Regulated functions and the regulated integral

Jordan Bell

April 3, 2014

1 Regulated functions and step functions

Let $I=[a, b]$ and let X be a normed space. A function $f: I \rightarrow X$ is said to be regulated if for all $t \in[a, b)$ the $\operatorname{limit}_{\lim }^{s \rightarrow t^{+}} \boldsymbol{f}(s)$ exists and for all $t \in(a, b]$ the limit $\lim _{s \rightarrow t^{-}} f(s)$ exists. We denote these limits respectively by $f\left(t^{+}\right)$ and $f\left(t^{-}\right)$. We define $R(I, X)$ to be the set of regulated functions $I \rightarrow X$. It is apparent that $R(I, X)$ is a vector space. One checks that a regulated function is bounded, and that $R(I, X)$ is a normed space with the norm $\|f\|_{\infty}=$ $\sup _{t \in[a, b]}\|f(t)\|$.

Theorem 1. If I is a compact interval in \mathbb{R} and X is a normed algebra, then $R(I, X)$ is a normed algebra.

Proof. If $f, g \in R(I, X)$, then $f g \in R(I, X)$ because the limit of a product is equal to a product of limits. For $t \in I$ we have

$$
\|(f g)(t)\|=\|f(t) g(t)\| \leq\|f(t)\|\|g(t)\| \leq\|f\|_{\infty}\|g\|_{\infty}
$$

so $\|f g\|_{\infty} \leq\|f\|_{\infty}\|g\|_{\infty}$.
A function $f: I \rightarrow X$, where $I=[a, b]$, is said to be a step function if there are $a=s_{0}<s_{1}<\cdots<s_{k}=b$ for which f is constant on each open interval $\left(s_{i-1}, s_{i}\right)$. We denote the set of step functions $I \rightarrow X$ by $S(I, X)$. It is apparent that $S(I, X)$ is contained in $R(I, X)$ and is a vector subspace, and the following theorem states that if X is a Banach space then $S(I, X)$ is dense in $R(I, X) .{ }^{1}$

Theorem 2. Let I be a compact interval in \mathbb{R}, let X be a Banach space, and let $f \in X^{I} . f \in R(I, X)$ if and only if for all $\epsilon>0$ there is some $g \in S(I, X)$ such that $\|f-g\|_{\infty}<\epsilon$.

We prove in the following theorem that the set of regulated functions from a compact interval to a Banach space is itself a Banach space.

Theorem 3. If I is a compact interval in \mathbb{R} and X is a Banach space, then $R(I, X)$ is a Banach space.

[^0]Proof. Let $f_{n} \in R(I, X)$ be a Cauchy sequence. For each $t \in I$ we have

$$
\left\|f_{n}(t)-f_{m}(t)\right\| \leq\left\|f_{n}-f_{m}\right\|_{\infty}
$$

hence $f_{n}(t)$ is a Cauchy sequence in X. As X is a Banach space, this Cauchy sequence converges to some limit, and we define $f(t)$ to be this limit. Thus $f \in X^{I}$ and $\left\|f-f_{n}\right\|_{\infty} \rightarrow 0$. We have to prove that $f \in R(I, X)$. Let $\epsilon>0$. There is some N for which $n \geq N$ implies that $\left\|f-f_{n}\right\|_{\infty}<\epsilon$; in particular, $\left\|f-f_{N}\right\|_{\infty}<\epsilon$. By Theorem 2, there is some $g_{N} \in S(I, X)$ with $\left\|f_{N}-g_{N}\right\|_{\infty}<$ ϵ. Then,

$$
\left\|f-g_{N}\right\|_{\infty} \leq\left\|f-f_{N}\right\|_{\infty}+\left\|f_{N}-g_{N}\right\|_{\infty}<2 \epsilon,
$$

and by Theorem 2 this implies that $f \in R(I, X)$.
The following lemma shows that the set of points of discontinuity of a regulated function taking values in a Banach space is countable.

