Real reproducing kernel Hilbert spaces

Jordan Bell

October 22, 2015

1 Reproducing kernels

We shall often speak about functions $F: X \times X \rightarrow \mathbb{R}$, where X is a nonempty set. For $x \in X$, we define $F_{x}: X \rightarrow \mathbb{R}$ by $F_{x}(y)=F(x, y)$ and for $y \in X$ we define $F^{y}: X \rightarrow \mathbb{R}$ by $F^{y}(x)=F(x, y) . F$ is said to be symmetric if $F(x, y)=$ $F(y, x)$ for all $x, y \in X$ and positive-definite if for any $x_{1}, \ldots, x_{n} \in X$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ it holds that

$$
\sum_{1 \leq i, j \leq n} c_{i} c_{j} F\left(x_{i}, x_{j}\right) \geq 0 .
$$

Lemma 1. If $F: X \times X \rightarrow \mathbb{R}$ is symmetric and positive-definite then

$$
F(x, y)^{2} \leq F(x, x) F(y, y), \quad x, y \in X .
$$

Proof. For $\alpha, \beta \in \mathbb{R}$ define 1

$$
\begin{aligned}
C(\alpha, \beta) & =\alpha^{2} F(x, x)+\alpha \beta F(x, y)+\beta \alpha F(y, x)+\beta^{2} F(y, y) \\
& =\alpha^{2} F(x, x)+2 \alpha \beta F(x, y)+\beta^{2} F(y, y),
\end{aligned}
$$

which is ≥ 0. Let

$$
\begin{aligned}
P(\alpha) & =C(\alpha, F(x, y)) \\
& =\alpha^{2} F(x, x)+2 \alpha F(x, y)^{2}+F(x, y)^{2} F(y, y),
\end{aligned}
$$

which is ≥ 0. In the case $F(x, x)=0$, the fact that $P \geq 0$ implies that $F(x, y)=0$. In the case $F(x, y) \neq 0, P(\alpha)$ is a quadratic polynomial and because $P \geq 0$ it follows that the discriminant of P is ≤ 0 :

$$
4 F(x, y)^{4}-4 \cdot F(x, x) \cdot F(x, y)^{2} F(y, y) \leq 0 .
$$

That is, $F(x, y)^{4} \leq F(x, y)^{2} F(x, x) F(y, y)$, and this implies that $F(x, y)^{2} \leq$ $F(x, x) F(y, y)$.

[^0]A real reproducing kernel Hilbert space is a Hilbert space H contained in \mathbb{R}^{X}, where X is a nonempty set, such that for each $x \in X$ the map $\Lambda_{x} f=f(x)$ is continuous $H \rightarrow \mathbb{R}$. In this note we speak always about real Hilbert spaces.

Let $H \subset \mathbb{R}^{X}$ be a reproducing kernel Hilbert space. Because H is a Hilbert space, the Riesz representation theorem states that $\Phi: H \rightarrow H^{*}$ defined by

$$
(\Phi g)(f)=\langle f, g\rangle_{H}, \quad g, f \in H
$$

is an isometric isomorphism. Because H is a reproducing kernel Hilbert space, $\Lambda_{x} \in H^{*}$ for each $x \in X$ and we define $T_{x}=\Phi^{-1} \Lambda_{x} \in H$, which satisfies

$$
f(x)=\Lambda_{x}(f)=\left\langle f, T_{x}\right\rangle_{H}, \quad f \in H
$$

In particular, because $T_{x} \in H$, for $y \in X$ it holds that

$$
T_{x}(y)=\Lambda_{y}\left(T_{x}\right)=\left\langle T_{x}, T_{y}\right\rangle_{H}
$$

