right)= & F\left(\partial\left(g_{1}, \ldots, g_{n}, x\right)\right) \\
= & F\left(g_{1}, \ldots, g_{n-1}, g_{n} x\right) \\
& +\sum_{k=1}^{n-1}(-1)^{n-k} F\left(g_{1}, \ldots, g_{k-1}, g_{k} g_{k+1}, g_{k+2}, \ldots, g_{n}, x\right) \\
& +(-1)^{n} F\left(g_{2}, \ldots, g_{n}, x\right) .
\end{aligned}
$$

For $F \in C^{n-2}(G, X, A)$, write $G=\delta F$ and take and $c \in C_{n}(G, X)$. Then,

$$
\left(\delta^{2} F\right)(c)=(\delta G)(c)=G(\partial c)=(\delta F)(\partial c)=F\left(\partial^{2} c\right)=F(0)=0
$$

showing that $\delta^{2}=0$. Thus the sequence of abelian groups $C^{n}(G, X, A)$ and the coboundary maps $\delta: C^{n-1}(G, X, A) \rightarrow C^{n}(G, X, A)$ are a cochain complex.

We denote the kernel of $\delta: C^{n}(G, X, A) \rightarrow C^{n+1}(G, X, A)$ by $Z^{n}(G, X, A)$, and elements of $Z^{n}(G, X, A)$ are called n-cocycles. We denote the image of $\delta: C^{n-1}(G, X, A) \rightarrow C^{n}(G, X, A)$ by $B^{n}(G, X, A)$, and elements of $B^{n}(G, X, A)$ are called n-coboundaries. Because $\delta^{2}=0$, an n-coboundary is an n-cocycle. $Z^{n}(G, X, A)$ and $B^{n}(G, X, A)$ are abelian groups and $B^{n}(G, X, A)$ is contained in $Z^{n}(G, X, A)$, and we write

$$
H^{n}(G, X, A)=Z^{n}(G, X, A) / B^{n}(G, X, A)
$$

which we call the nth cohomology group.
Take $n=1$. We identify $C^{1}(G, X, A)$, the group of 1-chains, with functions $G \times X \rightarrow A$. For $\rho \in C^{1}(G, X, A)$, to say that ρ is a 1 -cocycle is equivalent to saying that for any $(g, h, x) \in G^{2} \times X,(\delta \rho)(g, h, x)=0$, i.e. $\rho(g, h x)-\rho(g h, x)+$ $\rho(h, x)=0$, i.e.

$$
\rho(g h, x)=\rho(h, x)+\rho(g, h x)
$$

To say that ρ is a 1 -coboundary is equivalent to saying that there is a 0 -chain F (a function $X \rightarrow A$) such that $\rho=\delta F$, i.e., for any $(g, x) \in G \times X$,

$$
\rho(g, x)=(\delta F)(g, x)=F(g x)-F(x) .
$$

5 Small divisors

Suppose that $u: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ be C^{∞} and satisfies

$$
\int_{0}^{1} u(x) d x=0
$$

For each $n \in \mathbb{Z}$, let

$$
\widehat{u}(n)=\int_{0}^{1} e^{-2 \pi i n x} u(x) d x
$$

We have $\widehat{u}(0)=0$. For any $x \in \mathbb{R} / \mathbb{Z}$,

$$
u(x)=\sum_{n \in \mathbb{Z}} \widehat{u}(n) e^{2 \pi i n x}
$$

and $\sum_{n \in \mathbb{Z}}|\widehat{u}(n)|<\infty$; for these statements to be true it suffices merely that u be C^{β} for some $\beta>\frac{1}{2}$.