Lemma 4. If I is a compact interval in \mathbb{R}, X is a Banach space, and $f \in$ $R(I, X)$, then

$$
\{t \in I: f \text { is discontinuous at } t\}
$$

is countable.
Proof. For each n let $g_{n} \in S(I, X)$ satisfy $\left\|f-g_{n}\right\| \leq \frac{1}{n}$, and let

$$
D_{n}=\left\{t \in I: g_{n} \text { is discontinuous at } t\right\}
$$

g_{n} is a step function so D_{n} is finite, and hence $D=\bigcup_{n=1}^{\infty} D_{n}$ is countable. It need not be true that f is discontinuous at each point in D, but we shall prove that if $t \in I \backslash D$ then f is continuous at t, which will prove the claim.

Suppose that $t \in I \backslash D$, let $\epsilon>0$, and take $N>\frac{1}{\epsilon}$. As $t \notin D_{N}$, the step function g_{N} is continuous at t, and hence there is some $\delta>0$ for which $|s-t|<\delta$ implies that $\left\|g_{N}(s)-g_{N}(t)\right\|<\epsilon$. If $|s-t|<\delta$, then

$$
\begin{aligned}
\|f(s)-f(t)\| & \leq\left\|f(s)-g_{N}(s)\right\|+\left\|g_{N}(s)-g_{N}(t)\right\|+\left\|g_{N}(t)-f(t)\right\| \\
& \leq 2\left\|f-g_{N}\right\|_{\infty}+\left\|g_{N}(s)-g_{N}(t)\right\| \\
& <\frac{2}{N}+\epsilon \\
& <3 \epsilon
\end{aligned}
$$

showing that f is continuous at t.

2 Integrals of step functions

Let $I=[a, b]$ and let X be a normed space. If $f \in S(I, X)$ then there is a subdivision $a=s_{0}<s_{1}<\cdots<s_{k}=b$ of $[a, b]$ and there are $c_{i} \in X$ such that f takes the value c_{i} on the open interval $\left(s_{i-1}, s_{i}\right)$. Suppose that there is
a subdivision $a=t_{0}<t_{1}<\cdots<t_{l}=b$ of $[a, b]$ and $d_{i} \in X$ such that f takes the value d_{i} on the open interval $\left(t_{i-1}, t_{i}\right)$. One checks that

$$
\sum_{i=1}^{k}\left(s_{i}-s_{i-1}\right) c_{i}=\sum_{i=1}^{l}\left(t_{i}-t_{i-1}\right) d_{i}
$$

We define the integral of f to be the above element of X, and denote this element of X by $\int_{I} f=\int_{a}^{b} f$.
Lemma 5. If I is a compact interval in \mathbb{R} and X is a normed space, then $\int_{I}: S(I, X) \rightarrow X$ is linear.
Lemma 6. If $I=[a, b]$ and X is a normed space, then $\int_{I}: S(I, X) \rightarrow X$ is a bounded linear map with operator norm $b-a$.

Proof. If $f \in S(I, X)$, let $a=s_{0}<s_{1}<\cdots<s_{k}=b$ be a subdivision of $[a, b]$ and let $c_{i} \in X$ such that f takes the value c_{i} on the open interval $\left(s_{i-1}, s_{i}\right)$. Then,

$$
\left\|\int_{I} f\right\| \leq \sum_{i=1}^{k}\left(s_{i}-s_{i-1}\right)\left\|c_{i}\right\| \leq \sum_{i=1}^{k}\left(s_{i}-s_{i-1}\right)\|f\|_{\infty}=(b-a)\|f\|_{\infty}
$$

