Ramanujan's sum

Jordan Bell

April 7, 2014

1 Definition

Let q and l be positive integers. Define

$$
c_{q}(l)=\sum_{\substack{1 \leq j \leq q \\ \operatorname{gcd}(h, q)=1}} e^{-2 \pi i h l / q}=\sum_{\substack{1 \leq h \leq q \\ \operatorname{gcd}(h, q)=1}} e^{2 \pi i h l / q}=\sum_{\substack{1 \leq h \leq q \\ \operatorname{gcd}(h, q)=1}} \cos \frac{2 \pi h l}{q} .
$$

$c_{q}(l)$ is called Ramanujan's sum.

2 Fourier transform on \mathbb{Z} / q and the principal Dirichlet character modulo q

For $F: \mathbb{Z} / q \rightarrow \mathbb{C}$, the Fourier transform $\widehat{F}: \mathbb{Z} / q \rightarrow \mathbb{C}$ of F is defined by

$$
\widehat{F}(k)=\frac{1}{q} \sum_{j \in \mathbb{Z} / q} F(j) e^{-2 \pi i j k / q}, \quad k \in \mathbb{Z} / q
$$

Define $\chi: \mathbb{Z} / q \rightarrow \mathbb{C}$ by $\chi(j)=1$ if $\operatorname{gcd}(j, q)=1$ and $\chi(j)=0$ if $\operatorname{gcd}(j, q)>1$. χ is called the principal Dirichlet character modulo q. The Fourier transform of χ is

$$
\widehat{\chi}(k)=\frac{1}{q} \sum_{j \in \mathbb{Z} / q} \chi(j) e^{-2 \pi i j k / q}=\frac{1}{q} \sum_{\substack{1 \leq j \leq q \\ \operatorname{gcd}(j, q)=1}} e^{-2 \pi i j k / q} .
$$

Therefore we can write Ramanujan's sum $c_{q}(l)$ as $c_{q}(l)=q \cdot \widehat{\chi}(l)$, thus $c_{q}=q \cdot \widehat{\chi}$.
The above gives us an expression for $c_{q}(l)$ as a multiple of the Fourier transform of the principal Dirichlet character modulo $q . c_{q}: \mathbb{Z} / q \rightarrow \mathbb{C}$, and we can write the Fourier transform of c_{q} as

$$
\begin{aligned}
\widehat{c_{q}}(k) & =\frac{1}{q} \sum_{j \in \mathbb{Z} / q} c_{q}(j) e^{-2 \pi i j k / q} \\
& =\sum_{j \in \mathbb{Z} / q} \widehat{\chi}(j) e^{-2 \pi i j k / q} .
\end{aligned}
$$

3 Dirichlet series

Here I am following Titchmarsh in $\S 1.5$ of his The theory of the Riemann zetafunction, second ed. Let μ be the Möbius function. The Möbius inversion formula states that if

$$
g(q)=\sum_{d \mid q} f(d)
$$

then

$$
f(q)=\sum_{d \mid q} \mu\left(\frac{q}{d}\right) g(d)
$$

($\sum_{d \mid q}$ is a sum over the positive divisors of q.)
Define

$$
\eta_{q}(k)=\sum_{j \in \mathbb{Z} / q} e^{-2 \pi i j k / q}
$$

We have (this is not supposed to be obvious)

$$
\eta_{q}(k)=\sum_{d \mid q} c_{d}(k)
$$

Therefore by the Möbius inversion formula we have

$$
c_{q}(k)=\sum_{d \mid q} \mu\left(\frac{q}{d}\right) \eta_{d}(k)
$$

(Hence $\left|c_{q}(k)\right| \leq \sum_{d \mid k} d=\sigma_{1}(k)$, where $\sigma_{a}(k)=\sum_{d \mid k} d^{a}$.)
If $q \mid k$ then $\eta_{q}(k)=q$, and if $q \wedge k$ then $\eta_{q}(k)=0$. (To show the second statement: multiply the sum by $e^{-2 \pi i k / q}$, and check that this product is equal to the original sum. Since we multplied the sum by a number that is not 1 , the sum must be equal to 0 .) Thus we can express the Möbius function using Ramanujan's sum as $\mu(q)=c_{q}(1)$.

Because $\eta_{d}(k)=d$ if $k \mid d$ and $\eta_{d}(k)=0$ if $k \not \backslash d$, we have

$$
c_{q}(k)=\sum_{d|q, d| k} \mu\left(\frac{q}{d}\right) d=\sum_{d r=q, d \mid k} \mu(r) d .
$$

So

$$
\frac{c_{q}(k)}{q^{s}}=\sum_{d r=q, d \mid k} \frac{1}{q^{s}} \mu(r) d=\sum_{d r=q, d \mid k} \frac{1}{d^{s} r^{s}} \mu(r) d=\sum_{d r=q, d \mid k} \frac{1}{r^{s}} \mu(r) d^{1-s}
$$

Therefore

$$
\sum_{q=1}^{\infty} \frac{c_{q}(k)}{q^{s}}=\sum_{q=1}^{\infty} \sum_{d r=q, d \mid k} \frac{1}{r^{s}} \mu(r) d^{1-s}=\sum_{r=1}^{\infty} \sum_{d \mid k} \frac{1}{r^{s}} \mu(r) d^{1-s}=\sum_{r=1}^{\infty} \frac{1}{r^{s}} \mu(r) \sum_{d \mid k} d^{1-s}
$$

Then

$$
\sum_{q=1}^{\infty} \frac{c_{q}(k)}{q^{s}}=\sigma_{1-s}(k) \sum_{r=1}^{\infty} \frac{1}{r^{s}} \mu(r)=\sigma_{1-s}(k) \frac{1}{\zeta(s)}
$$

here we used that

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

On the other hand, if rather than sum over q we sum over k, then we obtain

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{c_{q}(k)}{k^{s}} & =\sum_{k=1}^{\infty} \frac{1}{k^{s}} \sum_{d|q, d| k} \mu\left(\frac{q}{d}\right) d \\
& =\sum_{d \mid q} \sum_{m=1}^{\infty} \frac{1}{(m d)^{s}} \cdot \mu\left(\frac{q}{d}\right) d \\
& =\sum_{d \mid q} \sum_{m=1}^{\infty} \frac{1}{m^{s}} \cdot \frac{1}{d^{s}} \cdot \mu\left(\frac{q}{d}\right) d \\
& =\sum_{m=1}^{\infty} \frac{1}{m^{s}} \sum_{d \mid q} \frac{1}{d^{s}} \mu\left(\frac{q}{d}\right) d \\
& =\zeta(s) \cdot \sum_{d \mid q} \mu\left(\frac{q}{d}\right) d^{1-s}
\end{aligned}
$$