Let α be irrational. We shall find conditions under which there exists a continuous function $v: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
u(x)=v(x+\alpha)-v(x), \quad x \in \mathbb{R} / \mathbb{Z} \tag{3}
\end{equation*}
$$

Supposing that for each $x, v(x)$ is equal to its Fourier series evaluated at x and that its Fourier series converges absolutely,

$$
v(x)=\sum_{n \in \mathbb{Z}} \widehat{v}(n) e^{2 \pi i n x}
$$

then for each $x \in \mathbb{R} / \mathbb{Z}$,

$$
v(x+\alpha)-v(x)=\sum_{n \in \mathbb{Z}} \widehat{v}(n)\left(e^{2 \pi i n(x+\alpha)}-e^{2 \pi i n x}\right)=\sum_{n \in \mathbb{Z}} \widehat{v}(n)\left(e^{2 \pi i n \alpha}-1\right) e^{2 \pi i n x}
$$

Then using $u(x)=v(x+\alpha)-v(x)$ we obtain

$$
\widehat{u}(n)=\widehat{v}(n)\left(e^{2 \pi i n \alpha}-1\right), \quad n \in \mathbb{Z}
$$

or,

$$
\begin{equation*}
\widehat{v}(n)=\frac{\widehat{u}(n)}{e^{2 \pi i n \alpha}-1}, \quad n \neq 0 \tag{4}
\end{equation*}
$$

because α is irrational, the denominator of the right-hand side is indeed nonzero for $n \neq 0$. The value of $\widehat{v}(0)$ is not determined so far. We shall find conditions under which the continuous function v we desire can be defined using (4).

A real number β is said to be Diophantine if there is some $r \geq 2$ and some $C>0$ such that for all $q>0$ and $p \in \mathbb{Z}$,

$$
\begin{equation*}
\left|\beta-\frac{p}{q}\right|>C q^{-r} . \tag{5}
\end{equation*}
$$

It is immediate that a Diophantine number is irrational. Suppose that α satisfies (5). Let $n \neq 0$ and let p_{n} be the integer nearest $n \alpha$. Then

$$
\begin{aligned}
\left|e^{2 \pi i n \alpha}-1\right| & =\left|e^{2 \pi i\left(n \alpha-p_{n}\right)}-1\right| \\
& \geq \frac{2}{\pi}\left|2 \pi\left(n \alpha-p_{n}\right)\right| \\
& =4\left|n \alpha-p_{n}\right| \\
& =4|n|\left|\alpha-\frac{p_{n}}{n}\right| \\
& >4|n| \cdot C|n|^{-r} \\
& =4 C|n|^{-r+1}
\end{aligned}
$$

Because $u \in C^{\infty}$, it is straightforward to prove that for each nonnegative integer k there is some $C_{k}>0$ such that

$$
|\widehat{u}(n)| \leq C_{k}|n|^{-k}, \quad n \neq 0
$$

Therefore, for each nonnegative integer k, using (4) we have

$$
\begin{equation*}
|\widehat{v}(n)|=\frac{|\widehat{u}(n)|}{\left|e^{2 \pi i n \alpha}-1\right|}<C_{k}|n|^{-k} \cdot \frac{1}{4 C|n|^{-r+1}}=\frac{C_{k}}{4 C}|n|^{r-k-1}, \quad n \neq 0 \tag{6}
\end{equation*}
$$

One can prove that if h_{n} are complex numbers satisfying (6) then the function defined by

$$
h(x)=\sum_{n \in \mathbb{Z}} h_{n} e^{2 \pi i n x}, \quad x \in \mathbb{R} / \mathbb{Z}
$$

is C^{∞}. Therefore, we have established that if α is Diophantine then there is some $v: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ that is C^{∞} and that satisfies (3).

On the other hand, for $\alpha=\sum_{n=1}^{\infty} 10^{-n!}$, Ghys constructs a C^{∞} function $u: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ such that there is no continuous function $v: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ satisfying $u(x)=v(x+\alpha)-v(x)$ for all $x \in \mathbb{R} / \mathbb{Z}$.

[^0]: ${ }^{1}$ http://perso.ens-lyon.fr/ghys/articles/resonancesmall.pdf

[^1]: ${ }^{2}$ Anatole Katok and Boris Hasselblat, Introduction to the Modern Theory of Dynamical Systems, p. 102, Theorem 2.9.4.

[^2]: ${ }^{3}$ Terence Tao, Cohomology for dynamical systems, http://terrytao.wordpress.com/ 2008/12/21/cohomology-for-dynamical-systems/

