Real reproducing kernel Hilbert spaces

Jordan Bell

October 22, 2015

1 Reproducing kernels

We shall often speak about functions $F: X \times X \to \mathbb{R}$, where X is a nonempty set. For $x \in X$, we define $F_x: X \to \mathbb{R}$ by $F_x(y) = F(x, y)$ and for $y \in X$ we define $F^y: X \to \mathbb{R}$ by $F^y(x) = F(x, y)$. F is said to be **symmetric** if F(x, y) =F(y, x) for all $x, y \in X$ and **positive-definite** if for any $x_1, \ldots, x_n \in X$ and $c_1, \ldots, c_n \in \mathbb{R}$ it holds that

$$\sum_{1 \le i,j \le n} c_i c_j F(x_i, x_j) \ge 0.$$

Lemma 1. If $F: X \times X \to \mathbb{R}$ is symmetric and positive-definite then

$$F(x,y)^2 \le F(x,x)F(y,y), \qquad x,y \in X.$$

Proof. For $\alpha, \beta \in \mathbb{R}$ define¹

$$C(\alpha, \beta) = \alpha^2 F(x, x) + \alpha \beta F(x, y) + \beta \alpha F(y, x) + \beta^2 F(y, y)$$

= $\alpha^2 F(x, x) + 2\alpha \beta F(x, y) + \beta^2 F(y, y),$

which is ≥ 0 . Let

$$P(\alpha) = C(\alpha, F(x, y))$$

= $\alpha^2 F(x, x) + 2\alpha F(x, y)^2 + F(x, y)^2 F(y, y),$

which is ≥ 0 . In the case F(x, x) = 0, the fact that $P \geq 0$ implies that F(x, y) = 0. In the case $F(x, y) \neq 0$, $P(\alpha)$ is a quadratic polynomial and because $P \geq 0$ it follows that the discriminant of P is ≤ 0 :

$$4F(x,y)^4 - 4 \cdot F(x,x) \cdot F(x,y)^2 F(y,y) \le 0.$$

That is, $F(x,y)^4 \leq F(x,y)^2 F(x,x) F(y,y)$, and this implies that $F(x,y)^2 \leq F(x,x) F(y,y)$.

¹See Alain Berlinet and Christine Thomas-Agnan, *Reproducing Kernel Hilbert Spaces in Probability and Statistics*, p. 13, Lemma 3.

A real reproducing kernel Hilbert space is a Hilbert space H contained in \mathbb{R}^X , where X is a nonempty set, such that for each $x \in X$ the map $\Lambda_x f = f(x)$ is continuous $H \to \mathbb{R}$. In this note we speak always about real Hilbert spaces.

Let $H \subset \mathbb{R}^X$ be a reproducing kernel Hilbert space. Because H is a Hilbert space, the Riesz representation theorem states that $\Phi : H \to H^*$ defined by

$$(\Phi g)(f) = \langle f, g \rangle_H, \qquad g, f \in H$$

is an isometric isomorphism. Because H is a reproducing kernel Hilbert space, $\Lambda_x \in H^*$ for each $x \in X$ and we define $T_x = \Phi^{-1} \Lambda_x \in H$, which satisfies

$$f(x) = \Lambda_x(f) = \langle f, T_x \rangle_H, \qquad f \in H.$$

In particular, because $T_x \in H$, for $y \in X$ it holds that

$$T_x(y) = \Lambda_y(T_x) = \langle T_x, T_y \rangle_H.$$

Define $K: X \times X \to \mathbb{R}$ by

$$K(x,y) = \langle T_x, T_y \rangle_H,$$

called the reproducing kernel of H. For $x, y \in X$,

$$T_x(y) = \langle T_x, T_y \rangle_H = K(x, y) = K_x(y),$$

which means that $T_x = K_x$.

A reproducing kernel is symmetric and positive-definite:

$$K(x,y) = \langle T_x, T_y \rangle_H = \langle T_y, T_x \rangle_H = K(y,x)$$

and

$$\sum_{1 \le i,j \le n} c_i c_j K(x_i, x_j) = \sum_{1 \le i,j \le n} \left\langle c_i T_{x_i}, c_j T_{x_j} \right\rangle_H$$
$$= \left\langle \sum_{1 \le i \le n} c_i T_{x_i}, \sum_{1 \le j \le n} c_j T_{x_j} \right\rangle_H$$
$$\ge 0.$$

Lemma 2. If E is an orthonormal basis for a reproducing kernel Hilbert space $H \subset \mathbb{R}^X$ with reproducing kernel $K : X \times X \to \mathbb{R}$, then

$$K(x,y) = \sum_{e \in E} e(x)e(y), \qquad x, y \in X.$$

Proof. Because E is an orthonormal basis for H, Parseval's identity tell us

$$\langle T_x, T_y \rangle_H = \sum_{e \in E} \langle T_x, e \rangle \langle T_y, e \rangle = \sum_{e \in E} \langle e, T_x \rangle \langle e, T_y \rangle = \sum_{e \in E} e(x)e(y).$$

