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Abstract

In these notes I prove that the spectrum of a bounded linear operator
from a Hilbert space to itself is a nonempty compact subset of C, and that
if the operator is self-adjoint then the spectrum is contained in R. To show
that the spectrum is nonempty I prove various facts about resolvents.

1 Adjoints

1.1 Operator norm

Let H be a Hilbert space with inner product ⟨·, ·⟩ : H × H → C, and define
I : H → H by Ix = x, x ∈ H.. For v ∈ H, let ∥v∥ =

√
⟨v, v⟩, and if T : H → H

is a bounded linear map, let

∥T∥ = sup
∥v∥≤1

∥Tv∥ .

namely, the operator norm of T .

1.2 Definition of adjoint

The Riesz representation theorem states that if ϕ : H → C is a bounded linear
map then there is a unique vϕ ∈ H such that

ϕ(x) = ⟨x, vϕ⟩

for all x ∈ H. Let T : H → H be a bounded linear map, and for y ∈ H, define
ϕy : H → C by

ϕy(x) = ⟨Tx, y⟩ .

ϕy : H → C is a bounded linear map, so by the Riesz representation theorem
there is a unique vy such that

ϕy(x) = ⟨x, vy⟩
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for all x ∈ H. Define T ∗ : H → H by

T ∗y = vy.

T ∗y is well-defined because of the uniqueness in the Riesz representation theo-
rem. For all x, y ∈ H,

⟨x, T ∗y⟩ = ⟨x, vy⟩ = ϕy(x) = ⟨Tx, y⟩ .

We call T ∗ : H → H the adjoint of T : H → H.

1.3 Adjoint is linear

For y1, y2 ∈ H, we have for all x ∈ H that

⟨x, T ∗(y1 + y2)⟩ = ⟨Tx, y1 + y2⟩
= ⟨Tx, y1⟩+ ⟨Tx, y2⟩
= ⟨x, T ∗y1 + T ∗y2⟩ .

Hence for all x ∈ H,

⟨x, T ∗(y1 + y2)− T ∗y1 − T ∗y2⟩ = 0.

In particular this is true for x = T ∗(y1 + y2) − T ∗y1 − T ∗y2, so by the nonde-
generacy of ⟨·, ·⟩ we get

T ∗(y1 + y2)− T ∗y1 − T ∗y2 = 0.

We similarly obtain for all λ ∈ C and all y ∈ H that

T ∗(λy)− λT ∗y = 0.

Hence T ∗ : H → H is a linear map.

1.4 Adjoint is bounded

For x, y ∈ H, by the Cauchy-Schwarz inequality we have

|ϕy(x)| = | ⟨x, vy⟩ | ≤ ∥x∥ ∥vy∥ ,

so ∥ϕy∥ ≤ ∥vy∥, i.e. the operator norm of ϕy is less than or equal to the norm

of vy. If vy ̸= 0, then
∥∥∥ vy
∥vy∥

∥∥∥ = 1 and∣∣∣∣ϕy

(
vy
∥vy∥

)∣∣∣∣ = 〈
vy
∥vy∥

, vy

〉
= ∥vy∥ .

It follows that
∥ϕy∥ = ∥vy∥ .
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Then for y ∈ H, by the Cauchy-Schwarz inequality and because T is bounded
we have

∥T ∗y∥ = ∥vy∥
= ∥ϕy∥
= sup

∥x∥≤1

∥ϕy(x)∥

= sup
∥x∥≤1

| ⟨Tx, y⟩ |

≤ sup
∥x∥≤1

∥T∥ ∥x∥ ∥y∥

≤ ∥T∥ ∥y∥ .

Therefore T ∗ is bounded. Thus if T : H → H is a bounded linear map then its
adjoint T ∗ : H → H is a bounded linear map.

1.5 Adjoint is involution

Because T ∗ : H → H is a bounded linear map, it has an adjoint T ∗∗ : H → H,
and T ∗∗ is itself a bounded linear map. For all x, y ∈ H,

⟨Tx, y⟩ = ⟨x, T ∗y⟩
= ⟨T ∗y, x⟩
= ⟨y, T ∗∗x⟩
= ⟨T ∗∗x, y⟩ .

