The spectrum of a self-adjoint operator is a compact subset of \mathbb{R}

Jordan Bell

April 3, 2014

Abstract

In these notes I prove that the spectrum of a bounded linear operator from a Hilbert space to itself is a nonempty compact subset of \mathbb{C}, and that if the operator is self-adjoint then the spectrum is contained in \mathbb{R}. To show that the spectrum is nonempty I prove various facts about resolvents.

1 Adjoints

1.1 Operator norm

Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{C}$, and define $I: H \rightarrow H$ by $I x=x, x \in H .$. For $v \in H$, let $\|v\|=\sqrt{\langle v, v\rangle}$, and if $T: H \rightarrow H$ is a bounded linear map, let

$$
\|T\|=\sup _{\|v\| \leq 1}\|T v\|
$$

namely, the operator norm of T.

1.2 Definition of adjoint

The Riesz representation theorem states that if $\phi: H \rightarrow \mathbb{C}$ is a bounded linear map then there is a unique $v_{\phi} \in H$ such that

$$
\phi(x)=\left\langle x, v_{\phi}\right\rangle
$$

for all $x \in H$. Let $T: H \rightarrow H$ be a bounded linear map, and for $y \in H$, define $\phi_{y}: H \rightarrow \mathbb{C}$ by

$$
\phi_{y}(x)=\langle T x, y\rangle .
$$

$\phi_{y}: H \rightarrow \mathbb{C}$ is a bounded linear map, so by the Riesz representation theorem there is a unique v_{y} such that

$$
\phi_{y}(x)=\left\langle x, v_{y}\right\rangle
$$

for all $x \in H$. Define $T^{*}: H \rightarrow H$ by

$$
T^{*} y=v_{y}
$$

$T^{*} y$ is well-defined because of the uniqueness in the Riesz representation theorem. For all $x, y \in H$,

$$
\left\langle x, T^{*} y\right\rangle=\left\langle x, v_{y}\right\rangle=\phi_{y}(x)=\langle T x, y\rangle .
$$

We call $T^{*}: H \rightarrow H$ the adjoint of $T: H \rightarrow H$.

1.3 Adjoint is linear

For $y_{1}, y_{2} \in H$, we have for all $x \in H$ that

$$
\begin{aligned}
\left\langle x, T^{*}\left(y_{1}+y_{2}\right)\right\rangle & =\left\langle T x, y_{1}+y_{2}\right\rangle \\
& =\left\langle T x, y_{1}\right\rangle+\left\langle T x, y_{2}\right\rangle \\
& =\left\langle x, T^{*} y_{1}+T^{*} y_{2}\right\rangle .
\end{aligned}
$$

Hence for all $x \in H$,

$$
\left\langle x, T^{*}\left(y_{1}+y_{2}\right)-T^{*} y_{1}-T^{*} y_{2}\right\rangle=0
$$

In particular this is true for $x=T^{*}\left(y_{1}+y_{2}\right)-T^{*} y_{1}-T^{*} y_{2}$, so by the nondegeneracy of $\langle\cdot, \cdot\rangle$ we get

$$
T^{*}\left(y_{1}+y_{2}\right)-T^{*} y_{1}-T^{*} y_{2}=0
$$

We similarly obtain for all $\lambda \in \mathbb{C}$ and all $y \in H$ that

$$
T^{*}(\lambda y)-\lambda T^{*} y=0
$$

Hence $T^{*}: H \rightarrow H$ is a linear map.

1.4 Adjoint is bounded

For $x, y \in H$, by the Cauchy-Schwarz inequality we have

$$
\left|\phi_{y}(x)\right|=\left|\left\langle x, v_{y}\right\rangle\right| \leq\|x\|\left\|v_{y}\right\|,
$$

so $\left\|\phi_{y}\right\| \leq\left\|v_{y}\right\|$, i.e. the operator norm of ϕ_{y} is less than or equal to the norm of v_{y}. If $v_{y} \neq 0$, then $\left\|\frac{v_{y}}{\left\|v_{y}\right\|}\right\|=1$ and

$$
\left|\phi_{y}\left(\frac{v_{y}}{\left\|v_{y}\right\|}\right)\right|=\left\langle\frac{v_{y}}{\left\|v_{y}\right\|}, v_{y}\right\rangle=\left\|v_{y}\right\| .
$$