If $H \subset \mathbb{R}^X$ is a reproducing kernel Hilbert space with reproducing kernel $K : X \times X \to \mathbb{R}$ and V is a closed linear subspace of H, then V is itself a reproducing kernel Hilbert space, with some reproducing kernel $G : X \times X \to \mathbb{R}$. The following theorem expresses G in terms of K.²

Theorem 3. Let $H \subset \mathbb{R}^X$ be a reproducing kernel Hilbert space with reproducing kernel $K : X \times X \to \mathbb{R}$, let V be a closed linear subspace of H with reproducing kernel $G : X \times X \to \mathbb{R}$, and let $P_V : H \to V$ be the projection onto V. Then

$$G_x = P_V K_x, \qquad x \in X.$$

Proof. $H = V \oplus V^{\perp}$, thus for $f \in H$ there are unique $g \in V, h \in V^{\perp}$ such that f = g + h, and $P_V f = g$.³ Then $f - P_V f \in V^{\perp}$. Therefore for $y \in X$, as $G_y \in V$ it holds that

$$\langle f, G_y \rangle_H = \langle f - P_V f + P_V f, G_y \rangle_H = \langle P_V f, G_y \rangle_H = (P_V f)(y).$$

In particular, for $x, y \in X$ and $f = K_x$,

$$(P_V K_x)(y) = \langle K_x, G_y \rangle_H = \langle G_y, T_x \rangle_H = G_y(x) = G(y, x) = G(x, y) = G_x(y),$$

which means that $P_V K_x = G_x$, proving the claim.

The **Moore-Aronszajn theorem** states that if X is a nonempty set and $K: X \times X \to \mathbb{R}$ is a symmetric and positive-definite function, then there is a unique reproducing kernel Hilbert space $H \subset \mathbb{R}^X$ for which K is the reproducing kernel.

We now prove that given a symmetric positive-definite kernel there is a unique reproducing Hilbert space for which it is the reproducing kernel.⁴

2 Sobolev spaces on [0, T]

Let $f \in \mathbb{R}^{[0,T]}$. The following are equivalent:⁵

- 1. f is absolutely continuous.
- 2. f is differentiable at almost all $t \in [0, T]$, $f' \in L^1$, and

$$f(t) = f(0) + \int_0^t f'(s)ds, \qquad t \in [0,T].$$

3. There is some $g \in L^1$ such that

$$\underbrace{f(t) = f(0) + \int_0^t g(s)ds, \quad t \in [0, T].}_{t \in [0, T]}$$

 $^{^2 \}rm Ward$ Cheney and Will Light, A Course in Approximation Theory, p. 234, Chapter 31, Theorem 4.

³http://individual.utoronto.ca/jordanbell/notes/pvm.pdf

⁴Alain Berlinet and Christine Thomas-Agnan, *Reproducing Kernel Hilbert Spaces in Probability and Statistics*, p. 19, Theorem 3.

⁵Elias M. Stein and Rami Shakarchi, *Real Analysis*, p. 130, Theorem 3.11.

In particular, if f is absolutely continuous and f' = 0 almost everywhere then $\int_0^t f'(s)ds = 0$ and so f(t) = f(0) for all $t \in [0, T]$. That is, if f is absolutely continuous and f' = 0 almost everywhere then f is constant.

Let H be the set of those absolutely continuous functions $f \in \mathbb{R}^{[0,T]}$ such that f(0) = 0 and $f' \in L^2$. For $f, g \in H$ define

$$\langle f,g \rangle_H = \int_0^T f'(s)g'(s)ds.$$

If $||f||_H = 0$ then $\int_0^T f'(s)^2 ds = 0$, which implies that f' = 0 almost everywhere and hence that f is constant, and therefore f = 0. Thus $\langle \cdot, \cdot \rangle_H$ is indeed an inner product on H.

If f_n is a Cauchy sequence in H then f'_n is a Cauchy sequence in L^2 and hence converges to some $g \in L^2$. Then the function $f \in \mathbb{R}^{[0,T]}$ defined by

$$f(t) = \int_0^t g(s) ds, \qquad t \in [0,T],$$

is absolutely continuous, f(0) = 0, and satisfies f' = g almost everywhere, which shows that $f \in H$. Then $f_n \to f$ in H, which proves that H is a Hilbert space. For $t \in [0, T]$, by the Cauchy-Schwarz inequality,

$$|f(t)|^{2} = \left| \int_{0}^{t} f'(s) ds \right|^{2} \le \left| \int_{0}^{T} f'(s) ds \right|^{2} \le T \int_{0}^{T} f'(s)^{2} ds = T \|f\|_{H}^{2},$$

i.e. $|L_t f| \leq T^{1/2} ||f||_H$, which shows that $L_t \in H^*$. Therefore H is a reproducing kernel Hilbert space.