Hence for all x, y ∈ H,
⟨Tx− T ∗∗x, y⟩ = 0.

This is true in particular for y = Tx − T ∗∗x, so by the nondegeneracy of ⟨·, ·⟩
we obtain

Tx− T ∗∗x = 0, x ∈ H.

Thus for any bounded linear map T : H → H, T ∗∗ = T . In words, if T
is a bounded linear map from a Hilbert space to itself, then the adjoint of
its adjoint is itself. We have shown already that ∥T ∗∥ ≤ ∥T∥. Hence also
∥T∥ = ∥T ∗∗∥ ≤ ∥T ∗∥, so

∥T∥ = ∥T ∗∥ .
If T ∗ = T , we say that T is self-adjoint.

2 Bounded linear operators

Let B(H) be the set of bounded linear maps H → H. With the operator norm,
one checks that B(H) is a Banach space. We define a product on B(H) by
T1T2 = T1 ◦ T2, and thus B(H) is an algebra. We have

∥T1T2∥ = sup
∥x∥≤1

∥T1(T2x)∥ ≤ sup
∥x∥≤1

∥T1∥ ∥T2x∥ = ∥T1∥ sup
∥x∥≤1

∥T2x∥ ≤ ∥T1∥ ∥T2∥ ,
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and thus B(H) is a Banach algebra.1 Let Bsa(H) be the set of all T ∈ B(H)
that are self-adjoint.

Theorem 1. If T ∈ B(H), then T is self-adjoint if and only if ⟨Tx, x⟩ ∈ R for
all x ∈ H.

Proof. If T ∈ Bsa(H), then for all x ∈ H,

⟨Tx, x⟩ = ⟨x, T ∗x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩,

so ⟨Tx, x⟩ ∈ R.
If T ∈ B(H) and ⟨Tx, x⟩ ∈ R for all x ∈ H, then

⟨Tx, x⟩ = ⟨x, T ∗x⟩ = ⟨T ∗x, x⟩ = ⟨T ∗x, x⟩ ,

so, putting A = T − T ∗, for all x ∈ H we have

⟨Ax, x⟩ = 0.

Thus, for all x, y ∈ H we have

⟨Ax, x⟩ = 0, ⟨Ay, y⟩ = 0, ⟨A(x+ y), x+ y⟩ = 0,

and combining these three equations,

0 = ⟨Ax, x⟩+ ⟨Ax, y⟩+ ⟨Ay, x⟩+ ⟨Ay, y⟩ = 0 + ⟨Ax, y⟩+ ⟨Ay, x⟩+ 0.

But A∗ = −A, so we get

⟨Ax, y⟩+ ⟨y,−Ax⟩ = 0,

hence
⟨Ax, y⟩ − ⟨Ax, y⟩ = 0. (1)

As well, for all x, y ∈ H we have

⟨Ax,−iy⟩ − ⟨Ax,−iy⟩ = 0,

so
⟨Ax, y⟩+ ⟨Ax, y⟩ = 0. (2)

By (1) and (2), for all x, y ∈ H we have

⟨Ax, y⟩ = 0,

and thus A = 0, i.e. T = T ∗.

1The adjoint map ∗ : B(H) → B(H) satisfies, for λ ∈ C and T1, T2 ∈ B(H),

T ∗∗ = T, (T1 + T2)
∗ = T ∗

1 + T ∗
2 , (λT )∗ = λT ∗, ∥T ∗T∥ = ∥T∥2 .

Thus B(H) is a C∗-algebra. I ∈ B(H), so we say that B(H) is unital.
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Using the above characterization of bounded self-adjoint operators, we can
prove that a limit of bounded self-adjoint operators is itself a bounded self-
adjoint operator.

Theorem 2. Bsa(H) is a closed subset of B(H).

