Rademacher functions

Jordan Bell

July 16, 2014

1 Binary expansions

Define $S:\{0,1\}^{\mathbb{N}} \rightarrow[0,1]$ by

$$
S(\sigma)=\sum_{k=1}^{\infty} \frac{\sigma_{k}}{2^{k}}, \quad \sigma \in\{0,1\}^{\mathbb{N}}
$$

For example, for $\sigma_{1}=0$ and $\sigma_{2}=1, \sigma_{3}=1, \ldots$,

$$
S(\sigma)=\frac{0}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=\frac{1}{2}
$$

for $\sigma_{1}=1$ and $\sigma_{2}=0, \sigma_{3}=0, \ldots$,

$$
S(\sigma)=\frac{1}{2}+\frac{0}{4}+\frac{0}{8}+\cdots=\frac{1}{2} .
$$

Let $\sigma \in\{0,1\}^{\mathbb{N}}$. If there is some $n \in \mathbb{N}$ such that $\sigma_{n}=0$ and $\sigma_{k}=1$ for all $k \geq n+1$, then defining

$$
\tau_{k}= \begin{cases}\sigma_{k} & k \leq n-1 \\ 1 & k=n \\ 0 & k \geq n\end{cases}
$$

we have

$$
S(\sigma)=\sum_{k=1}^{n-1} \frac{\sigma_{k}}{2^{k}}+\sum_{k=n+1}^{\infty} \frac{1}{2^{k}}=\sum_{k=1}^{n-1} \frac{\sigma_{k}}{2^{k}}+\frac{1}{2^{n}}=S(\tau)
$$

One proves that if either (i) there is some $n \in \mathbb{N}$ such that $\sigma_{n}=0$ and $\sigma_{k}=1$ for all $k \geq n+1$ or (ii) there is some $n \in \mathbb{N}$ such that $\sigma_{n}=1$ and $\sigma_{k}=0$ for all $k \geq n+1$, then $S^{-1}(S(\sigma))$ contains exactly two elements, and that otherwise $S^{-1}(S(\sigma))$ contains exactly one element.

In words, except for the sequence whose terms are only 0 or the sequence whose terms are only $1, S^{-1}(S(\sigma))$ contains exactly two elements when σ is eventually 0 or eventually 1 , and $S^{-1}(S(\sigma))$ contains exactly one element otherwise.

We define $\epsilon:[0,1] \rightarrow\{0,1\}^{\mathbb{N}}$ by taking $\epsilon(t)$ to be the unique element of $S^{-1}(t)$ if $S^{-1}(t)$ contains exactly one element, and to be the element of $S^{-1}(t)$ that is eventually 0 if $S^{-1}(t)$ contains exactly two elements. For $k \in \mathbb{N}$ we define $\epsilon_{k}:[0,1] \rightarrow\{0,1\}$ by

$$
\epsilon_{k}(t)=\epsilon(t)_{k}, \quad t \in[0,1] .
$$

Then, for all $t \in[0,1]$,

$$
\begin{equation*}
t=S(\epsilon(t))=\sum_{k=1}^{\infty} \frac{\epsilon_{k}(t)}{2^{k}}, \tag{1}
\end{equation*}
$$

which we call the binary expansion of t.

2 Rademacher functions

For $k \in \mathbb{N}$, the $k \mathbf{t h}$ Rademacher function $r_{k}:[0,1] \rightarrow\{-1,+1\}$ is defined by

$$
r_{k}(t)=1-2 \epsilon_{k}(t), \quad t \in[0,1] .
$$

We can rewrite the binary expansion of $t \in[0,1]$ in (1) as

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{r_{k}(t)}{2^{k}}=\sum_{k=1}^{\infty}\left(\frac{1}{2^{k}}-2 \cdot \frac{\epsilon_{k}(t)}{2^{k}}\right)=1-2 \sum_{k=1}^{\infty} \frac{\epsilon_{k}(t)}{2^{k}}=1-2 t . \tag{2}
\end{equation*}
$$

Define $r: \mathbb{R} \rightarrow\{-1,+1\}$ by

$$
r(x)=(-1)^{[x]}
$$

where $[x]$ denotes the greatest integer $\leq x$. Thus, for $0 \leq x<1$ we have $r(x)=1$, for $1 \leq x<2$ we have $r(x)=-1$, and r has period 2.

