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1 Regulated functions and step functions

Let I = [a,b] and let X be a normed space. A function f : I — X is said to
be regulated if for all ¢ € [a,b) the limit lim,_.,+ f(s) exists and for all t € (a, b]
the limit lim,_,,~ f(s) exists. We denote these limits respectively by f(tT)
and f(t7). We define R(I,X) to be the set of regulated functions I — X.
It is apparent that R(I,X) is a vector space. One checks that a regulated
function is bounded, and that R(I, X) is a normed space with the norm || f|| , =
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Theorem 1. If I is a compact interval in R and X is a normed algebra, then
R(I,X) is a normed algebra.

Proof. If f,g € R(I,X), then fg € R(I, X) because the limit of a product is
equal to a product of limits. For ¢t € I we have

1P ON = 1F@g@OI < 1FON g < 1flloo 191l oo »

80 [|f9lloe < 1 lleo 19l oo - O
A function f : I — X, where I = [a,b], is said to be a step function if there
are a = Sg < §1 < -+ < 8§ = b for which f is constant on each open interval

(8i—1,8;). We denote the set of step functions I — X by S(I, X). It is apparent
that S(I, X) is contained in R(I, X) and is a vector subspace, and the following
theorem states that if X is a Banach space then S(I, X) is dense in R(I, X).!

Theorem 2. Let I be a compact interval in R, let X be a Banach space, and
let fe X!, fe R(I,X) if and only if for all € > 0 there is some g € S(I, X)
such that || f — gl <e.

We prove in the following theorem that the set of regulated functions from
a compact interval to a Banach space is itself a Banach space.

Theorem 3. If I is a compact interval in R and X is a Banach space, then
R(I,X) is a Banach space.

1 Jean Dieudonné, Foundations of Modern Analysis, enlarged and corrected printing, p. 145,
Theorem 7.6.1; Rodney Coleman, Calculus on Normed Vector Spaces, p. 70, Proposition 3.3;
cf. Robert G. Bartle, A Modern Theory of Integration, p. 49, Theorem 3.17.




Proof. Let f,, € R(I, X) be a Cauchy sequence. For each t € I we have
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hence f,(t) is a Cauchy sequence in X. As X is a Banach space, this Cauchy
sequence converges to some limit, and we define f(¢) to be this limit. Thus
fe X! and |f— full., — 0. We have to prove that f € R(I,X). Let ¢ > 0.
There is some N for which n > N implies that ||f — f»|., < € in particular,
| f — fnllo < € By Theorem 2, there is some gy € S(I, X) with || fx — gn]l, <
€. Then,
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and by Theorem 2 this implies that f € R(I, X). O

The following lemma shows that the set of points of discontinuity of a reg-
ulated function taking values in a Banach space is countable.

Lemma 4. If I is a compact interval in R, X is a Banach space, and f €
R(I,X), then
{t € I: f is discontinuous at t}

is countable.

Proof. For each n let g, € S(I, X) satisfy || f — g, < %, and let
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D, ={teI:g, is discontinuous at t}.

gn is a step function so D, is finite, and hence D = UZ°:1 D,, is countable. It
need not be true that f is discontinuous at each point in D, but we shall prove
that if t € I'\ D then f is continuous at ¢, which will prove the claim.

Suppose that ¢t € T\ D, let € > 0, and take N > % As t € Dy, the step
function gy is continuous at ¢, and hence there is some 6 > 0 for which |s—t| < §
implies that ||gn(s) —gn(t)| <e. If |s —t] <, then
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showing that f is continuous at ¢. O

2 Integrals of step functions

Let I = [a,b] and let X be a normed space. If f € S(I,X) then there is a
subdivision a = sp < $1 < -+ < s, = b of [a,b] and there are ¢; € X such
that f takes the value ¢; on the open interval (s;_1,s;). Suppose that there is



a subdivision a = tg < t; < --- < t; = b of [a,b] and d; € X such that f takes
the value d; on the open interval (¢;_1,t;). One checks that
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We define the integral of f to be the above element of X, and denote this element
of X by [, f=["F.
Lemma 5. If I is a compact interval in R and X is a normed space, then
J;: S, X) — X is linear.
Lemma 6. If I = [a,b] and X is a normed space, then [, : S(I,X) = X is a

bounded linear map with operator norm b — a.