Proof. If Tn ∈ Bsa(H) and Tn → T ∈ B(H), then for x ∈ H we have

⟨Tx, x⟩ = lim
n→∞

⟨Tnx, x⟩ ∈ R,

hence T ∈ Bsa(H).

If T ∈ Bsa(H) and ⟨Tx, x⟩ ≥ 0 for all x ∈ H, we say that T is positive. Let
B+(H) be the set of all positive T ∈ Bsa(H). For S, T ∈ Bsa(H), if

T − S ∈ B+(H)

we write S ≤ T . Thus, we can talk about one self-adjoint operator being greater
than or equal to another self-adjoint operator. S ≤ T is equivalent to

⟨Sx, x⟩ ≤ ⟨Tx, x⟩

for all x ∈ H.

3 A condition for invertibility

Theorem 3. If T ∈ B(H) and there is some α > 0 such that αI ≤ TT ∗ and
αI ≤ T ∗T , then T−1 ∈ B(H).

Proof. By αI ≤ T ∗T , we have for all x ∈ H,

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨T ∗Tx, x⟩ ≥ ⟨αx, x⟩ = α ∥x∥2 ,

so ∥Tx∥ ≥
√
α ∥x∥. This implies that T is injective. By αI ≤ TT ∗, we have for

all x ∈ H,

∥T ∗x∥2 = ⟨T ∗x, T ∗x⟩ = ⟨TT ∗x, x⟩ ≥ ⟨αx, x⟩ = α ∥x∥2 ,

so ∥T ∗x∥ ≥
√
α ∥x∥, and hence T ∗ is injective. Let Txn → y ∈ H. Then,

∥Txn − Txm∥2 = ∥T (xn − xm)∥2 ≥ α ∥xn − xm∥2 .

Since Txn converges it is a Cauchy sequence, and from the above inequality it
follows that xn is a Cauchy sequence, hence there is some x ∈ H with xn → x.
As T is continuous, y = Tx ∈ T (H), showing that T (H) is a closed subset of
H. But it is a fact that if T ∈ B(H) then the closure of T (H) is equal to
(kerT ∗)⊥.2 Thus, as we have shown that T ∗ is injective,

T (H) = (kerT ∗)⊥ = {0}⊥ = H,

2It is straightforward to show that if v is in the closure of T (H) and w ∈ kerT ∗ then
⟨v, w⟩ = 0. It is less straightforward to show the opposite inclusion.
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i.e. T is surjective. Hence T : H → H is bijective. It is a fact that if T ∈ B(H)
is bijective then T−1 ∈ B(H), completing the proof.3

4 Spectrum

For T ∈ B(H), we define the spectrum σ(T ) of T to be the set of all λ ∈ C such
T−λI is not bijective, and we define the resolvent set of T to be ρ(T ) = C\σ(T ).
To say that λ ∈ ρ(T ) is to say that T − λI is a bijection, and if T − λI is a
bijection it follows from the open mapping theorem that its inverse function is
an element of B(H): the inverse of a linear bijection is itself linear, but the
inverse of a continuous bijection need not itself be continuous, which is where
we use the open mapping theorem.

We prove that the spectrum of a bounded self-adjoint operator is real.

Theorem 4. If T ∈ Bsa(H), then σ(T ) ⊆ R.

Proof. If λ ∈ C \ R, λ = a+ ib, b ̸= 0, and X = T − λI, then

XX∗ = (T − λI)(T − λI)∗

= (T − (a+ ib)I)(T − (a− ib)I)

= T 2 − (a− ib)T − (a+ ib)T + (a2 + b2)I

= (a2 + b2)I − 2aT + T 2

= b2I + (aI − T )2

= b2I + (aI − T )(aI − T )∗

≥ b2I.

X∗X = XX∗ ≥ b2I and b > 0, so by Theorem 3, X = T − λI has an inverse
(T − λI)−1 ∈ B(H), showing λ ̸∈ σ(T ).

5 The spectrum of a bounded linear map is bounded

If λ ∈ ρ(T ) then we define Rλ = (T − λI)−1 ∈ B(H), called the resolvent of T .