It follows that

$$
\left\|\phi_{y}\right\|=\left\|v_{y}\right\|
$$

Then for $y \in H$, by the Cauchy-Schwarz inequality and because T is bounded we have

$$
\begin{aligned}
\left\|T^{*} y\right\| & =\left\|v_{y}\right\| \\
& =\left\|\phi_{y}\right\| \\
& =\sup _{\|x\| \leq 1}\left\|\phi_{y}(x)\right\| \\
& =\sup _{\|x\| \leq 1}|\langle T x, y\rangle| \\
& \leq \sup _{\|x\| \leq 1}\|T\|\|x\|\|y\| \\
& \leq\|T\|\|y\|
\end{aligned}
$$

Therefore T^{*} is bounded. Thus if $T: H \rightarrow H$ is a bounded linear map then its adjoint $T^{*}: H \rightarrow H$ is a bounded linear map.

1.5 Adjoint is involution

Because $T^{*}: H \rightarrow H$ is a bounded linear map, it has an adjoint $T^{* *}: H \rightarrow H$, and $T^{* *}$ is itself a bounded linear map. For all $x, y \in H$,

$$
\begin{aligned}
\langle T x, y\rangle & =\frac{\left\langle x, T^{*} y\right\rangle}{} \\
& =\overline{\left\langle T^{*} y, x\right\rangle} \\
& =\overline{\left\langle y, T^{* *} x\right\rangle} \\
& =\left\langle T^{* *} x, y\right\rangle
\end{aligned}
$$

Hence for all $x, y \in H$,

$$
\left\langle T x-T^{* *} x, y\right\rangle=0
$$

This is true in particular for $y=T x-T^{* *} x$, so by the nondegeneracy of $\langle\cdot, \cdot \cdot\rangle$ we obtain

$$
T x-T^{* *} x=0, \quad x \in H
$$

Thus for any bounded linear map $T: H \rightarrow H, T^{* *}=T$. In words, if T is a bounded linear map from a Hilbert space to itself, then the adjoint of its adjoint is itself. We have shown already that $\left\|T^{*}\right\| \leq\|T\|$. Hence also $\|T\|=\left\|T^{* *}\right\| \leq\left\|T^{*}\right\|$, so

$$
\|T\|=\left\|T^{*}\right\|
$$

If $T^{*}=T$, we say that T is self-adjoint.

2 Bounded linear operators

Let $\mathscr{B}(H)$ be the set of bounded linear maps $H \rightarrow H$. With the operator norm, one checks that $\mathscr{B}(H)$ is a Banach space. We define a product on $\mathscr{B}(H)$ by $T_{1} T_{2}=T_{1} \circ T_{2}$, and thus $\mathscr{B}(H)$ is an algebra. We have

$$
\left\|T_{1} T_{2}\right\|=\sup _{\|x\| \leq 1}\left\|T_{1}\left(T_{2} x\right)\right\| \leq \sup _{\|x\| \leq 1}\left\|T_{1}\right\|\left\|T_{2} x\right\|=\left\|T_{1}\right\| \sup _{\|x\| \leq 1}\left\|T_{2} x\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|
$$

and thus $\mathscr{B}(H)$ is a Banach algebra. ${ }^{1}$ Let $\mathscr{B}_{\mathrm{sa}}(H)$ be the set of all $T \in \mathscr{B}(H)$ that are self-adjoint.

Theorem 1. If $T \in \mathscr{B}(H)$, then T is self-adjoint if and only if $\langle T x, x\rangle \in \mathbb{R}$ for all $x \in H$.

