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1 Regulated functions and step functions

Let I = [a, b] and let X be a normed space. A function f : I → X is said to
be regulated if for all t ∈ [a, b) the limit lims→t+ f(s) exists and for all t ∈ (a, b]
the limit lims→t− f(s) exists. We denote these limits respectively by f(t+)
and f(t−). We define R(I,X) to be the set of regulated functions I → X.
It is apparent that R(I,X) is a vector space. One checks that a regulated
function is bounded, and that R(I,X) is a normed space with the norm ∥f∥∞ =
supt∈[a,b] ∥f(t)∥.

Theorem 1. If I is a compact interval in R and X is a normed algebra, then
R(I,X) is a normed algebra.

Proof. If f, g ∈ R(I,X), then fg ∈ R(I,X) because the limit of a product is
equal to a product of limits. For t ∈ I we have

∥(fg)(t)∥ = ∥f(t)g(t)∥ ≤ ∥f(t)∥ ∥g(t)∥ ≤ ∥f∥∞ ∥g∥∞ ,

so ∥fg∥∞ ≤ ∥f∥∞ ∥g∥∞.

A function f : I → X, where I = [a, b], is said to be a step function if there
are a = s0 < s1 < · · · < sk = b for which f is constant on each open interval
(si−1, si). We denote the set of step functions I → X by S(I,X). It is apparent
that S(I,X) is contained in R(I,X) and is a vector subspace, and the following
theorem states that if X is a Banach space then S(I,X) is dense in R(I,X).1

Theorem 2. Let I be a compact interval in R, let X be a Banach space, and
let f ∈ XI . f ∈ R(I,X) if and only if for all ϵ > 0 there is some g ∈ S(I,X)
such that ∥f − g∥∞ < ϵ.

We prove in the following theorem that the set of regulated functions from
a compact interval to a Banach space is itself a Banach space.

Theorem 3. If I is a compact interval in R and X is a Banach space, then
R(I,X) is a Banach space.

1Jean Dieudonné, Foundations of Modern Analysis, enlarged and corrected printing, p. 145,
Theorem 7.6.1; Rodney Coleman, Calculus on Normed Vector Spaces, p. 70, Proposition 3.3;
cf. Robert G. Bartle, A Modern Theory of Integration, p. 49, Theorem 3.17.
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Proof. Let fn ∈ R(I,X) be a Cauchy sequence. For each t ∈ I we have

∥fn(t)− fm(t)∥ ≤ ∥fn − fm∥∞ ,

hence fn(t) is a Cauchy sequence in X. As X is a Banach space, this Cauchy
sequence converges to some limit, and we define f(t) to be this limit. Thus
f ∈ XI and ∥f − fn∥∞ → 0. We have to prove that f ∈ R(I,X). Let ϵ > 0.
There is some N for which n ≥ N implies that ∥f − fn∥∞ < ϵ; in particular,
∥f − fN∥∞ < ϵ. By Theorem 2, there is some gN ∈ S(I,X) with ∥fN − gN∥∞ <
ϵ. Then,

∥f − gN∥∞ ≤ ∥f − fN∥∞ + ∥fN − gN∥∞ < 2ϵ,

and by Theorem 2 this implies that f ∈ R(I,X).

The following lemma shows that the set of points of discontinuity of a reg-
ulated function taking values in a Banach space is countable.

Lemma 4. If I is a compact interval in R, X is a Banach space, and f ∈
R(I,X), then

{t ∈ I : f is discontinuous at t}

is countable.

Proof. For each n let gn ∈ S(I,X) satisfy ∥f − gn∥ ≤ 1
n , and let

Dn = {t ∈ I : gn is discontinuous at t}.

gn is a step function so Dn is finite, and hence D =
⋃∞

n=1 Dn is countable. It
need not be true that f is discontinuous at each point in D, but we shall prove
that if t ∈ I \D then f is continuous at t, which will prove the claim.

Suppose that t ∈ I \ D, let ϵ > 0, and take N > 1
ϵ . As t ̸∈ DN , the step

function gN is continuous at t, and hence there is some δ > 0 for which |s−t| < δ
implies that ∥gN (s)− gN (t)∥ < ϵ. If |s− t| < δ, then

∥f(s)− f(t)∥ ≤ ∥f(s)− gN (s)∥+ ∥gN (s)− gN (t)∥+ ∥gN (t)− f(t)∥
≤ 2 ∥f − gN∥∞ + ∥gN (s)− gN (t)∥

<
2

N
+ ϵ

< 3ϵ,

showing that f is continuous at t.