Proof. It f € S(I,X), let a = 59 < s1 < -+ < s = b be a subdivision of [a, ]
and let ¢; € X such that f takes the value ¢; on the open interval (s;_1,s;).
Then,
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This shows that || [;|| < b— a, and if f is constant, say f(t) = ¢ € X for all
tel, th|en [;f=@0®—a)cand ||[, f|| = (b —a)llc]| = (b — a) || f|| . showing
| =b—a. O

Lemma 7. Ifa <b<e¢, if X is a normed space, and if g € S([a, ], X), then
c b c
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3 The regulated integral

Let I be a compact interval in R and let X be a Banach space. Theorem 2 shows
that S(I, X) is a dense subspace of R(I, X), and therefore if Ty € #(S(I, X), X)
then there is one and only one T' € #(R(I, X ), X) whose restriction to S(I, X)
is equal to Tp, and this operator satisfies | T|| = ||To||. Lemma 6 shows that
f;: ;:S(I,X) — X is a bounded linear operator, thus there is one and only one
bounded linear operator R(I, X) — X whose restriction to S(I, X) is equal to
J;» and we denote this operator R(I,X) — X also by [,. With I = [a,b], we
have HfIH =b—a. Wecall [;: R(I,X) — X the regulated integral.

Lemma 8. Ifa <b<c, if X is a Banach space, and if f € R([a,c], X), then
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Proof. Let Iy = [a,b], Iz = [b,c], I = [a,c], and let f; and fy be the restriction
of f to I and Iy respectively. From the definition of regulated functions, f; €
R(I1,X) and f» € R(I3,X). By Theorem 2, for any € > 0 there is some
g € S(I,X) satistying ||f — g||,, < e. Taking g, and g to be the restriction of
g to I and I, we check that g; € S(I1,X) and g2 € S(I2,X). Then by Lemma
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But [lg1 = filloe < lg = fll and [lg2 = fallc < lg = flloe; hence we obtain
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Since € > 0 was arbitrary, we get
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proving the claim. O
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We prove that applying a bounded linear map and taking the regulated
integral commute.?

Lemma 9. Suppose that I is a compact interval in R and that X and Y are
Banach spaces. If f € R(I,X) and T € B(X,Y), thenT o f € R(I,Y) and

/ITof:T/If.

Proof. Because T is continuous we have T'o f € R(I,Y). For ¢ > 0, there
is some g € S(I,X) satisfying || f —g|l., < e. Write I = [a,b]. Because g
is a step function, there is a subdivision a = sg < $1 < .-+ < 8 = b of

2Jean-Paul Penot, Calculus Without Derivatives, p. 124, Proposition 2.18.



I and there are ¢; € X such that g takes the value ¢; on the open interval
(8i—1,8;). Furthermore, T o g takes the value T'¢; on the open interval (s;_1, $;)
so Toge S(I,Y), and then because T is linear,
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As e > 0 is arbitrary, this means that
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and so

4 Left and right derivatives

Suppose that I is an open interval in R, X is a normed space, f € X!, and t € I.
We say that f is right-differentiable at t if w has a limit as h — 0%,
and that f is left-differentiable at t if w has a limit as h — 0~. We call
these limits respectively the right derivative of f at t and the left derivative of
[ at t, denoted respectively by f! (t) and f’ (t). For f to be differentiable at t
means that f) (¢) and f’ (¢) exist and are equal.

The following is the mean value theorem for functions taking values in a
Banach space.?