Theorem 5. If T ∈ B(H) and |λ| > ∥T∥ then λ ∈ ρ(T ).

Proof. Define Rλ,N ∈ B(H) by

Rλ,N = − 1

λ

N∑
n=0

Tn

λn
.

3T−1 : H → H is linear. The open mapping theorem states that if X and Y are Banach
spaces and S : X → Y is a bounded linear map that is surjective, then S is an open map,
i.e., if U is an open subset of X then S(U) is an open subset of Y . Here, T ∈ B(H) and
T is bijective, and so by the open mapping theorem T is open, from which it follows that
T−1 : H → H is continuous, and so bounded (a linear map between normed vector spaces is
continuous if and only if it is bounded).
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As ∥T∥
|λ| < 1, the geometric series

∑∞
n=0

∥T∥n

|λ|n converges, from which it follows

that Rλ,N is a Cauchy sequence in B(H) and so converges to some Sλ ∈ B(H).
We have

∥Sλ(T − λI)− I∥ ≤ ∥Sλ(T − λI)−Rλ,N (T − λI)∥
+ ∥Rλ,N (T − λI)− I∥

≤ ∥Sλ −Rλ,N∥ ∥T − λI∥+

∥∥∥∥∥−T

λ

N∑
n=0

Tn

λn
+

N∑
n=0

Tn

λn
− I

∥∥∥∥∥
= ∥Sλ −Rλ,N∥ ∥T − λI∥+

∥∥∥∥−TN+1

λN+1

∥∥∥∥
≤ ∥Sλ −Rλ,N∥ ∥T − λI∥+

(
∥T∥
|λ|

)N+1

,

which tends to 0 as N → ∞. Therefore Sλ(T − λI) = I. And,

∥(T − λI)Sλ − I∥ ≤ ∥(T − λI)Sλ − (T − λI)Rλ,N∥
+ ∥(T − λI)Rλ,N − I∥

≤ ∥T − λI∥ ∥Sλ −Rλ,N∥+
(
∥T∥
|λ|

)N+1

,

whence (T − λI)Sλ = I, showing that

Sλ = (T − λI)−1.

Thus, if |λ| > ∥T∥ then λ ∈ ρ(T ).

The above theorem shows that σ(T ) is a bounded set: it is contained in
the closed disc |λ| ≤ ∥T∥. Moreover, if |λ| > ∥T∥ then we have an explicit
expression for the resolvent Rλ:

Rλ = − 1

λ

∞∑
n=0

Tn

λn
.

6 The spectrum of a bounded linear map is closed

Theorem 6. If T ∈ B(H), then ρ(T ) is an open subset of C.

Proof. If λ ∈ ρ(T ), let |µ− λ| < ∥Rλ∥−1
, and define Rµ,N ∈ B(H) by

Rµ,N = Rλ

N∑
n=0

(µ− λ)nRn
λ.
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Because |µ− λ| < ∥Rλ∥−1
, Rµ,N is a Cauchy sequence in B(H) and converges

to some Sµ ∈ B(H). We have, as Rλ = (T − λI)−1,

∥Sµ(T − µI)− I∥ ≤ ∥Sµ(T − µI)−Rµ,N (T − µI)∥
+ ∥Rµ,N (T − µI + λI − λI)− I∥

≤ ∥Sµ −Rµ,N∥ ∥T − µI∥
+ ∥Rµ,N (T − λI)−Rµ,N (µ− λ)− I∥

= ∥Sµ −Rµ,N∥ ∥T − µI∥

+

∥∥∥∥∥
N∑

n=0

(µ− λ)nRn
λ − (µ− λ)Rλ

N∑
n=0

(µ− λ)nRn
λ − I

∥∥∥∥∥
= ∥Sµ −Rµ,N∥ ∥T − µI∥+

∥∥−(µ− λ)N+1RN+1
λ

∥∥
= ∥Sµ −Rµ,N∥ ∥T − µI∥+ |µ− λ|N+1 ∥Rλ∥N+1

,

which tends to 0 as N → ∞. Therefore Sµ(T − µI) = I. One checks likewise
that (T − µI)Sµ = I, and hence that

(T − µI)−1 = Sµ,

showing that µ ∈ ρ(T ).