For $a \in [0,T]$ define $h_a : [0,T] \to \mathbb{R}$ by $h_a(s) = 1_{[0,a]}(s)$, which belongs to L^2 , and define $g_a : [0,T] \to \mathbb{R}$ by

$$g_a(t) = \int_0^t h_a(s)ds = \min(t, a)$$

which belongs to H. For $f \in H$,

$$\langle f, g_a \rangle_H = \int_0^T f'(s)g'_a(s)ds = \int_0^T f'(s)\mathbf{1}_{[0,a]}(s)ds = \int_0^a f'(s)ds = f(a).$$

This means that $K_a = g_a$. For $a, b \in [0, T]$,

$$\langle K_a, K_b \rangle_H = \int_0^T g'_a(s)g'_b(s)ds = \int_0^T \mathbf{1}_{[0,a]}(s)\mathbf{1}_{[0,b]}(s)ds = \int_0^T \mathbf{1}_{[0,\min(a,b)]}(s)ds.$$

That is, the reproducing kernel of H is $K : [0,T] \times [0,T] \to \mathbb{R}$,

$$K(a,b) = \langle K_a, K_b \rangle_H = \min(a,b).$$

3 Sobolev spaces on \mathbb{R}

Let λ be Lebesgue measure on \mathbb{R} . Let $\mathscr{L}^2(\lambda)$ be the collection of Borel measurable functions $f : \mathbb{R} \to \mathbb{R}$ such that $|f|^2$ is integrable, and let $L^2(\lambda)$ be the Hilbert space of equivalence classes of elements of $\mathscr{L}^2(\lambda)$ where $f \sim g$ when f = g almost everywhere, with

$$\langle f,g\rangle_{L^2}=\int_{\mathbb{R}}fgd\lambda.$$

Let $H^1(\mathbb{R})$ be the set of locally absolutely continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that $f, f' \in L^2(\lambda)$. This is a Hilbert space with the inner product⁶

$$\langle f,g\rangle_{H^1} = \langle f,g\rangle_{L^2} + \langle f',g'\rangle_{L^2} \,.$$

Define $K : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$K(x,y) = \frac{1}{2} \exp(-|x-y|), \qquad x, y \in \mathbb{R}.$$

Let $x \in \mathbb{R}$. For y < x, $K'_x(y) = K_x(y)$ and for y > x, $K'_x(y) = -K_x(y)$, which shows that $K_x \in H^1(\mathbb{R})$. For $f \in H^1(\mathbb{R})$, doing integration by parts,

$$\begin{split} \langle f, K_x \rangle_{H^1} &= \int_{-\infty}^{\infty} f K_x d\lambda + \int_{-\infty}^{x} f'(y) K_x(y) d\lambda(y) - \int_x^{\infty} f'(y) K_x(y) d\lambda(y) \\ &= \int_{-\infty}^{\infty} f K_x d\lambda + f(x) K_x(x) - \int_{-\infty}^{x} f(y) K'_x(y) d\lambda(y) \\ &+ f(x) K_x(x) + \int_x^{\infty} f(y) K'_x(y) d\lambda(y) \\ &= \int_{-\infty}^{\infty} f K_x d\lambda + \frac{1}{2} f(x) - \int_{-\infty}^{x} f(y) K_x(y) d\lambda(y) \\ &+ \frac{1}{2} f(x) - \int_x^{\infty} f(y) K_x(y) d\lambda(y) \\ &= f(x) \\ &= T_x f. \end{split}$$

This shows that $H^1(\mathbb{R})$ is a reproducing kernel Hilbert space. We calculate, for x < y,

$$\begin{split} \langle T_x, T_y \rangle_{H^1} &= \int_{-\infty}^x K_x K_y d\lambda + \int_x^y K_x K_y d\lambda + \int_y^\infty K_x K_y d\lambda \\ &+ \int_{-\infty}^x K_x K_y d\lambda - \int_x^y K_x K_y d\lambda + \int_y^\infty K_x K_y d\lambda \\ &= 4 \cdot \frac{1}{8} \exp(x - y) \\ &= K(x, y). \end{split}$$

⁶http://individual.utoronto.ca/jordanbell/notes/sobolev1d.pdf

This shows that $K(x,y) = \frac{1}{2} \exp(-|x-y|)$ is the reproducing kernel of $H^1(\mathbb{R})$.⁷

⁷cf. Alain Berlinet and Christine Thomas-Agnan, *Reproducing Kernel Hilbert Spaces in Probability and Statistics*, pp. 8–9, Example 5.