This shows that $\left\|\int_{I}\right\| \leq b-a$, and if f is constant, say $f(t)=c \in X$ for all $t \in I$, then $\int_{I} f=(b-a) c$ and $\left\|\int_{I} f\right\|=(b-a)\|c\|=(b-a)\|f\|_{\infty}$, showing that $\left\|\int_{I}\right\|=b-a$.
Lemma 7. If $a \leq b \leq c$, if X is a normed space, and if $g \in S([a, c], X)$, then

$$
\int_{a}^{c} g=\int_{a}^{b} g+\int_{b}^{c} g
$$

3 The regulated integral

Let I be a compact interval in \mathbb{R} and let X be a Banach space. Theorem 2 shows that $S(I, X)$ is a dense subspace of $R(I, X)$, and therefore if $T_{0} \in \mathscr{B}(S(I, X), X)$ then there is one and only one $T \in \mathscr{B}(R(I, X), X)$ whose restriction to $S(I, X)$ is equal to T_{0}, and this operator satisfies $\|T\|=\left\|T_{0}\right\|$. Lemma 6 shows that $\int_{I}: S(I, X) \rightarrow X$ is a bounded linear operator, thus there is one and only one bounded linear operator $R(I, X) \rightarrow X$ whose restriction to $S(I, X)$ is equal to \int_{I}, and we denote this operator $R(I, X) \rightarrow X$ also by \int_{I}. With $I=[a, b]$, we have $\left\|\int_{I}\right\|=b-a$. We call $\int_{I}: R(I, X) \rightarrow X$ the regulated integral.
Lemma 8. If $a \leq b \leq c$, if X is a Banach space, and if $f \in R([a, c], X)$, then

$$
\int_{a}^{c} f=\int_{a}^{b} f+\int_{b}^{c} f
$$

Proof. Let $I_{1}=[a, b], I_{2}=[b, c], I=[a, c]$, and let f_{1} and f_{2} be the restriction of f to I_{1} and I_{2} respectively. From the definition of regulated functions, $f_{1} \in$ $R\left(I_{1}, X\right)$ and $f_{2} \in R\left(I_{2}, X\right)$. By Theorem 2, for any $\epsilon>0$ there is some $g \in S(I, X)$ satisfying $\|f-g\|_{\infty}<\epsilon$. Taking g_{1} and g_{2} to be the restriction of g to I_{1} and I_{2}, we check that $g_{1} \in S\left(I_{1}, X\right)$ and $g_{2} \in S\left(I_{2}, X\right)$. Then by Lemma 7 ,

$$
\begin{aligned}
\left\|\int_{I} f-\int_{I_{1}} f_{1}-\int_{I_{2}} f_{2}\right\|_{\infty} \leq & \left\|\int_{I} f-\int_{I} g\right\|_{\infty}+\left\|\int_{I} g-\int_{I_{1}} g_{1}-\int_{I_{2}} g_{2}\right\|_{\infty} \\
& +\left\|\int_{I_{1}} g_{1}+\int_{I_{2}} g_{2}-\int_{I_{1}} f_{1}-\int_{I_{2}} f_{2}\right\|_{\infty} \\
= & \left\|\int_{I}(f-g)\right\|_{\infty}+0 \\
& +\left\|\int_{I_{1}}\left(g_{1}-f_{1}\right)\right\|_{\infty}+\left\|\int_{I_{2}}\left(g_{2}-f_{2}\right)\right\|_{\infty} \\
\leq & (c-a)\|f-g\|_{\infty}+(b-a)\left\|g_{1}-f_{2}\right\|_{\infty} \\
& +(c-b)\left\|g_{2}-f_{2}\right\|_{\infty}
\end{aligned}
$$

But $\left\|g_{1}-f_{1}\right\|_{\infty} \leq\|g-f\|_{\infty}$ and $\left\|g_{2}-f_{2}\right\|_{\infty} \leq\|g-f\|_{\infty}$, hence we obtain

$$
\left\|\int_{I} f-\int_{I_{1}} f_{1}-\int_{I_{2}} f_{2}\right\|_{\infty}<(c-a) \epsilon+(b-a) \epsilon+(c-b) \epsilon=2(c-a) \epsilon
$$