Define $K: X \times X \rightarrow \mathbb{R}$ by

$$
K(x, y)=\left\langle T_{x}, T_{y}\right\rangle_{H}
$$

called the reproducing kernel of H. For $x, y \in X$,

$$
T_{x}(y)=\left\langle T_{x}, T_{y}\right\rangle_{H}=K(x, y)=K_{x}(y)
$$

which means that $T_{x}=K_{x}$.
A reproducing kernel is symmetric and positive-definite:

$$
K(x, y)=\left\langle T_{x}, T_{y}\right\rangle_{H}=\left\langle T_{y}, T_{x}\right\rangle_{H}=K(y, x)
$$

and

$$
\begin{aligned}
\sum_{1 \leq i, j \leq n} c_{i} c_{j} K\left(x_{i}, x_{j}\right) & =\sum_{1 \leq i, j \leq n}\left\langle c_{i} T_{x_{i}}, c_{j} T_{x_{j}}\right\rangle_{H} \\
& =\left\langle\sum_{1 \leq i \leq n} c_{i} T_{x_{i}}, \sum_{1 \leq j \leq n} c_{j} T_{x_{j}}\right\rangle_{H} \\
& \geq 0
\end{aligned}
$$

Lemma 2. If E is an orthonormal basis for a reproducing kernel Hilbert space $H \subset \mathbb{R}^{X}$ with reproducing kernel $K: X \times X \rightarrow \mathbb{R}$, then

$$
K(x, y)=\sum_{e \in E} e(x) e(y), \quad x, y \in X
$$

Proof. Because E is an orthonormal basis for H, Parseval's identity tell us

$$
\left\langle T_{x}, T_{y}\right\rangle_{H}=\sum_{e \in E}\left\langle T_{x}, e\right\rangle\left\langle T_{y}, e\right\rangle=\sum_{e \in E}\left\langle e, T_{x}\right\rangle\left\langle e, T_{y}\right\rangle=\sum_{e \in E} e(x) e(y)
$$

If $H \subset \mathbb{R}^{X}$ is a reproducing kernel Hilbert space with reproducing kernel $K: X \times X \rightarrow \mathbb{R}$ and V is a closed linear subspace of H, then V is itself a reproducing kernel Hilbert space, with some reproducing kernel $G: X \times X \rightarrow \mathbb{R}$. The following theorem expresses G in terms of K. ${ }^{2}$

Theorem 3. Let $H \subset \mathbb{R}^{X}$ be a reproducing kernel Hilbert space with reproducing kernel $K: X \times X \rightarrow \mathbb{R}$, let V be a closed linear subspace of H with reproducing kernel $G: X \times X \rightarrow \mathbb{R}$, and let $P_{V}: H \rightarrow V$ be the projection onto V. Then

$$
G_{x}=P_{V} K_{x}, \quad x \in X
$$

Proof. $H=V \oplus V^{\perp}$, thus for $f \in H$ there are unique $g \in V, h \in V^{\perp}$ such that $f=g+h$, and $P_{V} f=g .{ }^{3}$ Then $f-P_{V} f \in V^{\perp}$. Therefore for $y \in X$, as $G_{y} \in V$ it holds that

$$
\left\langle f, G_{y}\right\rangle_{H}=\left\langle f-P_{V} f+P_{V} f, G_{y}\right\rangle_{H}=\left\langle P_{V} f, G_{y}\right\rangle_{H}=\left(P_{V} f\right)(y)
$$

In particular, for $x, y \in X$ and $f=K_{x}$,

$$
\left(P_{V} K_{x}\right)(y)=\left\langle K_{x}, G_{y}\right\rangle_{H}=\left\langle G_{y}, T_{x}\right\rangle_{H}=G_{y}(x)=G(y, x)=G(x, y)=G_{x}(y),
$$

which means that $P_{V} K_{x}=G_{x}$, proving the claim.
The Moore-Aronszajn theorem states that if X is a nonempty set and $K: X \times X \rightarrow \mathbb{R}$ is a symmetric and positive-definite function, then there is a unique reproducing kernel Hilbert space $H \subset \mathbb{R}^{X}$ for which K is the reproducing kernel.

