Regulated functions and the regulated integral

Jordan Bell

April 3, 2014

1 Regulated functions and step functions

Let I = [a, b] and let X be a normed space. A function $f : I \to X$ is said to be *regulated* if for all $t \in [a, b)$ the limit $\lim_{s \to t^+} f(s)$ exists and for all $t \in (a, b]$ the limit $\lim_{s \to t^-} f(s)$ exists. We denote these limits respectively by $f(t^+)$ and $f(t^-)$. We define R(I, X) to be the set of regulated functions $I \to X$. It is apparent that R(I, X) is a vector space. One checks that a regulated function is bounded, and that R(I, X) is a normed space with the norm $||f||_{\infty} = \sup_{t \in [a, b]} ||f(t)||$.

Theorem 1. If I is a compact interval in \mathbb{R} and X is a normed algebra, then R(I, X) is a normed algebra.

Proof. If $f, g \in R(I, X)$, then $fg \in R(I, X)$ because the limit of a product is equal to a product of limits. For $t \in I$ we have

$$||(fg)(t)|| = ||f(t)g(t)|| \le ||f(t)|| \, ||g(t)|| \le ||f||_{\infty} \, ||g||_{\infty} \, ,$$

so $\|fg\|_{\infty} \leq \|f\|_{\infty} \|g\|_{\infty}$.

A function $f: I \to X$, where I = [a, b], is said to be a *step function* if there are $a = s_0 < s_1 < \cdots < s_k = b$ for which f is constant on each open interval (s_{i-1}, s_i) . We denote the set of step functions $I \to X$ by S(I, X). It is apparent that S(I, X) is contained in R(I, X) and is a vector subspace, and the following theorem states that if X is a Banach space then S(I, X) is dense in R(I, X).¹

Theorem 2. Let I be a compact interval in \mathbb{R} , let X be a Banach space, and let $f \in X^I$. $f \in R(I, X)$ if and only if for all $\epsilon > 0$ there is some $g \in S(I, X)$ such that $||f - g||_{\infty} < \epsilon$.

We prove in the following theorem that the set of regulated functions from a compact interval to a Banach space is itself a Banach space.

Theorem 3. If I is a compact interval in \mathbb{R} and X is a Banach space, then R(I, X) is a Banach space.

¹Jean Dieudonné, Foundations of Modern Analysis, enlarged and corrected printing, p. 145, Theorem 7.6.1; Rodney Coleman, Calculus on Normed Vector Spaces, p. 70, Proposition 3.3; cf. Robert G. Bartle, A Modern Theory of Integration, p. 49, Theorem 3.17.

Proof. Let $f_n \in R(I, X)$ be a Cauchy sequence. For each $t \in I$ we have

$$||f_n(t) - f_m(t)|| \le ||f_n - f_m||_{\infty}$$

hence $f_n(t)$ is a Cauchy sequence in X. As X is a Banach space, this Cauchy sequence converges to some limit, and we define f(t) to be this limit. Thus $f \in X^I$ and $||f - f_n||_{\infty} \to 0$. We have to prove that $f \in R(I, X)$. Let $\epsilon > 0$. There is some N for which $n \ge N$ implies that $||f - f_n||_{\infty} < \epsilon$; in particular, $||f - f_N||_{\infty} < \epsilon$. By Theorem 2, there is some $g_N \in S(I, X)$ with $||f_N - g_N||_{\infty} < \epsilon$. Then,

$$||f - g_N||_{\infty} \le ||f - f_N||_{\infty} + ||f_N - g_N||_{\infty} < 2\epsilon,$$

and by Theorem 2 this implies that $f \in R(I, X)$.

The following lemma shows that the set of points of discontinuity of a regulated function taking values in a Banach space is countable.

Lemma 4. If I is a compact interval in \mathbb{R} , X is a Banach space, and $f \in R(I, X)$, then

$$\{t \in I : f \text{ is discontinuous at } t\}$$

is countable.