Theorem 10 (Mean value theorem). Suppose that I = [a,b], that X is a Banach
space, and that f : I — X and g : I — R are continuous functions. If there is a

3Henri Cartan, Differential Calculus, p. 39, Theorem 3.1.3.



countable set D C I such that t € I\ D implies that f! (t) and ¢, (t) exist and
satisfy Hfjr(t)H < ¢ (t), then

[1£(b) = f(a)ll < g(b) — g(a).

Corollary 11. Suppose that I = [a,b], that X is a Banach space, and that
f: I — X is continuous. If there is a countable set D C I such thatt € I\ D
implies that f' (t) = 0, then f is constant on I.

5 Primitives

Let I = [a,b], let X be a normed space, and let f,g € X!. We say that g is a
primitive of f if g is continuous and if there is a countable set D C I such that
t € I'\ D implies that g is differentiable at ¢ and ¢'(t) = f(¢).

Lemma 12. Suppose that I is a compact interval in R, that X is a Banach
space, and that f : I — X is a function. If g1,92 : I — X are primitives of f,
then g1 — g2 is constant on I.

Proof. For ¢ = 1,2, as g; is a primitive of f there is a countable set D; C I
such that ¢ € I'\ D; implies that g; is differentiable at ¢ and g.(¢t) = f(¢). Let
D = Dy U D5, which is a countable set. Both ¢g; and g» are continuous so
g=g1—9g2:I— X is continuous, and if ¢ € I \ D then g is differentiable at ¢
and ¢'(t) = gi(t) — g4(t) = f(t) — f(t) = 0. Then Corollary 11 shows that g is
constant on I, i.e., that g; — g is constant on I. ]

We now give a construction of primitives of regulated functions.*

Theorem 13. If I = [a,b], X is a Banach space, and f € R(I,X), then the
map g : I — X defined by g(t) = f(ff is a primitive of f on I.

Proof. Fort € [a,b) and € > 0, because f is regulated there is some 0 < 6 < b—t
such that 0 < r < § implies that || f(t +r) — f(tT)|| <e. For 0 <r < ¢ and for

any 0 < n < r, using Lemma 8 we have
t+r t+r
[ e
t t
t+n

[ [ ] =
[ s [ )

’ t t+n

n sup [|f(s) = f(¢)]
t<s<t+n

+(r—mn) sup ||f(s) = f(t1)]|

t4+n<s<t+r
< 2|fllaen + (r—m)e.

4Jean-Paul Penot, Calculus Without Derivatives, p. 124, Theorem 2.19.
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This is true for all 0 <7 < r, so

t+r t t+r
_ _ - .
’/af/af/tf(t)ﬁﬁ
i.e.

This shows that
g (t) = f(t7).
Similarly,

gL (1) = F().

Because f is regulated, Lemma 4 shows that there is a countable set D C I such
that ¢ € I\ D implies that f is continuous at t. Therefore, if ¢ € I \ D then
ftT) = f(t™) = f(t), so ¢/.(t) = ¢g'_(t), which means that if ¢ € I\ D then g
is differentiable at ¢, with ¢’(¢) = f(¢). To prove that g is a primitive of f on I
it suffices now to show that g is continuous. For e >0 and t € I, let § = HfT\ ,

and then for |s — ¢| < § we have by Lemma 8 that h
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showing that ¢ is continuous at ¢, completing the proof. O
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Suppose that X is a Banach space and that f : [a,b] — X is a primitive
of a regulated function h : [a,b] — X. Because h is regulated, by Theorem 13
the function g : [a,b] — X defined by g¢(t) = fatf is a primitive of f on [a,b].
Then applying Lemma 12, there is some ¢ € X such that f(t) — g(¢) = ¢ for all
t € [a,b]. But f(a) —g(a) = f(a), so ¢ = f(a). Hence, for all t € [a, ],
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hence as n; — 0 and 7, — 0T,
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and so it makes sense to write

and thus for all ¢ € [a, b],