Proof. If $T \in \mathscr{B}_{\text {sa }}(H)$, then for all $x \in H$,

$$
\langle T x, x\rangle=\left\langle x, T^{*} x\right\rangle=\langle x, T x\rangle=\overline{\langle T x, x\rangle}
$$

so $\langle T x, x\rangle \in \mathbb{R}$.
If $T \in \mathscr{B}(H)$ and $\langle T x, x\rangle \in \mathbb{R}$ for all $x \in H$, then

$$
\langle T x, x\rangle=\left\langle x, T^{*} x\right\rangle=\overline{\left\langle T^{*} x, x\right\rangle}=\left\langle T^{*} x, x\right\rangle
$$

so, putting $A=T-T^{*}$, for all $x \in H$ we have

$$
\langle A x, x\rangle=0
$$

Thus, for all $x, y \in H$ we have

$$
\langle A x, x\rangle=0, \quad\langle A y, y\rangle=0, \quad\langle A(x+y), x+y\rangle=0
$$

and combining these three equations,

$$
0=\langle A x, x\rangle+\langle A x, y\rangle+\langle A y, x\rangle+\langle A y, y\rangle=0+\langle A x, y\rangle+\langle A y, x\rangle+0
$$

But $A^{*}=-A$, so we get

$$
\langle A x, y\rangle+\langle y,-A x\rangle=0
$$

hence

$$
\begin{equation*}
\langle A x, y\rangle-\overline{\langle A x, y\rangle}=0 \tag{1}
\end{equation*}
$$

As well, for all $x, y \in H$ we have

$$
\langle A x,-i y\rangle-\overline{\langle A x,-i y\rangle}=0
$$

so

$$
\begin{equation*}
\langle A x, y\rangle+\overline{\langle A x, y\rangle}=0 \tag{2}
\end{equation*}
$$

By (1) and (2), for all $x, y \in H$ we have

$$
\langle A x, y\rangle=0
$$

and thus $A=0$, i.e. $T=T^{*}$.

$$
\begin{aligned}
& { }^{1} \text { The adjoint map } *: \mathscr{B}(H) \rightarrow \mathscr{B}(H) \text { satisfies, for } \lambda \in \mathbb{C} \text { and } T_{1}, T_{2} \in \mathscr{B}(H), \\
& T^{* *}=T, \quad\left(T_{1}+T_{2}\right)^{*}=T_{1}^{*}+T_{2}^{*}, \quad(\lambda T)^{*}=\bar{\lambda} T^{*}, \quad\left\|T^{*} T\right\|=\|T\|^{2} .
\end{aligned}
$$

Thus $\mathscr{B}(H)$ is a C^{*}-algebra. $I \in \mathscr{B}(H)$, so we say that $\mathscr{B}(H)$ is unital.

Using the above characterization of bounded self-adjoint operators, we can prove that a limit of bounded self-adjoint operators is itself a bounded selfadjoint operator.

Theorem 2. $\mathscr{B}_{\mathrm{sa}}(H)$ is a closed subset of $\mathscr{B}(H)$.
Proof. If $T_{n} \in \mathscr{B}_{\mathrm{sa}}(H)$ and $T_{n} \rightarrow T \in \mathscr{B}(H)$, then for $x \in H$ we have

$$
\langle T x, x\rangle=\lim _{n \rightarrow \infty}\left\langle T_{n} x, x\right\rangle \in \mathbb{R}
$$

hence $T \in \mathscr{B}_{\text {sa }}(H)$.
If $T \in \mathscr{B}_{\text {sa }}(H)$ and $\langle T x, x\rangle \geq 0$ for all $x \in H$, we say that T is positive. Let $\mathscr{B}_{+}(H)$ be the set of all positive $T \in \mathscr{B}_{\mathrm{sa}}(H)$. For $S, T \in \mathscr{B}_{\mathrm{sa}}(H)$, if

$$
T-S \in \mathscr{B}_{+}(H)
$$

we write $S \leq T$. Thus, we can talk about one self-adjoint operator being greater than or equal to another self-adjoint operator. $S \leq T$ is equivalent to

$$
\langle S x, x\rangle \leq\langle T x, x\rangle
$$

for all $x \in H$.

3 A condition for invertibility

Theorem 3. If $T \in \mathscr{B}(H)$ and there is some $\alpha>0$ such that $\alpha I \leq T T^{*}$ and $\alpha I \leq T^{*} T$, then $T^{-1} \in \mathscr{B}(H)$.