2 Integrals of step functions

Let I = [a, b] and let X be a normed space. If f ∈ S(I,X) then there is a
subdivision a = s0 < s1 < · · · < sk = b of [a, b] and there are ci ∈ X such
that f takes the value ci on the open interval (si−1, si). Suppose that there is
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a subdivision a = t0 < t1 < · · · < tl = b of [a, b] and di ∈ X such that f takes
the value di on the open interval (ti−1, ti). One checks that

k∑
i=1

(si − si−1)ci =

l∑
i=1

(ti − ti−1)di.

We define the integral of f to be the above element ofX, and denote this element

of X by
∫
I
f =

∫ b

a
f .

Lemma 5. If I is a compact interval in R and X is a normed space, then∫
I
: S(I,X) → X is linear.

Lemma 6. If I = [a, b] and X is a normed space, then
∫
I
: S(I,X) → X is a

bounded linear map with operator norm b− a.

Proof. If f ∈ S(I,X), let a = s0 < s1 < · · · < sk = b be a subdivision of [a, b]
and let ci ∈ X such that f takes the value ci on the open interval (si−1, si).
Then,∥∥∥∥∫

I

f

∥∥∥∥ ≤
k∑

i=1

(si − si−1) ∥ci∥ ≤
k∑

i=1

(si − si−1) ∥f∥∞ = (b− a) ∥f∥∞ .

This shows that
∥∥∫

I

∥∥ ≤ b − a, and if f is constant, say f(t) = c ∈ X for all

t ∈ I, then
∫
I
f = (b − a)c and

∥∥∫
I
f
∥∥ = (b − a) ∥c∥ = (b − a) ∥f∥∞, showing

that
∥∥∫

I

∥∥ = b− a.

Lemma 7. If a ≤ b ≤ c, if X is a normed space, and if g ∈ S([a, c], X), then∫ c

a

g =

∫ b

a

g +

∫ c

b

g.

3 The regulated integral

Let I be a compact interval in R and let X be a Banach space. Theorem 2 shows
that S(I,X) is a dense subspace of R(I,X), and therefore if T0 ∈ B(S(I,X), X)
then there is one and only one T ∈ B(R(I,X), X) whose restriction to S(I,X)
is equal to T0, and this operator satisfies ∥T∥ = ∥T0∥. Lemma 6 shows that∫
I
: S(I,X) → X is a bounded linear operator, thus there is one and only one

bounded linear operator R(I,X) → X whose restriction to S(I,X) is equal to∫
I
, and we denote this operator R(I,X) → X also by

∫
I
. With I = [a, b], we

have
∥∥∫

I

∥∥ = b− a. We call
∫
I
: R(I,X) → X the regulated integral.

Lemma 8. If a ≤ b ≤ c, if X is a Banach space, and if f ∈ R([a, c], X), then∫ c

a

f =

∫ b

a

f +

∫ c

b

f.
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Proof. Let I1 = [a, b], I2 = [b, c], I = [a, c], and let f1 and f2 be the restriction
of f to I1 and I2 respectively. From the definition of regulated functions, f1 ∈
R(I1, X) and f2 ∈ R(I2, X). By Theorem 2, for any ϵ > 0 there is some
g ∈ S(I,X) satisfying ∥f − g∥∞ < ϵ. Taking g1 and g2 to be the restriction of
g to I1 and I2, we check that g1 ∈ S(I1, X) and g2 ∈ S(I2, X). Then by Lemma
7,∥∥∥∥∫

I

f −
∫
I1

f1 −
∫
I2

f2

∥∥∥∥
∞

≤
∥∥∥∥∫

I

f −
∫
I

g

∥∥∥∥
∞

+

∥∥∥∥∫
I

g −
∫
I1

g1 −
∫
I2

g2

∥∥∥∥
∞

+

∥∥∥∥∫
I1

g1 +

∫
I2

g2 −
∫
I1

f1 −
∫
I2

f2

∥∥∥∥
∞

=

∥∥∥∥∫
I

(f − g)

∥∥∥∥
∞

+ 0

+

∥∥∥∥∫
I1

(g1 − f1)

∥∥∥∥
∞

+

∥∥∥∥∫
I2

(g2 − f2)

∥∥∥∥
∞

≤ (c− a) ∥f − g∥∞ + (b− a) ∥g1 − f2∥∞
+(c− b) ∥g2 − f2∥∞ .