Proof. For each n let $g_n \in S(I, X)$ satisfy $||f - g_n|| \leq \frac{1}{n}$, and let

 $D_n = \{t \in I : g_n \text{ is discontinuous at } t\}.$

 g_n is a step function so D_n is finite, and hence $D = \bigcup_{n=1}^{\infty} D_n$ is countable. It need not be true that f is discontinuous at each point in D, but we shall prove that if $t \in I \setminus D$ then f is continuous at t, which will prove the claim.

Suppose that $t \in I \setminus D$, let $\epsilon > 0$, and take $N > \frac{1}{\epsilon}$. As $t \notin D_N$, the step function g_N is continuous at t, and hence there is some $\delta > 0$ for which $|s-t| < \delta$ implies that $||g_N(s) - g_N(t)|| < \epsilon$. If $|s-t| < \delta$, then

$$\begin{aligned} \|f(s) - f(t)\| &\leq \|f(s) - g_N(s)\| + \|g_N(s) - g_N(t)\| + \|g_N(t) - f(t)\| \\ &\leq 2 \|f - g_N\|_{\infty} + \|g_N(s) - g_N(t)\| \\ &< \frac{2}{N} + \epsilon \\ &< 3\epsilon, \end{aligned}$$

showing that f is continuous at t.

2 Integrals of step functions

Let I = [a, b] and let X be a normed space. If $f \in S(I, X)$ then there is a subdivision $a = s_0 < s_1 < \cdots < s_k = b$ of [a, b] and there are $c_i \in X$ such that f takes the value c_i on the open interval (s_{i-1}, s_i) . Suppose that there is

a subdivision $a = t_0 < t_1 < \cdots < t_l = b$ of [a, b] and $d_i \in X$ such that f takes the value d_i on the open interval (t_{i-1}, t_i) . One checks that

$$\sum_{i=1}^{k} (s_i - s_{i-1})c_i = \sum_{i=1}^{l} (t_i - t_{i-1})d_i.$$

We define the *integral* of f to be the above element of X, and denote this element of X by $\int_I f = \int_a^b f$.

Lemma 5. If I is a compact interval in \mathbb{R} and X is a normed space, then $\int_{I} : S(I, X) \to X$ is linear.

Lemma 6. If I = [a, b] and X is a normed space, then $\int_I : S(I, X) \to X$ is a bounded linear map with operator norm b - a.

Proof. If $f \in S(I, X)$, let $a = s_0 < s_1 < \cdots < s_k = b$ be a subdivision of [a, b] and let $c_i \in X$ such that f takes the value c_i on the open interval (s_{i-1}, s_i) . Then,

$$\left\| \int_{I} f \right\| \leq \sum_{i=1}^{k} (s_{i} - s_{i-1}) \|c_{i}\| \leq \sum_{i=1}^{k} (s_{i} - s_{i-1}) \|f\|_{\infty} = (b-a) \|f\|_{\infty}$$

This shows that $\|\int_I \| \leq b - a$, and if f is constant, say $f(t) = c \in X$ for all $t \in I$, then $\int_I f = (b - a)c$ and $\|\int_I f\| = (b - a)\|c\| = (b - a)\|f\|_{\infty}$, showing that $\|\int_I \| = b - a$.

Lemma 7. If $a \leq b \leq c$, if X is a normed space, and if $g \in S([a, c], X)$, then

$$\int_{a}^{c} g = \int_{a}^{b} g + \int_{b}^{c} g.$$

3 The regulated integral

Let I be a compact interval in \mathbb{R} and let X be a Banach space. Theorem 2 shows that S(I, X) is a dense subspace of R(I, X), and therefore if $T_0 \in \mathscr{B}(S(I, X), X)$ then there is one and only one $T \in \mathscr{B}(R(I, X), X)$ whose restriction to S(I, X)is equal to T_0 , and this operator satisfies $||T|| = ||T_0||$. Lemma 6 shows that $\int_I : S(I, X) \to X$ is a bounded linear operator, thus there is one and only one bounded linear operator $R(I, X) \to X$ whose restriction to S(I, X) is equal to \int_I , and we denote this operator $R(I, X) \to X$ also by \int_I . With I = [a, b], we have $||\int_I || = b - a$. We call $\int_I : R(I, X) \to X$ the regulated integral.