Lemma 1. For any $n \in \mathbb{N}$,

$$
r_{n}(t)=(-1)^{\left[2^{n} t\right]}=r\left(2^{n} t\right), \quad t \in[0,1]
$$

In the following theorem we use the Rademacher functions to prove an identity for trigonometric functions. ${ }^{1}$

Theorem 2. For any nonzero real x,

$$
\prod_{k=1}^{\infty} \cos \frac{x}{2^{k}}=\frac{\sin x}{x}
$$

[^0]Proof. Let $n \in \mathbb{N}$ and let $c_{1}, \ldots, c_{n} \in \mathbb{R}$. The function

$$
\sum_{k=1}^{n} c_{k} r_{k}
$$

is constant on each of the intervals

$$
\begin{equation*}
\left[\frac{s}{2^{n}}, \frac{s+1}{2^{n}}\right), \quad 0 \leq s \leq 2^{n}-1 \tag{3}
\end{equation*}
$$

There is a bijection between $\Delta_{n}=\{-1,+1\}^{n}$ and the collection of intervals (3). Without explicitly describing this bijection, we have

$$
\begin{aligned}
\int_{0}^{1} \exp \left(i \sum_{k=1}^{n} c_{k} r_{k}(t)\right) d t & =\sum_{s=0}^{2^{n}-1} \int_{s \cdot 2^{-n}}^{(s+1) \cdot 2^{-n}} \exp \left(i \sum_{k=1}^{n} c_{k} r_{k}(t)\right) d t \\
& =\sum_{\delta \in \Delta_{n}} \frac{1}{2^{n}} \exp \left(i \sum_{k=1}^{n} \delta_{k} c_{k}\right) \\
& =\sum_{\delta \in \Delta_{n}} \prod_{k=1}^{n} \frac{e^{i \delta_{k} c_{k}}}{2} \\
& =\prod_{k=1}^{n} \frac{e^{i c_{k}}+e^{-i c_{k}}}{2}
\end{aligned}
$$

giving

$$
\begin{equation*}
\int_{0}^{1} \exp \left(i \sum_{k=1}^{n} c_{k} r_{k}(t)\right) d t=\prod_{k=1}^{n} \cos c_{k} \tag{4}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{0}^{1} e^{i x(1-2 t)} d t=\left.e^{i x} \frac{e^{-2 i x t}}{-2 i x}\right|_{0} ^{1}=e^{i x}\left(\frac{e^{-2 i x}}{-2 i x}+\frac{1}{2 i x}\right)=\frac{\sin x}{x} \tag{5}
\end{equation*}
$$

Using (2) we check that the sequence of functions $\sum_{k=1}^{n} \frac{r_{k}(t)}{2^{k}}$ converges uniformly on $[0,1]$ to $1-2 t$, and hence using (5) we get

$$
\left.\int_{0}^{1} \exp \left(i x \sum_{k=1}^{n} \frac{r_{k}(t)}{2^{k}}\right) d t \rightarrow \int_{0}^{1} e^{i x(1-2 t}\right) d t=\frac{\sin x}{x}
$$

as $n \rightarrow \infty$. Combining this with (4), which we apply with $c_{k}=\frac{x}{2^{k}}$, we get

$$
\prod_{k=1}^{n} \cos \frac{x}{2^{k}} \rightarrow \frac{\sin x}{x}
$$

as $n \rightarrow \infty$, proving the claim.