But ∥g1 − f1∥∞ ≤ ∥g − f∥∞ and ∥g2 − f2∥∞ ≤ ∥g − f∥∞, hence we obtain∥∥∥∥∫
I

f −
∫
I1

f1 −
∫
I2

f2

∥∥∥∥
∞

< (c− a)ϵ+ (b− a)ϵ+ (c− b)ϵ = 2(c− a)ϵ.

Since ϵ > 0 was arbitrary, we get∥∥∥∥∫
I

f −
∫
I1

f1 −
∫
I2

f2

∥∥∥∥
∞

= 0,

so ∫
I

f =

∫
I1

f1 +

∫
I2

f2,

proving the claim.

We prove that applying a bounded linear map and taking the regulated
integral commute.2

Lemma 9. Suppose that I is a compact interval in R and that X and Y are
Banach spaces. If f ∈ R(I,X) and T ∈ B(X,Y ), then T ◦ f ∈ R(I, Y ) and∫

I

T ◦ f = T

∫
I

f.

Proof. Because T is continuous we have T ◦ f ∈ R(I, Y ). For ϵ > 0, there
is some g ∈ S(I,X) satisfying ∥f − g∥∞ < ϵ. Write I = [a, b]. Because g
is a step function, there is a subdivision a = s0 < s1 < · · · < sk = b of

2Jean-Paul Penot, Calculus Without Derivatives, p. 124, Proposition 2.18.

4



I and there are ci ∈ X such that g takes the value ci on the open interval
(si−1, si). Furthermore, T ◦ g takes the value Tci on the open interval (si−1, si)
so T ◦ g ∈ S(I, Y ), and then because T is linear,∫

I

T ◦ g =

k∑
i=1

(si − si−1)Tci = T

k∑
i=1

(si − si−1)ci = T

∫
I

g.

Using this,∥∥∥∥∫
I

T ◦ f − T

∫
I

f

∥∥∥∥ ≤
∥∥∥∥∫

I

T ◦ f −
∫
I

T ◦ g
∥∥∥∥+

∥∥∥∥∫
I

T ◦ g − T

∫
I

g

∥∥∥∥
+

∥∥∥∥T ∫
I

g − T

∫
I

f

∥∥∥∥
=

∥∥∥∥∫
I

T ◦ (f − g)

∥∥∥∥+

∥∥∥∥T ∫
I

(f − g)

∥∥∥∥
≤ (b− a) ∥T ◦ (f − g)∥∞ + ∥T∥

∥∥∥∥∫
I

(f − g)

∥∥∥∥
≤ (b− a) ∥T∥ ∥f − g∥∞ + ∥T∥ (b− a) ∥f − g∥∞
< 2(b− a) ∥T∥ ϵ.

As ϵ > 0 is arbitrary, this means that∥∥∥∥∫
I

T ◦ f − T

∫
I

f

∥∥∥∥ = 0,

and so ∫
I

T ◦ f = T

∫
I

f.

4 Left and right derivatives

Suppose that I is an open interval in R, X is a normed space, f ∈ XI , and t ∈ I.

We say that f is right-differentiable at t if f(t+h)−f(t)
h has a limit as h → 0+,

and that f is left-differentiable at t if f(t+h)−f(t)
h has a limit as h → 0−. We call

these limits respectively the right derivative of f at t and the left derivative of
f at t, denoted respectively by f ′

+(t) and f ′
−(t). For f to be differentiable at t

means that f ′
+(t) and f ′

−(t) exist and are equal.
The following is the mean value theorem for functions taking values in a

Banach space.3

Theorem 10 (Mean value theorem). Suppose that I = [a, b], that X is a Banach
space, and that f : I → X and g : I → R are continuous functions. If there is a

3Henri Cartan, Differential Calculus, p. 39, Theorem 3.1.3.
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countable set D ⊂ I such that t ∈ I \D implies that f ′
+(t) and g′+(t) exist and

satisfy
∥∥f ′

+(t)
∥∥ ≤ g′+(t), then

∥f(b)− f(a)∥ ≤ g(b)− g(a).

Corollary 11. Suppose that I = [a, b], that X is a Banach space, and that
f : I → X is continuous. If there is a countable set D ⊂ I such that t ∈ I \D
implies that f ′

+(t) = 0, then f is constant on I.

5 Primitives

Let I = [a, b], let X be a normed space, and let f, g ∈ XI . We say that g is a
primitive of f if g is continuous and if there is a countable set D ⊂ I such that
t ∈ I \D implies that g is differentiable at t and g′(t) = f(t).

Lemma 12. Suppose that I is a compact interval in R, that X is a Banach
space, and that f : I → X is a function. If g1, g2 : I → X are primitives of f ,
then g1 − g2 is constant on I.