We now prove that given a symmetric positive-definite kernel there is a unique reproducing Hilbert space for which it is the reproducing kernel. ${ }^{4}$

2 Sobolev spaces on [0,T]

Let $f \in \mathbb{R}^{[0, T]}$. The following are equivalent: ${ }^{5}$

1. f is absolutely continuous.
2. f is differentiable at almost all $t \in[0, T], f^{\prime} \in L^{1}$, and

$$
f(t)=f(0)+\int_{0}^{t} f^{\prime}(s) d s, \quad t \in[0, T] .
$$

3. There is some $g \in L^{1}$ such that

$$
f(t)=f(0)+\int_{0}^{t} g(s) d s, \quad t \in[0, T]
$$

[^1]In particular, if f is absolutely continuous and $f^{\prime}=0$ almost everywhere then $\int_{0}^{t} f^{\prime}(s) d s=0$ and so $f(t)=f(0)$ for all $t \in[0, T]$. That is, if f is absolutely continuous and $f^{\prime}=0$ almost everywhere then f is constant.

Let H be the set of those absolutely continuous functions $f \in \mathbb{R}^{[0, T]}$ such that $f(0)=0$ and $f^{\prime} \in L^{2}$. For $f, g \in H$ define

$$
\langle f, g\rangle_{H}=\int_{0}^{T} f^{\prime}(s) g^{\prime}(s) d s
$$

If $\|f\|_{H}=0$ then $\int_{0}^{T} f^{\prime}(s)^{2} d s=0$, which implies that $f^{\prime}=0$ almost everywhere and hence that f is constant, and therefore $f=0$. Thus $\langle\cdot, \cdot\rangle_{H}$ is indeed an inner product on H.

If f_{n} is a Cauchy sequence in H then f_{n}^{\prime} is a Cauchy sequence in L^{2} and hence converges to some $g \in L^{2}$. Then the function $f \in \mathbb{R}^{[0, T]}$ defined by

$$
f(t)=\int_{0}^{t} g(s) d s, \quad t \in[0, T]
$$

is absolutely continuous, $f(0)=0$, and satisfies $f^{\prime}=g$ almost everywhere, which shows that $f \in H$. Then $f_{n} \rightarrow f$ in H, which proves that H is a Hilbert space. For $t \in[0, T]$, by the Cauchy-Schwarz inequality,

$$
|f(t)|^{2}=\left|\int_{0}^{t} f^{\prime}(s) d s\right|^{2} \leq\left|\int_{0}^{T} f^{\prime}(s) d s\right|^{2} \leq T \int_{0}^{T} f^{\prime}(s)^{2} d s=T\|f\|_{H}^{2}
$$

i.e. $\left|L_{t} f\right| \leq T^{1 / 2}\|f\|_{H}$, which shows that $L_{t} \in H^{*}$. Therefore H is a reproducing kernel Hilbert space.

For $a \in[0, T]$ define $h_{a}:[0, T] \rightarrow \mathbb{R}$ by $h_{a}(s)=1_{[0, a]}(s)$, which belongs to L^{2}, and define $g_{a}:[0, T] \rightarrow \mathbb{R}$ by

$$
g_{a}(t)=\int_{0}^{t} h_{a}(s) d s=\min (t, a)
$$

which belongs to H. For $f \in H$,

$$
\left\langle f, g_{a}\right\rangle_{H}=\int_{0}^{T} f^{\prime}(s) g_{a}^{\prime}(s) d s=\int_{0}^{T} f^{\prime}(s) 1_{[0, a]}(s) d s=\int_{0}^{a} f^{\prime}(s) d s=f(a)
$$

This means that $K_{a}=g_{a}$. For $a, b \in[0, T]$,

$$
\left\langle K_{a}, K_{b}\right\rangle_{H}=\int_{0}^{T} g_{a}^{\prime}(s) g_{b}^{\prime}(s) d s=\int_{0}^{T} 1_{[0, a]}(s) 1_{[0, b]}(s) d s=\int_{0}^{T} 1_{[0, \min (a, b)]}(s) d s
$$