Proof. By $\alpha I \leq T^{*} T$, we have for all $x \in H$,

$$
\|T x\|^{2}=\langle T x, T x\rangle=\left\langle T^{*} T x, x\right\rangle \geq\langle\alpha x, x\rangle=\alpha\|x\|^{2},
$$

so $\|T x\| \geq \sqrt{\alpha}\|x\|$. This implies that T is injective. By $\alpha I \leq T T^{*}$, we have for all $x \in H$,

$$
\left\|T^{*} x\right\|^{2}=\left\langle T^{*} x, T^{*} x\right\rangle=\left\langle T T^{*} x, x\right\rangle \geq\langle\alpha x, x\rangle=\alpha\|x\|^{2},
$$

so $\left\|T^{*} x\right\| \geq \sqrt{\alpha}\|x\|$, and hence T^{*} is injective. Let $T x_{n} \rightarrow y \in H$. Then,

$$
\left\|T x_{n}-T x_{m}\right\|^{2}=\left\|T\left(x_{n}-x_{m}\right)\right\|^{2} \geq \alpha\left\|x_{n}-x_{m}\right\|^{2}
$$

Since $T x_{n}$ converges it is a Cauchy sequence, and from the above inequality it follows that x_{n} is a Cauchy sequence, hence there is some $x \in H$ with $x_{n} \rightarrow x$. As T is continuous, $y=T x \in T(H)$, showing that $T(H)$ is a closed subset of H. But it is a fact that if $T \in \mathscr{B}(H)$ then the closure of $T(H)$ is equal to $\left(\operatorname{ker} T^{*}\right)^{\perp} .{ }^{2}$ Thus, as we have shown that T^{*} is injective,

$$
T(H)=\left(\operatorname{ker} T^{*}\right)^{\perp}=\{0\}^{\perp}=H
$$

[^0]i.e. T is surjective. Hence $T: H \rightarrow H$ is bijective. It is a fact that if $T \in \mathscr{B}(H)$ is bijective then $T^{-1} \in \mathscr{B}(H)$, completing the proof. ${ }^{3}$

4 Spectrum

For $T \in \mathscr{B}(H)$, we define the spectrum $\sigma(T)$ of T to be the set of all $\lambda \in \mathbb{C}$ such $T-\lambda I$ is not bijective, and we define the resolvent set of T to be $\rho(T)=\mathbb{C} \backslash \sigma(T)$. To say that $\lambda \in \rho(T)$ is to say that $T-\lambda I$ is a bijection, and if $T-\lambda I$ is a bijection it follows from the open mapping theorem that its inverse function is an element of $\mathscr{B}(H)$: the inverse of a linear bijection is itself linear, but the inverse of a continuous bijection need not itself be continuous, which is where we use the open mapping theorem.

We prove that the spectrum of a bounded self-adjoint operator is real.
Theorem 4. If $T \in \mathscr{B}_{\text {sa }}(H)$, then $\sigma(T) \subseteq \mathbb{R}$.
Proof. If $\lambda \in \mathbb{C} \backslash \mathbb{R}, \lambda=a+i b, b \neq 0$, and $X=T-\lambda I$, then

$$
\begin{aligned}
X X^{*} & =(T-\lambda I)(T-\lambda I)^{*} \\
& =(T-(a+i b) I)(T-(a-i b) I) \\
& =T^{2}-(a-i b) T-(a+i b) T+\left(a^{2}+b^{2}\right) I \\
& =\left(a^{2}+b^{2}\right) I-2 a T+T^{2} \\
& =b^{2} I+(a I-T)^{2} \\
& =b^{2} I+(a I-T)(a I-T)^{*} \\
& \geq b^{2} I .
\end{aligned}
$$

$X^{*} X=X X^{*} \geq b^{2} I$ and $b>0$, so by Theorem 3, $X=T-\lambda I$ has an inverse $(T-\lambda I)^{-1} \in \mathscr{B}(H)$, showing $\lambda \notin \sigma(T)$.