Lemma 8. If $a \leq b \leq c$, if X is a Banach space, and if $f \in R([a, c], X)$, then

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$$

Proof. Let $I_1 = [a, b]$, $I_2 = [b, c]$, I = [a, c], and let f_1 and f_2 be the restriction of f to I_1 and I_2 respectively. From the definition of regulated functions, $f_1 \in$ $R(I_1, X)$ and $f_2 \in R(I_2, X)$. By Theorem 2, for any $\epsilon > 0$ there is some $g \in S(I, X)$ satisfying $||f - g||_{\infty} < \epsilon$. Taking g_1 and g_2 to be the restriction of g to I_1 and I_2 , we check that $g_1 \in S(I_1, X)$ and $g_2 \in S(I_2, X)$. Then by Lemma 7,

$$\begin{split} \left\| \int_{I} f - \int_{I_{1}} f_{1} - \int_{I_{2}} f_{2} \right\|_{\infty} &\leq \\ \left\| \int_{I} f - \int_{I} g \right\|_{\infty} + \left\| \int_{I} g - \int_{I_{1}} g_{1} - \int_{I_{2}} g_{2} \right\|_{\infty} \\ &+ \left\| \int_{I_{1}} g_{1} + \int_{I_{2}} g_{2} - \int_{I_{1}} f_{1} - \int_{I_{2}} f_{2} \right\|_{\infty} \\ &= \\ \left\| \int_{I} (f - g) \right\|_{\infty} + 0 \\ &+ \left\| \int_{I_{1}} (g_{1} - f_{1}) \right\|_{\infty} + \left\| \int_{I_{2}} (g_{2} - f_{2}) \right\|_{\infty} \\ &\leq \\ (c - a) \left\| f - g \right\|_{\infty} + (b - a) \left\| g_{1} - f_{2} \right\|_{\infty} \\ &+ (c - b) \left\| g_{2} - f_{2} \right\|_{\infty}. \end{split}$$

But $||g_1 - f_1||_{\infty} \le ||g - f||_{\infty}$ and $||g_2 - f_2||_{\infty} \le ||g - f||_{\infty}$, hence we obtain

$$\left\| \int_{I} f - \int_{I_1} f_1 - \int_{I_2} f_2 \right\|_{\infty} < (c-a)\epsilon + (b-a)\epsilon + (c-b)\epsilon = 2(c-a)\epsilon$$

Since $\epsilon > 0$ was arbitrary, we get

$$\left\| \int_{I} f - \int_{I_{1}} f_{1} - \int_{I_{2}} f_{2} \right\|_{\infty} = 0,$$
$$\int_{I} f = \int_{I_{1}} f_{1} + \int_{I_{2}} f_{2},$$

proving the claim.

 \mathbf{SO}

We prove that applying a bounded linear map and taking the regulated integral commute.²

Lemma 9. Suppose that I is a compact interval in \mathbb{R} and that X and Y are Banach spaces. If $f \in R(I, X)$ and $T \in \mathscr{B}(X, Y)$, then $T \circ f \in R(I, Y)$ and

$$\int_{I} T \circ f = T \int_{I} f.$$

Proof. Because T is continuous we have $T \circ f \in R(I, Y)$. For $\epsilon > 0$, there is some $g \in S(I, X)$ satisfying $||f - g||_{\infty} < \epsilon$. Write I = [a, b]. Because g is a step function, there is a subdivision $a = s_0 < s_1 < \cdots < s_k = b$ of

²Jean-Paul Penot, Calculus Without Derivatives, p. 124, Proposition 2.18.

I and there are $c_i \in X$ such that g takes the value c_i on the open interval (s_{i-1}, s_i) . Furthermore, $T \circ g$ takes the value Tc_i on the open interval (s_{i-1}, s_i) so $T \circ g \in S(I, Y)$, and then because T is linear,

$$\int_{I} T \circ g = \sum_{i=1}^{k} (s_i - s_{i-1}) T c_i = T \sum_{i=1}^{k} (s_i - s_{i-1}) c_i = T \int_{I} g.$$