Since $\epsilon>0$ was arbitrary, we get

$$
\left\|\int_{I} f-\int_{I_{1}} f_{1}-\int_{I_{2}} f_{2}\right\|_{\infty}=0
$$

so

$$
\int_{I} f=\int_{I_{1}} f_{1}+\int_{I_{2}} f_{2}
$$

proving the claim.
We prove that applying a bounded linear map and taking the regulated integral commute. ${ }^{2}$

Lemma 9. Suppose that I is a compact interval in \mathbb{R} and that X and Y are Banach spaces. If $f \in R(I, X)$ and $T \in \mathscr{B}(X, Y)$, then $T \circ f \in R(I, Y)$ and

$$
\int_{I} T \circ f=T \int_{I} f
$$

Proof. Because T is continuous we have $T \circ f \in R(I, Y)$. For $\epsilon>0$, there is some $g \in S(I, X)$ satisfying $\|f-g\|_{\infty}<\epsilon$. Write $I=[a, b]$. Because g is a step function, there is a subdivision $a=s_{0}<s_{1}<\cdots<s_{k}=b$ of

[^1]I and there are $c_{i} \in X$ such that g takes the value c_{i} on the open interval $\left(s_{i-1}, s_{i}\right)$. Furthermore, $T \circ g$ takes the value $T c_{i}$ on the open interval $\left(s_{i-1}, s_{i}\right)$ so $T \circ g \in S(I, Y)$, and then because T is linear,
$$
\int_{I} T \circ g=\sum_{i=1}^{k}\left(s_{i}-s_{i-1}\right) T c_{i}=T \sum_{i=1}^{k}\left(s_{i}-s_{i-1}\right) c_{i}=T \int_{I} g
$$

Using this,

$$
\begin{aligned}
\left\|\int_{I} T \circ f-T \int_{I} f\right\| \leq & \left\|\int_{I} T \circ f-\int_{I} T \circ g\right\|+\left\|\int_{I} T \circ g-T \int_{I} g\right\| \\
& +\left\|T \int_{I} g-T \int_{I} f\right\| \\
= & \left\|\int_{I} T \circ(f-g)\right\|+\left\|T \int_{I}(f-g)\right\|^{\prime} \mid \\
\leq & (b-a)\|T \circ(f-g)\|_{\infty}+\|T\|\left\|_{I}(f-g)\right\|_{I} \\
\leq & (b-a)\|T\|\|f-g\|_{\infty}+\|T\|(b-a)\|f-g\|_{\infty} \\
< & 2(b-a)\|T\| \epsilon
\end{aligned}
$$

As $\epsilon>0$ is arbitrary, this means that

$$
\left\|\int_{I} T \circ f-T \int_{I} f\right\|=0
$$

and so

$$
\int_{I} T \circ f=T \int_{I} f
$$

4 Left and right derivatives

Suppose that I is an open interval in \mathbb{R}, X is a normed space, $f \in X^{I}$, and $t \in I$. We say that f is right-differentiable at t if $\frac{f(t+h)-f(t)}{h}$ has a limit as $h \rightarrow 0^{+}$, and that f is left-differentiable at t if $\frac{f(t+h)-f(t)}{h}$ has a limit as $h \rightarrow 0^{-}$. We call these limits respectively the right derivative of f at t and the left derivative of f at t, denoted respectively by $f_{+}^{\prime}(t)$ and $f_{-}^{\prime}(t)$. For f to be differentiable at t means that $f_{+}^{\prime}(t)$ and $f_{-}^{\prime}(t)$ exist and are equal.