Proof. For i = 1, 2, as gi is a primitive of f there is a countable set Di ⊂ I
such that t ∈ I \Di implies that gi is differentiable at t and g′i(t) = f(t). Let
D = D1 ∪ D2, which is a countable set. Both g1 and g2 are continuous so
g = g1 − g2 : I → X is continuous, and if t ∈ I \D then g is differentiable at t
and g′(t) = g′1(t) − g′2(t) = f(t) − f(t) = 0. Then Corollary 11 shows that g is
constant on I, i.e., that g1 − g2 is constant on I.

We now give a construction of primitives of regulated functions.4

Theorem 13. If I = [a, b], X is a Banach space, and f ∈ R(I,X), then the

map g : I → X defined by g(t) =
∫ t

a
f is a primitive of f on I.

Proof. For t ∈ [a, b) and ϵ > 0, because f is regulated there is some 0 < δ < b−t
such that 0 < r ≤ δ implies that ∥f(t+ r)− f(t+)∥ ≤ ϵ. For 0 < r ≤ δ and for
any 0 < η < r, using Lemma 8 we have∥∥∥∥∫ t+r

a

f −
∫ t

a

f −
∫ t+r

t

f(t+)

∥∥∥∥ =

∥∥∥∥∫ t+r

t

f −
∫ t+r

t

f(t+)

∥∥∥∥
=

∥∥∥∥∫ t+η

t

(f − f(t+)) +

∫ t+r

t+η

(f − f(t+))

∥∥∥∥
≤ η sup

t≤s≤t+η

∥∥f(s)− f(t+)
∥∥

+(r − η) sup
t+η≤s≤t+r

∥∥f(s)− f(t+)
∥∥

≤ 2 ∥f∥∞ η + (r − η)ϵ.

4Jean-Paul Penot, Calculus Without Derivatives, p. 124, Theorem 2.19.
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This is true for all 0 < η < r, so∥∥∥∥∫ t+r

a

f −
∫ t

a

f −
∫ t+r

t

f(t+)

∥∥∥∥ ≤ rϵ,

i.e. ∥∥∥∥g(t+ r)− g(t)

r
− f(t+)

∥∥∥∥ ≤ ϵ.

This shows that
g′+(t) = f(t+).

Similarly,
g′−(t) = f(t−).

Because f is regulated, Lemma 4 shows that there is a countable set D ⊂ I such
that t ∈ I \ D implies that f is continuous at t. Therefore, if t ∈ I \ D then
f(t+) = f(t−) = f(t), so g′+(t) = g′−(t), which means that if t ∈ I \D then g
is differentiable at t, with g′(t) = f(t). To prove that g is a primitive of f on I
it suffices now to show that g is continuous. For ϵ > 0 and t ∈ I, let δ = ϵ

∥f∥∞
,

and then for |s− t| < δ we have by Lemma 8 that

∥g(s)− g(t)∥ =

∥∥∥∥∫ s

a

f −
∫ t

a

f

∥∥∥∥ =

∥∥∥∥∫ t

s

f

∥∥∥∥ ≤ |t− s| ∥f∥∞ < δ ∥f∥∞ = ϵ,

showing that g is continuous at t, completing the proof.

Suppose that X is a Banach space and that f : [a, b] → X is a primitive
of a regulated function h : [a, b] → X. Because h is regulated, by Theorem 13

the function g : [a, b] → X defined by g(t) =
∫ t

a
f is a primitive of f on [a, b].

Then applying Lemma 12, there is some c ∈ X such that f(t)− g(t) = c for all
t ∈ [a, b]. But f(a)− g(a) = f(a), so c = f(a). Hence, for all t ∈ [a, b],

f(t) = f(a) +

∫ t

a

h.

But ∫ t

a

h =

∫ a+η1

a

h+

∫ t−η2

a+η1

h+

∫ t

t−η2

h =

∫ a+η1

a

h+

∫ t−η2

a+η1

f ′ +

∫ t

t−η2

h

and ∥∥∥∥∫ a+η1

a

h

∥∥∥∥ ≤ η1 ∥h∥∞ ,

∥∥∥∥∫ t

t−η2

h

∥∥∥∥ ≤ η2 ∥h∥∞ ,

hence as η1 → 0+ and η2 → 0+,∫ t−η2

a+η1

f ′ →
∫ t

a

h,
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and so it makes sense to write ∫ t

a

f ′ =

∫ t

a

h,

and thus for all t ∈ [a, b],

f(t) = f(a) +

∫ t

a

f ′.
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