As σ(T ) is bounded and closed, it is a compact set in C. Moreover, if

λ ̸∈ σ(T ) and |µ− λ| < ∥Rλ∥−1
, then

Rµ = Rλ

∞∑
n=0

(µ− λ)nRn
λ.

7 The spectrum of a bounded linear map is nonempty

Theorem 7. If T ∈ B(H) is self-adjoint, then σ(T ) ̸= ∅.

Proof. Suppose by contradiction that σ(T ) = ∅.4 If λ, µ ∈ C, then

(T − λI)(Rλ −Rµ)(T − µI) = (I − (T − λI)Rµ)(T − µI)

= T − µI − (T − λI)

= (λ− µ)I,

so
Rλ −Rµ = (λ− µ)RλRµ, (3)

the resolvent identity. Thus

∥Rλ −Rµ∥ ≤ |λ− µ| ∥Rλ∥ ∥Rµ∥ ,
4For each v, w ∈ H we are going to construct a bounded entire function C → C depending

on v and w, which by Liouville’s theorem must be constant, and it will turn out to be 0. This
will lead to a contradiction.
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and together with ∥Rµ∥ − ∥Rλ∥ ≤ ∥Rµ −Rλ∥ we get

∥Rµ∥ (1− |λ− µ| ∥Rλ∥) ≤ ∥Rλ∥ .

If |λ− µ| ≤ 1
2 · ∥Rλ∥−1

, then

∥Rµ∥ ≤ 2 ∥Rλ∥ ,

whence, for |λ− µ| ≤ 1
2 · ∥Rλ∥−1

,

∥Rλ −Rµ∥ ≤ 2|λ− µ| ∥Rλ∥2 .

Therefore, λ 7→ Rλ is a continuous function C → B(H). From this and (3) it
follows that for each λ ∈ C,5

lim
µ→λ

Rλ −Rµ

λ− µ
= R2

λ.

Let v, w ∈ H and define fv,w : C → C by

fv,w(λ) = ⟨Rλv, w⟩ , λ ∈ C.

For λ ∈ C,

lim
µ→λ

fv,w(λ)− fv,w(µ)

λ− µ
= lim

µ→λ

〈
Rλ −Rµ

λ− µ
v,w

〉
=

〈
R2

λv, w
〉
.

Thus fv,w is an entire function. For |λ| > ∥T∥, Rλ = − 1
λ

∑∞
n=0

Tn

λn , so, for

r = ∥T∥
|λ| ,

∥Rλ∥ =
1

|λ|

∥∥∥∥∥
∞∑

n=0

Tn

λ

∥∥∥∥∥
≤ 1

|λ|

∞∑
n=0

rn

=
1

|λ|
1

1− r

=
1

|λ|
1

1− ∥T∥
|λ|

=
1

|λ| − ∥T∥
.

Hence, for |λ| > ∥T∥,

|fv,w(λ)| = | ⟨Rλv, w⟩ |
≤ ∥Rλ∥ ∥v∥ ∥w∥

≤ ∥v∥ ∥w∥
|λ| − ∥T∥

,

5There are no complications that appear if we do complex analysis on functions from C to
a complex Banach algebra rather than on functions from C to C. Thus this statement is that
λ → Rλ is a holomorphic function C → B(H).
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from which it follows that fv,w is bounded and that lim|λ|→∞ fv,w(λ) = 0.
Therefore by Liouville’s theorem, fv,w(λ) = 0 for all λ. Let’s recap: for all
v, w ∈ H and for all λ ∈ C, ⟨Rλv, w⟩ = 0. Switching the order of the universal
quantifiers, for all λ ∈ C and for all v, w ∈ H we have ⟨Rλv, w⟩ = 0, which
implies that for all λ ∈ C we have Rλ = 0. But by assumption Rλ is invertible,
so this is a contradiction. Hence σ(T ) is nonempty.
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