Using this,

and so

$$\begin{split} \left\| \int_{I} T \circ f - T \int_{I} f \right\| &\leq \left\| \int_{I} T \circ f - \int_{I} T \circ g \right\| + \left\| \int_{I} T \circ g - T \int_{I} g \right\| \\ &+ \left\| T \int_{I} g - T \int_{I} f \right\| \\ &= \left\| \int_{I} T \circ (f - g) \right\| + \left\| T \int_{I} (f - g) \right\| \\ &\leq (b - a) \left\| T \circ (f - g) \right\|_{\infty} + \left\| T \right\| \left\| \int_{I} (f - g) \right\| \\ &\leq (b - a) \left\| T \right\| \left\| f - g \right\|_{\infty} + \left\| T \right\| (b - a) \left\| f - g \right\|_{\infty} \\ &< 2(b - a) \left\| T \right\| \epsilon. \end{split}$$

As $\epsilon > 0$ is arbitrary, this means that

$$\left\| \int_{I} T \circ f - T \int_{I} f \right\| = 0,$$
$$\int_{I} T \circ f = T \int_{I} f.$$

- E		т.
		н
		н
		н

4 Left and right derivatives

Suppose that I is an open interval in \mathbb{R} , X is a normed space, $f \in X^I$, and $t \in I$. We say that f is right-differentiable at t if $\frac{f(t+h)-f(t)}{h}$ has a limit as $h \to 0^+$, and that f is left-differentiable at t if $\frac{f(t+h)-f(t)}{h}$ has a limit as $h \to 0^-$. We call these limits respectively the right derivative of f at t and the left derivative of f at t, denoted respectively by $f'_+(t)$ and $f'_-(t)$. For f to be differentiable at t means that $f'_+(t)$ and $f'_-(t)$ exist and are equal.

The following is the mean value theorem for functions taking values in a Banach space.³

Theorem 10 (Mean value theorem). Suppose that I = [a, b], that X is a Banach space, and that $f : I \to X$ and $g : I \to \mathbb{R}$ are continuous functions. If there is a

³Henri Cartan, *Differential Calculus*, p. 39, Theorem 3.1.3.

countable set $D \subset I$ such that $t \in I \setminus D$ implies that $f'_+(t)$ and $g'_+(t)$ exist and satisfy $||f'_+(t)|| \leq g'_+(t)$, then

$$||f(b) - f(a)|| \le g(b) - g(a).$$

Corollary 11. Suppose that I = [a, b], that X is a Banach space, and that $f: I \to X$ is continuous. If there is a countable set $D \subset I$ such that $t \in I \setminus D$ implies that $f'_+(t) = 0$, then f is constant on I.

5 Primitives

Let I = [a, b], let X be a normed space, and let $f, g \in X^I$. We say that g is a primitive of f if g is continuous and if there is a countable set $D \subset I$ such that $t \in I \setminus D$ implies that g is differentiable at t and g'(t) = f(t).

Lemma 12. Suppose that I is a compact interval in \mathbb{R} , that X is a Banach space, and that $f: I \to X$ is a function. If $g_1, g_2: I \to X$ are primitives of f, then $g_1 - g_2$ is constant on I.

Proof. For i = 1, 2, as g_i is a primitive of f there is a countable set $D_i \subset I$ such that $t \in I \setminus D_i$ implies that g_i is differentiable at t and $g'_i(t) = f(t)$. Let $D = D_1 \cup D_2$, which is a countable set. Both g_1 and g_2 are continuous so $g = g_1 - g_2 : I \to X$ is continuous, and if $t \in I \setminus D$ then g is differentiable at tand $g'(t) = g'_1(t) - g'_2(t) = f(t) - f(t) = 0$. Then Corollary 11 shows that g is constant on I, i.e., that $g_1 - g_2$ is constant on I.

We now give a construction of primitives of regulated functions.⁴

Theorem 13. If I = [a, b], X is a Banach space, and $f \in R(I, X)$, then the map $g: I \to X$ defined by $g(t) = \int_a^t f$ is a primitive of f on I.