That is, the reproducing kernel of H is $K:[0, T] \times[0, T] \rightarrow \mathbb{R}$,

$$
K(a, b)=\left\langle K_{a}, K_{b}\right\rangle_{H}=\min (a, b)
$$

3 Sobolev spaces on \mathbb{R}

Let λ be Lebesgue measure on \mathbb{R}. Let $\mathscr{L}^{2}(\lambda)$ be the collection of Borel measurable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $|f|^{2}$ is integrable, and let $L^{2}(\lambda)$ be the Hilbert space of equivalence classes of elements of $\mathscr{L}^{2}(\lambda)$ where $f \sim g$ when $f=g$ almost everywhere, with

$$
\langle f, g\rangle_{L^{2}}=\int_{\mathbb{R}} f g d \lambda
$$

Let $H^{1}(\mathbb{R})$ be the set of locally absolutely continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f, f^{\prime} \in L^{2}(\lambda)$. This is a Hilbert space with the inner product ${ }^{6}$

$$
\langle f, g\rangle_{H^{1}}=\langle f, g\rangle_{L^{2}}+\left\langle f^{\prime}, g^{\prime}\right\rangle_{L^{2}} .
$$

Define $K: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
K(x, y)=\frac{1}{2} \exp (-|x-y|), \quad x, y \in \mathbb{R}
$$

Let $x \in \mathbb{R}$. For $y<x, K_{x}^{\prime}(y)=K_{x}(y)$ and for $y>x, K_{x}^{\prime}(y)=-K_{x}(y)$, which shows that $K_{x} \in H^{1}(\mathbb{R})$. For $f \in H^{1}(\mathbb{R})$, doing integration by parts,

$$
\begin{aligned}
\left\langle f, K_{x}\right\rangle_{H^{1}} & =\int_{-\infty}^{\infty} f K_{x} d \lambda+\int_{-\infty}^{x} f^{\prime}(y) K_{x}(y) d \lambda(y)-\int_{x}^{\infty} f^{\prime}(y) K_{x}(y) d \lambda(y) \\
& =\int_{-\infty}^{\infty} f K_{x} d \lambda+f(x) K_{x}(x)-\int_{-\infty}^{x} f(y) K_{x}^{\prime}(y) d \lambda(y) \\
& +f(x) K_{x}(x)+\int_{x}^{\infty} f(y) K_{x}^{\prime}(y) d \lambda(y) \\
& =\int_{-\infty}^{\infty} f K_{x} d \lambda+\frac{1}{2} f(x)-\int_{-\infty}^{x} f(y) K_{x}(y) d \lambda(y) \\
& +\frac{1}{2} f(x)-\int_{x}^{\infty} f(y) K_{x}(y) d \lambda(y) \\
& =f(x) \\
& =T_{x} f
\end{aligned}
$$

This shows that $H^{1}(\mathbb{R})$ is a reproducing kernel Hilbert space. We calculate, for $x<y$,

$$
\begin{aligned}
\left\langle T_{x}, T_{y}\right\rangle_{H^{1}} & =\int_{-\infty}^{x} K_{x} K_{y} d \lambda+\int_{x}^{y} K_{x} K_{y} d \lambda+\int_{y}^{\infty} K_{x} K_{y} d \lambda \\
& +\int_{-\infty}^{x} K_{x} K_{y} d \lambda-\int_{x}^{y} K_{x} K_{y} d \lambda+\int_{y}^{\infty} K_{x} K_{y} d \lambda \\
& =4 \cdot \frac{1}{8} \exp (x-y) \\
& =K(x, y)
\end{aligned}
$$

[^2]This shows that $K(x, y)=\frac{1}{2} \exp (-|x-y|)$ is the reproducing kernel of $H^{1}(\mathbb{R}) .{ }^{7}$

[^3]
[^0]: ${ }^{1}$ See Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, p. 13, Lemma 3.

[^1]: ${ }^{2}$ Ward Cheney and Will Light, A Course in Approximation Theory, p. 234, Chapter 31, Theorem 4.
 ${ }^{3}$ http://individual.utoronto.ca/jordanbell/notes/pvm.pdf
 ${ }^{4}$ Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, p. 19, Theorem 3.
 ${ }^{5}$ Elias M. Stein and Rami Shakarchi, Real Analysis, p. 130, Theorem 3.11.

[^2]: ${ }^{6}$ http://individual.utoronto.ca/jordanbell/notes/sobolev1d.pdf

[^3]: ${ }^{7}$ cf. Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, pp. 8-9, Example 5.