The following is the mean value theorem for functions taking values in a Banach space. ${ }^{3}$

Theorem 10 (Mean value theorem). Suppose that $I=[a, b]$, that X is a Banach space, and that $f: I \rightarrow X$ and $g: I \rightarrow \mathbb{R}$ are continuous functions. If there is a

[^2]countable set $D \subset I$ such that $t \in I \backslash D$ implies that $f_{+}^{\prime}(t)$ and $g_{+}^{\prime}(t)$ exist and satisfy $\left\|f_{+}^{\prime}(t)\right\| \leq g_{+}^{\prime}(t)$, then
$$
\|f(b)-f(a)\| \leq g(b)-g(a)
$$

Corollary 11. Suppose that $I=[a, b]$, that X is a Banach space, and that $f: I \rightarrow X$ is continuous. If there is a countable set $D \subset I$ such that $t \in I \backslash D$ implies that $f_{+}^{\prime}(t)=0$, then f is constant on I.

5 Primitives

Let $I=[a, b]$, let X be a normed space, and let $f, g \in X^{I}$. We say that g is a primitive of f if g is continuous and if there is a countable set $D \subset I$ such that $t \in I \backslash D$ implies that g is differentiable at t and $g^{\prime}(t)=f(t)$.

Lemma 12. Suppose that I is a compact interval in \mathbb{R}, that X is a Banach space, and that $f: I \rightarrow X$ is a function. If $g_{1}, g_{2}: I \rightarrow X$ are primitives of f, then $g_{1}-g_{2}$ is constant on I.

Proof. For $i=1,2$, as g_{i} is a primitive of f there is a countable set $D_{i} \subset I$ such that $t \in I \backslash D_{i}$ implies that g_{i} is differentiable at t and $g_{i}^{\prime}(t)=f(t)$. Let $D=D_{1} \cup D_{2}$, which is a countable set. Both g_{1} and g_{2} are continuous so $g=g_{1}-g_{2}: I \rightarrow X$ is continuous, and if $t \in I \backslash D$ then g is differentiable at t and $g^{\prime}(t)=g_{1}^{\prime}(t)-g_{2}^{\prime}(t)=f(t)-f(t)=0$. Then Corollary 11 shows that g is constant on I, i.e., that $g_{1}-g_{2}$ is constant on I.

We now give a construction of primitives of regulated functions. ${ }^{4}$
Theorem 13. If $I=[a, b], X$ is a Banach space, and $f \in R(I, X)$, then the map $g: I \rightarrow X$ defined by $g(t)=\int_{a}^{t} f$ is a primitive of f on I.
Proof. For $t \in[a, b)$ and $\epsilon>0$, because f is regulated there is some $0<\delta<b-t$ such that $0<r \leq \delta$ implies that $\left\|f(t+r)-f\left(t^{+}\right)\right\| \leq \epsilon$. For $0<r \leq \delta$ and for any $0<\eta<r$, using Lemma 8 we have

$$
\begin{aligned}
\left\|\int_{a}^{t+r} f-\int_{a}^{t} f-\int_{t}^{t+r} f\left(t^{+}\right)\right\|= & \left\|\int_{t}^{t+r} f-\int_{t}^{t+r} f\left(t^{+}\right)\right\| \\
= & \left\|\int_{t}^{t+\eta}\left(f-f\left(t^{+}\right)\right)+\int_{t+\eta}^{t+r}\left(f-f\left(t^{+}\right)\right)\right\| \\
\leq & \eta \sup _{t \leq s \leq t+\eta}\left\|f(s)-f\left(t^{+}\right)\right\| \\
& +(r-\eta) \sup _{t+\eta \leq s \leq t+r}\left\|f(s)-f\left(t^{+}\right)\right\| \\
\leq & 2\|f\|_{\infty} \eta+(r-\eta) \epsilon
\end{aligned}
$$

[^3]This is true for all $0<\eta<r$, so

$$
\left\|\int_{a}^{t+r} f-\int_{a}^{t} f-\int_{t}^{t+r} f\left(t^{+}\right)\right\| \leq r \epsilon
$$

i.e.

