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1 Reproducing kernels

We shall often speak about functions F : X ×X → R, where X is a nonempty
set. For x ∈ X, we define Fx : X → R by Fx(y) = F (x, y) and for y ∈ X we
define F y : X → R by F y(x) = F (x, y). F is said to be symmetric if F (x, y) =
F (y, x) for all x, y ∈ X and positive-definite if for any x1, . . . , xn ∈ X and
c1, . . . , cn ∈ R it holds that ∑

1≤i,j≤n

cicjF (xi, xj) ≥ 0.

Lemma 1. If F : X ×X → R is symmetric and positive-definite then

F (x, y)2 ≤ F (x, x)F (y, y), x, y ∈ X.

Proof. For α, β ∈ R define1

C(α, β) = α2F (x, x) + αβF (x, y) + βαF (y, x) + β2F (y, y)

= α2F (x, x) + 2αβF (x, y) + β2F (y, y),

which is ≥ 0. Let

P (α) = C(α, F (x, y))

= α2F (x, x) + 2αF (x, y)2 + F (x, y)2F (y, y),

which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that
F (x, y) = 0. In the case F (x, y) ̸= 0, P (α) is a quadratic polynomial and
because P ≥ 0 it follows that the discriminant of P is ≤ 0:

4F (x, y)4 − 4 · F (x, x) · F (x, y)2F (y, y) ≤ 0.

That is, F (x, y)4 ≤ F (x, y)2F (x, x)F (y, y), and this implies that F (x, y)2 ≤
F (x, x)F (y, y).

1See Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, p. 13, Lemma 3.
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A real reproducing kernel Hilbert space is a Hilbert space H contained
in RX , whereX is a nonempty set, such that for each x ∈ X the map Λxf = f(x)
is continuous H → R. In this note we speak always about real Hilbert spaces.

Let H ⊂ RX be a reproducing kernel Hilbert space. Because H is a Hilbert
space, the Riesz representation theorem states that Φ : H → H∗ defined by

(Φg)(f) = ⟨f, g⟩H , g, f ∈ H

is an isometric isomorphism. Because H is a reproducing kernel Hilbert space,
Λx ∈ H∗ for each x ∈ X and we define Tx = Φ−1Λx ∈ H, which satisfies

f(x) = Λx(f) = ⟨f, Tx⟩H , f ∈ H.

In particular, because Tx ∈ H, for y ∈ X it holds that

Tx(y) = Λy(Tx) = ⟨Tx, Ty⟩H .

Define K : X ×X → R by

K(x, y) = ⟨Tx, Ty⟩H ,

called the reproducing kernel of H. For x, y ∈ X,

Tx(y) = ⟨Tx, Ty⟩H = K(x, y) = Kx(y),

which means that Tx = Kx.
A reproducing kernel is symmetric and positive-definite:

K(x, y) = ⟨Tx, Ty⟩H = ⟨Ty, Tx⟩H = K(y, x)

and ∑
1≤i,j≤n

cicjK(xi, xj) =
∑

1≤i,j≤n

〈
ciTxi

, cjTxj

〉
H

=

〈 ∑
1≤i≤n

ciTxi ,
∑

1≤j≤n

cjTxj

〉
H

≥ 0.

Lemma 2. If E is an orthonormal basis for a reproducing kernel Hilbert space
H ⊂ RX with reproducing kernel K : X ×X → R, then

K(x, y) =
∑
e∈E

e(x)e(y), x, y ∈ X.

Proof. Because E is an orthonormal basis for H, Parseval’s identity tell us

⟨Tx, Ty⟩H =
∑
e∈E

⟨Tx, e⟩ ⟨Ty, e⟩ =
∑
e∈E

⟨e, Tx⟩ ⟨e, Ty⟩ =
∑
e∈E

e(x)e(y).
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If H ⊂ RX is a reproducing kernel Hilbert space with reproducing kernel
K : X × X → R and V is a closed linear subspace of H, then V is itself a
reproducing kernel Hilbert space, with some reproducing kernel G : X×X → R.
The following theorem expresses G in terms of K.2

Theorem 3. Let H ⊂ RX be a reproducing kernel Hilbert space with reproducing
kernel K : X ×X → R, let V be a closed linear subspace of H with reproducing
kernel G : X ×X → R, and let PV : H → V be the projection onto V . Then

Gx = PV Kx, x ∈ X.

Proof. H = V ⊕ V ⊥, thus for f ∈ H there are unique g ∈ V, h ∈ V ⊥ such that
f = g+h, and PV f = g.3 Then f−PV f ∈ V ⊥. Therefore for y ∈ X, as Gy ∈ V
it holds that

⟨f,Gy⟩H = ⟨f − PV f + PV f,Gy⟩H = ⟨PV f,Gy⟩H = (PV f)(y).

In particular, for x, y ∈ X and f = Kx,

(PV Kx)(y) = ⟨Kx, Gy⟩H = ⟨Gy, Tx⟩H = Gy(x) = G(y, x) = G(x, y) = Gx(y),

which means that PV Kx = Gx, proving the claim.

The Moore-Aronszajn theorem states that if X is a nonempty set and
K : X ×X → R is a symmetric and positive-definite function, then there is a
unique reproducing kernel Hilbert spaceH ⊂ RX for whichK is the reproducing
kernel.

We now prove that given a symmetric positive-definite kernel there is a
unique reproducing Hilbert space for which it is the reproducing kernel.4

2 Sobolev spaces on [0, T ]

Let f ∈ R[0,T ]. The following are equivalent:5

1. f is absolutely continuous.

2. f is differentiable at almost all t ∈ [0, T ], f ′ ∈ L1, and

f(t) = f(0) +

∫ t

0

f ′(s)ds, t ∈ [0, T ].