Proof. For $t \in [a, b)$ and $\epsilon > 0$, because f is regulated there is some $0 < \delta < b-t$ such that $0 < r \le \delta$ implies that $||f(t+r) - f(t^+)|| \le \epsilon$. For $0 < r \le \delta$ and for any $0 < \eta < r$, using Lemma 8 we have

$$\begin{split} \left\| \int_{a}^{t+r} f - \int_{a}^{t} f - \int_{t}^{t+r} f(t^{+}) \right\| &= \left\| \int_{t}^{t+r} f - \int_{t}^{t+r} f(t^{+}) \right\| \\ &= \left\| \int_{t}^{t+\eta} (f - f(t^{+})) + \int_{t+\eta}^{t+r} (f - f(t^{+})) \right\| \\ &\leq \eta \sup_{t \leq s \leq t+\eta} \left\| f(s) - f(t^{+}) \right\| \\ &+ (r - \eta) \sup_{t+\eta \leq s \leq t+r} \left\| f(s) - f(t^{+}) \right\| \\ &\leq 2 \left\| f \right\|_{\infty} \eta + (r - \eta) \epsilon. \end{split}$$

⁴Jean-Paul Penot, *Calculus Without Derivatives*, p. 124, Theorem 2.19.

This is true for all $0 < \eta < r$, so

$$\left\|\int_{a}^{t+r} f - \int_{a}^{t} f - \int_{t}^{t+r} f(t^{+})\right\| \le r\epsilon,$$

i.e.

$$\left\|\frac{g(t+r) - g(t)}{r} - f(t^+)\right\| \le \epsilon.$$

This shows that

$$g'_+(t) = f(t^+).$$

Similarly,

$$g_{-}'(t) = f(t^{-}).$$

Because f is regulated, Lemma 4 shows that there is a countable set $D \subset I$ such that $t \in I \setminus D$ implies that f is continuous at t. Therefore, if $t \in I \setminus D$ then $f(t^+) = f(t^-) = f(t)$, so $g'_+(t) = g'_-(t)$, which means that if $t \in I \setminus D$ then g is differentiable at t, with g'(t) = f(t). To prove that g is a primitive of f on I it suffices now to show that g is continuous. For $\epsilon > 0$ and $t \in I$, let $\delta = \frac{\epsilon}{\|f\|_{\infty}}$, and then for $|s - t| < \delta$ we have by Lemma 8 that

$$||g(s) - g(t)|| = \left\| \int_{a}^{s} f - \int_{a}^{t} f \right\| = \left\| \int_{s}^{t} f \right\| \le |t - s| \, ||f||_{\infty} < \delta \, ||f||_{\infty} = \epsilon,$$

showing that g is continuous at t, completing the proof.

Suppose that X is a Banach space and that $f : [a, b] \to X$ is a primitive of a regulated function $h : [a, b] \to X$. Because h is regulated, by Theorem 13 the function $g : [a, b] \to X$ defined by $g(t) = \int_a^t f$ is a primitive of f on [a, b]. Then applying Lemma 12, there is some $c \in X$ such that f(t) - g(t) = c for all $t \in [a, b]$. But f(a) - g(a) = f(a), so c = f(a). Hence, for all $t \in [a, b]$,

$$f(t) = f(a) + \int_{a}^{t} h.$$

But

$$\int_{a}^{t} h = \int_{a}^{a+\eta_{1}} h + \int_{a+\eta_{1}}^{t-\eta_{2}} h + \int_{t-\eta_{2}}^{t} h = \int_{a}^{a+\eta_{1}} h + \int_{a+\eta_{1}}^{t-\eta_{2}} f' + \int_{t-\eta_{2}}^{t} h$$

and

$$\left\| \int_{a}^{a+\eta_{1}} h \right\| \leq \eta_{1} \|h\|_{\infty}, \qquad \left\| \int_{t-\eta_{2}}^{t} h \right\| \leq \eta_{2} \|h\|_{\infty},$$

hence as $\eta_1 \to 0^+$ and $\eta_2 \to 0^+$,

$$\int_{a+\eta_1}^{t-\eta_2} f' \to \int_a^t h_1$$

and so it makes sense to write

$$\int_{a}^{t} f' = \int_{a}^{t} h,$$

and thus for all $t \in [a, b]$,

$$f(t) = f(a) + \int_a^t f'.$$