$$
\left\|\frac{g(t+r)-g(t)}{r}-f\left(t^{+}\right)\right\| \leq \epsilon
$$

This shows that

$$
g_{+}^{\prime}(t)=f\left(t^{+}\right)
$$

Similarly,

$$
g_{-}^{\prime}(t)=f\left(t^{-}\right)
$$

Because f is regulated, Lemma 4 shows that there is a countable set $D \subset I$ such that $t \in I \backslash D$ implies that f is continuous at t. Therefore, if $t \in I \backslash D$ then $f\left(t^{+}\right)=f\left(t^{-}\right)=f(t)$, so $g_{+}^{\prime}(t)=g_{-}^{\prime}(t)$, which means that if $t \in I \backslash D$ then g is differentiable at t, with $g^{\prime}(t)=f(t)$. To prove that g is a primitive of f on I it suffices now to show that g is continuous. For $\epsilon>0$ and $t \in I$, let $\delta=\frac{\epsilon}{\|f\|_{\infty}}$, and then for $|s-t|<\delta$ we have by Lemma 8 that

$$
\|g(s)-g(t)\|=\left\|\int_{a}^{s} f-\int_{a}^{t} f\right\|=\left\|\int_{s}^{t} f\right\| \leq|t-s|\|f\|_{\infty}<\delta\|f\|_{\infty}=\epsilon
$$

showing that g is continuous at t, completing the proof.
Suppose that X is a Banach space and that $f:[a, b] \rightarrow X$ is a primitive of a regulated function $h:[a, b] \rightarrow X$. Because h is regulated, by Theorem 13 the function $g:[a, b] \rightarrow X$ defined by $g(t)=\int_{a}^{t} f$ is a primitive of f on $[a, b]$. Then applying Lemma 12, there is some $c \in X$ such that $f(t)-g(t)=c$ for all $t \in[a, b]$. But $f(a)-g(a)=f(a)$, so $c=f(a)$. Hence, for all $t \in[a, b]$,

$$
f(t)=f(a)+\int_{a}^{t} h
$$

But

$$
\int_{a}^{t} h=\int_{a}^{a+\eta_{1}} h+\int_{a+\eta_{1}}^{t-\eta_{2}} h+\int_{t-\eta_{2}}^{t} h=\int_{a}^{a+\eta_{1}} h+\int_{a+\eta_{1}}^{t-\eta_{2}} f^{\prime}+\int_{t-\eta_{2}}^{t} h
$$

and

$$
\left\|\int_{a}^{a+\eta_{1}} h\right\| \leq \eta_{1}\|h\|_{\infty}, \quad\left\|\int_{t-\eta_{2}}^{t} h\right\| \leq \eta_{2}\|h\|_{\infty}
$$

hence as $\eta_{1} \rightarrow 0^{+}$and $\eta_{2} \rightarrow 0^{+}$,

$$
\int_{a+\eta_{1}}^{t-\eta_{2}} f^{\prime} \rightarrow \int_{a}^{t} h
$$

and so it makes sense to write

$$
\int_{a}^{t} f^{\prime}=\int_{a}^{t} h
$$

and thus for all $t \in[a, b]$,

$$
f(t)=f(a)+\int_{a}^{t} f^{\prime}
$$

[^0]: ${ }^{1}$ Jean Dieudonné, Foundations of Modern Analysis, enlarged and corrected printing, p. 145, Theorem 7.6.1; Rodney Coleman, Calculus on Normed Vector Spaces, p. 70, Proposition 3.3; cf. Robert G. Bartle, A Modern Theory of Integration, p. 49, Theorem 3.17.

[^1]: ${ }^{2}$ Jean-Paul Penot, Calculus Without Derivatives, p. 124, Proposition 2.18.

[^2]: ${ }^{3}$ Henri Cartan, Differential Calculus, p. 39, Theorem 3.1.3.

[^3]: ${ }^{4}$ Jean-Paul Penot, Calculus Without Derivatives, p. 124, Theorem 2.19.