3. There is some g ∈ L1 such that

f(t) = f(0) +

∫ t

0

g(s)ds, t ∈ [0, T ].

2Ward Cheney and Will Light, A Course in Approximation Theory, p. 234, Chapter 31,
Theorem 4.

3http://individual.utoronto.ca/jordanbell/notes/pvm.pdf
4Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Prob-

ability and Statistics, p. 19, Theorem 3.
5Elias M. Stein and Rami Shakarchi, Real Analysis, p. 130, Theorem 3.11.
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In particular, if f is absolutely continuous and f ′ = 0 almost everywhere then∫ t

0
f ′(s)ds = 0 and so f(t) = f(0) for all t ∈ [0, T ]. That is, if f is absolutely

continuous and f ′ = 0 almost everywhere then f is constant.
Let H be the set of those absolutely continuous functions f ∈ R[0,T ] such

that f(0) = 0 and f ′ ∈ L2. For f, g ∈ H define

⟨f, g⟩H =

∫ T

0

f ′(s)g′(s)ds.

If ∥f∥H = 0 then
∫ T

0
f ′(s)2ds = 0, which implies that f ′ = 0 almost everywhere

and hence that f is constant, and therefore f = 0. Thus ⟨·, ·⟩H is indeed an
inner product on H.

If fn is a Cauchy sequence in H then f ′
n is a Cauchy sequence in L2 and

hence converges to some g ∈ L2. Then the function f ∈ R[0,T ] defined by

f(t) =

∫ t

0

g(s)ds, t ∈ [0, T ],

is absolutely continuous, f(0) = 0, and satisfies f ′ = g almost everywhere,
which shows that f ∈ H. Then fn → f in H, which proves that H is a Hilbert
space. For t ∈ [0, T ], by the Cauchy-Schwarz inequality,

|f(t)|2 =

∣∣∣∣∫ t

0

f ′(s)ds

∣∣∣∣2 ≤

∣∣∣∣∣
∫ T

0

f ′(s)ds

∣∣∣∣∣
2

≤ T

∫ T

0

f ′(s)2ds = T ∥f∥2H ,

i.e. |Ltf | ≤ T 1/2 ∥f∥H , which shows that Lt ∈ H∗. ThereforeH is a reproducing
kernel Hilbert space.

For a ∈ [0, T ] define ha : [0, T ] → R by ha(s) = 1[0,a](s), which belongs to
L2, and define ga : [0, T ] → R by

ga(t) =

∫ t

0

ha(s)ds = min(t, a),

which belongs to H. For f ∈ H,

⟨f, ga⟩H =

∫ T

0

f ′(s)g′a(s)ds =

∫ T

0

f ′(s)1[0,a](s)ds =

∫ a

0

f ′(s)ds = f(a).

This means that Ka = ga. For a, b ∈ [0, T ],

⟨Ka,Kb⟩H =

∫ T

0

g′a(s)g
′
b(s)ds =

∫ T

0

1[0,a](s)1[0,b](s)ds =

∫ T

0

1[0,min(a,b)](s)ds.

That is, the reproducing kernel of H is K : [0, T ]× [0, T ] → R,

K(a, b) = ⟨Ka,Kb⟩H = min(a, b).
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3 Sobolev spaces on R
Let λ be Lebesgue measure on R. Let L 2(λ) be the collection of Borel mea-
surable functions f : R → R such that |f |2 is integrable, and let L2(λ) be the
Hilbert space of equivalence classes of elements of L 2(λ) where f ∼ g when
f = g almost everywhere, with

⟨f, g⟩L2 =

∫
R
fgdλ.

Let H1(R) be the set of locally absolutely continuous functions f : R → R
such that f, f ′ ∈ L2(λ). This is a Hilbert space with the inner product6

⟨f, g⟩H1 = ⟨f, g⟩L2 + ⟨f ′, g′⟩L2 .

Define K : R× R → R by

K(x, y) =
1

2
exp(−|x− y|), x, y ∈ R.

Let x ∈ R. For y < x, K ′
x(y) = Kx(y) and for y > x, K ′

x(y) = −Kx(y), which
shows that Kx ∈ H1(R). For f ∈ H1(R), doing integration by parts,

⟨f,Kx⟩H1 =

∫ ∞

−∞
fKxdλ+

∫ x

−∞
f ′(y)Kx(y)dλ(y)−

∫ ∞

x

f ′(y)Kx(y)dλ(y)

=

∫ ∞

−∞
fKxdλ+ f(x)Kx(x)−

∫ x

−∞
f(y)K ′

x(y)dλ(y)

+ f(x)Kx(x) +

∫ ∞

x

f(y)K ′
x(y)dλ(y)

=

∫ ∞

−∞
fKxdλ+

1

2
f(x)−

∫ x

−∞
f(y)Kx(y)dλ(y)

+
1

2
f(x)−

∫ ∞

x

f(y)Kx(y)dλ(y)

= f(x)

= Txf.

This shows that H1(R) is a reproducing kernel Hilbert space. We calculate, for
x < y,

⟨Tx, Ty⟩H1 =

∫ x

−∞
KxKydλ+

∫ y

x

KxKydλ+

∫ ∞

y

KxKydλ

+

∫ x

−∞
KxKydλ−

∫ y

x

KxKydλ+

∫ ∞

y

KxKydλ

= 4 · 1
8
exp(x− y)

= K(x, y).

6http://individual.utoronto.ca/jordanbell/notes/sobolev1d.pdf
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This shows that K(x, y) = 1
2 exp(−|x− y|) is the reproducing kernel of H1(R).7

7cf. Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, pp. 8–9, Example 5.

6


