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Let = {7 € C:Im7 > 0}. Define C : H — C by
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We take as granted that C' is holomorphic on $).
First we calculate the Fourier transform of z — sech wx

Lemma 1. For £ € R,

oo
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Proof. Let € € R and define
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flz) =

coshmz’

The poles of f are those z at which coshmz = 0, thus z = ni+ %, n € Z. Taking
vr to be the contour going from —R to R, from R to R + 2i, from R + 2i to
—R+2i, and from —R+2i to —R, the poles of f inside vy are % and 3. Because
(coshz)’ = wsinh 7z, we work out
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We bound the integrals on the vertical sides as follows. For z = —R + iy,
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and, for 0 <y < 2,
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For z = R + iy,
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and, for 0 <y < 2,
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Therefore
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and likewise
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As R — oo, each of these tends to 0. Therefore,
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For the top horizontal side,
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Writing
1= [t

this gives us
I = e8] — 2628 (™ — 7)),

and so
ems — e 7E ems — e ems — e 7E
I = —2e2"¢ = =2 = sech ¢,
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which is what we wanted to show. ]



Corollary 2. Fort >0 and a € R,

/ e~ 2mitT g m2miaT g0 )y %dm = tsech (w (€ + a)t), £eR.
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Proof.
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= tsech (7 (€ + a)t).

Theorem 3. For all T € §,
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Proof. For f € L'(R), we define f: R — C by

fle) = /Re_mf’”f(x)dx, ¢eR.

Following Stein and Shakarchi, for a > 0, define §, to be the set of those
functions f defined on some neighborhood of R in C such that f is holomorphic
on the set {z € C:|Imz| < a} and for which there is some A > 0 such that
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and we set § = Ua>0 %,. The Poisson summation formula? states that for

fes, R
d_fm) =) f(n).
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For z = z + iy with |y| < 1,
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|sech %Z| =

= sech 7|z|.
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Let t > 0. Because the zeros of cosh7z are ni + %, n € Z, the function f(z) =
sech %% belongs to 35. Corollary 2 with a = 0 gives us

]?(5) = tsech w&t,

so applying the Poisson summation formula we get

Z sech ? =t Z sech mnt,
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or,
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sec — =1 E sec mint,
neE”Z nez
ie.,

For 7 = it this reads ) .
)
Clry=-C|{——].
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But 7 — C(7) and 7 — %C’ (f%) are holomorphic on $), so by analytic contin-
uation this identity is true for all 7 € §. O

Theorem 4. ) A
C(l—)N,TeT, Im7 — +oco.
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Proof. Let t > 0 and define f(z) = e~ ™*sech ZZ, which we check belongs to B
Corollary 2 with a = % tells us that for ¢ > 0,
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— 00

Thus the Poisson summation formula gives, as (—1)" = e~
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For 7 = it this reads



Now,

1 1 ™
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so the above states that for 7 =it, ¢t > 0,
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We assert that both sides of (1) are holomorphic on §, and thus by analytic
continuation that (1) is true for all 7 € .
Write 7 = 0 +it. For v > 0,
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For v = %,
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It follows that
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Using this with (1) yields

1 AT ins —3rt
0(1_):.7-62+O(7|e E )s T =0 +it,
2

.
proving the claim. O

Define 6 : $ — C by

0(r) = Z em"QT, TESN.
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By proving that 9% is a modular form of weight 0, it follows that it is constant,
and one thus finds that C' = 62.> One reason that 6 is significant is that, for
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where r2(n) denotes the number of ways that n can be expressed as a sum of
two squares. We can write C'(7) as

oo

1
C(r)y=2 Z 7(]” =

n=—oo

22 1+q2n

n=—oo

n

q
n:11+q
e’}
1_q2n
n=1 1_(]
ey ((m - )
n=1

Therefore the identity 6(7)2 = C(7) can be written as

0 q3n
% ( _1+4Z(1_q4n_1_q4n)
We write
Z Y ) = 30 ) =3 ket
n= 1 m=0 n=1m=0 k=1

where a(k) denotes the number of divisors of k of the form 4m + 1, and
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n=1 m=0 n=1m=0

where b(k) denotes the number of divisors of k of the form 4m + 3. Thus for

n>1,
r2(n) = 4(a(n) — b(n)).

3Elias M. Stein and Rami Shakarchi, Complex Analysis, p. 304.