5 The spectrum of a bounded linear map is bounded

If $\lambda \in \rho(T)$ then we define $R_{\lambda}=(T-\lambda I)^{-1} \in \mathscr{B}(H)$, called the resolvent of T.
Theorem 5. If $T \in \mathscr{B}(H)$ and $|\lambda|>\|T\|$ then $\lambda \in \rho(T)$.
Proof. Define $R_{\lambda, N} \in \mathscr{B}(H)$ by

$$
R_{\lambda, N}=-\frac{1}{\lambda} \sum_{n=0}^{N} \frac{T^{n}}{\lambda^{n}}
$$

[^1]As $\frac{\|T\|}{|\lambda|}<1$, the geometric series $\sum_{n=0}^{\infty} \frac{\|T\|^{n}}{|\lambda|^{n}}$ converges, from which it follows that $R_{\lambda, N}$ is a Cauchy sequence in $\mathscr{B}(H)$ and so converges to some $S_{\lambda} \in \mathscr{B}(H)$. We have

$$
\begin{aligned}
\left\|S_{\lambda}(T-\lambda I)-I\right\| \leq & \left\|S_{\lambda}(T-\lambda I)-R_{\lambda, N}(T-\lambda I)\right\| \\
& +\left\|R_{\lambda, N}(T-\lambda I)-I\right\| \\
\leq & \left\|S_{\lambda}-R_{\lambda, N}\right\|\|T-\lambda I\|+\left\|-\frac{T}{\lambda} \sum_{n=0}^{N} \frac{T^{n}}{\lambda^{n}}+\sum_{n=0}^{N} \frac{T^{n}}{\lambda^{n}}-I\right\| \\
= & \left\|S_{\lambda}-R_{\lambda, N}\right\|\|T-\lambda I\|+\left\|-\frac{T^{N+1}}{\lambda^{N+1}}\right\| \\
\leq & \left\|S_{\lambda}-R_{\lambda, N}\right\|\|T-\lambda I\|+\left(\frac{\|T\|}{|\lambda|}\right)^{N+1},
\end{aligned}
$$

which tends to 0 as $N \rightarrow \infty$. Therefore $S_{\lambda}(T-\lambda I)=I$. And,

$$
\begin{aligned}
\left\|(T-\lambda I) S_{\lambda}-I\right\| \leq & \left\|(T-\lambda I) S_{\lambda}-(T-\lambda I) R_{\lambda, N}\right\| \\
& +\left\|(T-\lambda I) R_{\lambda, N}-I\right\| \\
\leq & \|T-\lambda I\|\left\|S_{\lambda}-R_{\lambda, N}\right\|+\left(\frac{\|T\|}{|\lambda|}\right)^{N+1}
\end{aligned}
$$

whence $(T-\lambda I) S_{\lambda}=I$, showing that

$$
S_{\lambda}=(T-\lambda I)^{-1}
$$

Thus, if $|\lambda|>\|T\|$ then $\lambda \in \rho(T)$.
The above theorem shows that $\sigma(T)$ is a bounded set: it is contained in the closed disc $|\lambda| \leq\|T\|$. Moreover, if $|\lambda|>\|T\|$ then we have an explicit expression for the resolvent R_{λ} :

$$
R_{\lambda}=-\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{T^{n}}{\lambda^{n}}
$$

6 The spectrum of a bounded linear map is closed

Theorem 6. If $T \in \mathscr{B}(H)$, then $\rho(T)$ is an open subset of \mathbb{C}.
Proof. If $\lambda \in \rho(T)$, let $|\mu-\lambda|<\left\|R_{\lambda}\right\|^{-1}$, and define $R_{\mu, N} \in \mathscr{B}(H)$ by

$$
R_{\mu, N}=R_{\lambda} \sum_{n=0}^{N}(\mu-\lambda)^{n} R_{\lambda}^{n}
$$

Because $|\mu-\lambda|<\left\|R_{\lambda}\right\|^{-1}, R_{\mu, N}$ is a Cauchy sequence in $\mathscr{B}(H)$ and converges to some $S_{\mu} \in \mathscr{B}(H)$. We have, as $R_{\lambda}=(T-\lambda I)^{-1}$,

$$
\begin{aligned}
\left\|S_{\mu}(T-\mu I)-I\right\| \leq & \left\|S_{\mu}(T-\mu I)-R_{\mu, N}(T-\mu I)\right\| \\
& +\left\|R_{\mu, N}(T-\mu I+\lambda I-\lambda I)-I\right\| \\
\leq & \left\|S_{\mu}-R_{\mu, N}\right\|\|T-\mu I\| \\
& +\left\|R_{\mu, N}(T-\lambda I)-R_{\mu, N}(\mu-\lambda)-I\right\| \\
= & \left\|S_{\mu}-R_{\mu, N}\right\|\|T-\mu I\| \\
& +\left\|\sum_{n=0}^{N}(\mu-\lambda)^{n} R_{\lambda}^{n}-(\mu-\lambda) R_{\lambda} \sum_{n=0}^{N}(\mu-\lambda)^{n} R_{\lambda}^{n}-I\right\| \\
= & \left\|S_{\mu}-R_{\mu, N}\right\|\|T-\mu I\|+\left\|-(\mu-\lambda)^{N+1} R_{\lambda}^{N+1}\right\| \\
= & \left\|S_{\mu}-R_{\mu, N}\right\|\|T-\mu I\|+|\mu-\lambda|^{N+1}\left\|R_{\lambda}\right\|^{N+1},
\end{aligned}
$$

which tends to 0 as $N \rightarrow \infty$. Therefore $S_{\mu}(T-\mu I)=I$. One checks likewise that $(T-\mu I) S_{\mu}=I$, and hence that

$$
(T-\mu I)^{-1}=S_{\mu}
$$

showing that $\mu \in \rho(T)$.
As $\sigma(T)$ is bounded and closed, it is a compact set in \mathbb{C}. Moreover, if $\lambda \notin \sigma(T)$ and $|\mu-\lambda|<\left\|R_{\lambda}\right\|^{-1}$, then

$$
R_{\mu}=R_{\lambda} \sum_{n=0}^{\infty}(\mu-\lambda)^{n} R_{\lambda}^{n}
$$

7 The spectrum of a bounded linear map is nonempty

Theorem 7. If $T \in \mathscr{B}(H)$ is self-adjoint, then $\sigma(T) \neq \emptyset$.
Proof. Suppose by contradiction that $\sigma(T)=\emptyset .{ }^{4}$ If $\lambda, \mu \in \mathbb{C}$, then

$$
\begin{aligned}
(T-\lambda I)\left(R_{\lambda}-R_{\mu}\right)(T-\mu I) & =\left(I-(T-\lambda I) R_{\mu}\right)(T-\mu I) \\
& =T-\mu I-(T-\lambda I) \\
& =(\lambda-\mu) I
\end{aligned}
$$

so

$$
\begin{equation*}
R_{\lambda}-R_{\mu}=(\lambda-\mu) R_{\lambda} R_{\mu} \tag{3}
\end{equation*}
$$

the resolvent identity. Thus

$$
\left\|R_{\lambda}-R_{\mu}\right\| \leq|\lambda-\mu|\left\|R_{\lambda}\right\|\left\|R_{\mu}\right\|
$$

[^2]and together with $\left\|R_{\mu}\right\|-\left\|R_{\lambda}\right\| \leq\left\|R_{\mu}-R_{\lambda}\right\|$ we get
$$
\left\|R_{\mu}\right\|\left(1-|\lambda-\mu|\left\|R_{\lambda}\right\|\right) \leq\left\|R_{\lambda}\right\| .
$$

If $|\lambda-\mu| \leq \frac{1}{2} \cdot\left\|R_{\lambda}\right\|^{-1}$, then

$$
\left\|R_{\mu}\right\| \leq 2\left\|R_{\lambda}\right\|
$$

whence, for $|\lambda-\mu| \leq \frac{1}{2} \cdot\left\|R_{\lambda}\right\|^{-1}$,

$$
\left\|R_{\lambda}-R_{\mu}\right\| \leq 2|\lambda-\mu|\left\|R_{\lambda}\right\|^{2}
$$

Therefore, $\lambda \mapsto R_{\lambda}$ is a continuous function $\mathbb{C} \rightarrow \mathscr{B}(H)$. From this and (3) it follows that for each $\lambda \in \mathbb{C},{ }^{5}$

$$
\lim _{\mu \rightarrow \lambda} \frac{R_{\lambda}-R_{\mu}}{\lambda-\mu}=R_{\lambda}^{2}
$$

Let $v, w \in H$ and define $f_{v, w}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
f_{v, w}(\lambda)=\left\langle R_{\lambda} v, w\right\rangle, \quad \lambda \in \mathbb{C} .
$$

For $\lambda \in \mathbb{C}$,

$$
\lim _{\mu \rightarrow \lambda} \frac{f_{v, w}(\lambda)-f_{v, w}(\mu)}{\lambda-\mu}=\lim _{\mu \rightarrow \lambda}\left\langle\frac{R_{\lambda}-R_{\mu}}{\lambda-\mu} v, w\right\rangle=\left\langle R_{\lambda}^{2} v, w\right\rangle .
$$

Thus $f_{v, w}$ is an entire function. For $|\lambda|>\|T\|, R_{\lambda}=-\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{T^{n}}{\lambda^{n}}$, so, for $r=\frac{\|T\|}{|\lambda|}$,

$$
\begin{aligned}
\left\|R_{\lambda}\right\| & =\frac{1}{|\lambda|}\left\|\sum_{n=0}^{\infty} \frac{T^{n}}{\lambda}\right\| \\
& \leq \frac{1}{|\lambda|} \sum_{n=0}^{\infty} r^{n} \\
& =\frac{1}{|\lambda|} \frac{1}{1-r} \\
& =\frac{1}{|\lambda|} \frac{1}{1-\frac{\|T\|}{|\lambda|}} \\
& =\frac{1}{|\lambda|-\|T\|}
\end{aligned}
$$

Hence, for $|\lambda|>\|T\|$,

$$
\begin{aligned}
\left|f_{v, w}(\lambda)\right| & =\left|\left\langle R_{\lambda} v, w\right\rangle\right| \\
& \leq\left\|R_{\lambda}\right\|\|v\|\|w\| \\
& \leq \frac{\|v\|\|w\|}{|\lambda|-\|T\|},
\end{aligned}
$$

[^3]from which it follows that $f_{v, w}$ is bounded and that $\lim _{|\lambda| \rightarrow \infty} f_{v, w}(\lambda)=0$. Therefore by Liouville's theorem, $f_{v, w}(\lambda)=0$ for all λ. Let's recap: for all $v, w \in H$ and for all $\lambda \in \mathbb{C},\left\langle R_{\lambda} v, w\right\rangle=0$. Switching the order of the universal quantifiers, for all $\lambda \in \mathbb{C}$ and for all $v, w \in H$ we have $\left\langle R_{\lambda} v, w\right\rangle=0$, which implies that for all $\lambda \in \mathbb{C}$ we have $R_{\lambda}=0$. But by assumption R_{λ} is invertible, so this is a contradiction. Hence $\sigma(T)$ is nonempty.

[^0]: ${ }^{2}$ It is straightforward to show that if v is in the closure of $T(H)$ and $w \in \operatorname{ker} T^{*}$ then $\langle v, w\rangle=0$. It is less straightforward to show the opposite inclusion.

[^1]: ${ }^{3} T^{-1}: H \rightarrow H$ is linear. The open mapping theorem states that if X and Y are Banach spaces and $S: X \rightarrow Y$ is a bounded linear map that is surjective, then S is an open map, i.e., if U is an open subset of X then $S(U)$ is an open subset of Y. Here, $T \in \mathscr{B}(H)$ and T is bijective, and so by the open mapping theorem T is open, from which it follows that $T^{-1}: H \rightarrow H$ is continuous, and so bounded (a linear map between normed vector spaces is continuous if and only if it is bounded).

[^2]: ${ }^{4}$ For each $v, w \in H$ we are going to construct a bounded entire function $\mathbb{C} \rightarrow \mathbb{C}$ depending on v and w, which by Liouville's theorem must be constant, and it will turn out to be 0 . This will lead to a contradiction.

[^3]: ${ }^{5}$ There are no complications that appear if we do complex analysis on functions from \mathbb{C} to a complex Banach algebra rather than on functions from \mathbb{C} to \mathbb{C}. Thus this statement is that $\lambda \rightarrow R_{\lambda}$ is a holomorphic function $\mathbb{C} \rightarrow \mathscr{B}(H)$.