We now give an explicit formula for the measure of those t for which exactly l of $r_{1}(t), \ldots, r_{n}(t)$ are equal to $1 .{ }^{2}$ We denote by μ Lebesgue measure on \mathbb{R}. We can interpret the following formula as stating the probability that out of n tosses of a coin, exactly l of the outcomes are heads.

Theorem 3. For $n \in \mathbb{N}$ and $0 \leq l \leq n$,

$$
\mu\left\{t \in[0,1]: r_{1}(t)+\cdots+r_{n}(t)=2 l-n\right\}=\frac{1}{2^{n}}\binom{n}{l}
$$

Proof. Define $\phi:[0,1] \rightarrow \mathbb{R}$ by

$$
\phi(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i x\left(-(2 l-n)+\sum_{k=1}^{n} r_{k}(t)\right)} d x
$$

But for $m \in \mathbb{Z}$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i m x} d x=\delta_{m, 0}= \begin{cases}1 & m=0 \tag{6}\\ 0 & m \neq 0\end{cases}
$$

hence

$$
\phi(t)= \begin{cases}1 & \sum_{k=1}^{n} r_{k}(t)=2 l-n \\ 0 & \sum_{k=1}^{n} r_{k}(t) \neq 2 l-n\end{cases}
$$

Therefore

$$
\begin{aligned}
\mu\left\{t \in[0,1]: \sum_{k=1}^{n} r_{k}(t)=2 l-n\right\} & =\int_{0}^{1} \phi(t) d t \\
& =\int_{0}^{1} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i x\left(-(2 l-n)+\sum_{k=1}^{n} r_{k}(t)\right)} d x d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i x(2 l-n)} \int_{0}^{1} e^{i x \sum_{k=1}^{n} r_{k}(t)} d t d x \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i x(2 l-n)} \cos ^{n} x d x
\end{aligned}
$$

the last equality uses (4) with $c_{1}=x, \ldots, c_{n}=x$. Furthermore, writing

$$
\cos ^{n} x=2^{-n}\left(e^{i x}+e^{-i x}\right)=2^{-n} \sum_{k=0}^{n}\binom{n}{k} e^{i x(2 k-n)}
$$

[^1]we calculate using (6) that
\[

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i x(2 l-n)} \cos ^{n} x d x & =2^{-n} \sum_{k=0}^{n}\binom{n}{k} \frac{1}{2 \pi} \int_{0}^{1} e^{-i x(2 l-n)} e^{i x(2 k-n)} d x \\
& =2^{-n} \sum_{k=0}^{n}\binom{n}{k} \frac{1}{2 \pi} \int_{0}^{1} e^{i x(2 k-2 l)} d x \\
& =2^{-n} \sum_{k=0}^{n}\binom{n}{k} \delta_{2 k-2 l, 0} \\
& =2^{-n} \sum_{k=0}^{n}\binom{n}{k} \delta_{k, l} \\
& =2^{-n}\binom{n}{l}
\end{aligned}
$$
\]

proving the claim.
We now prove that the expected value of a product of distinct Rademacher functions is equal to the product of their expected values. ${ }^{3}$

Theorem 4. If k_{1}, \ldots, k_{n} are positive integers and $k_{1}<\cdots<k_{n}$, then

$$
\int_{0}^{1} r_{k_{1}}(t) \cdots r_{k_{n}}(t) d t=0
$$

Proof. Write $J=\int_{0}^{1} r_{k_{1}}(t) \cdots r_{k_{n}}(t) d t$ and define

$$
\phi(x)=\prod_{s=2}^{n} r\left(2^{k_{s}-k_{1}} x\right), \quad x \in \mathbb{R}
$$

which satisfies

$$
\phi(x+1)=\prod_{s=2}^{n} r\left(2^{k_{s}-k_{1}} x+2^{k_{s}-k_{1}}\right)=\prod_{s=2}^{n} r\left(2^{k_{s}-k_{1}} x\right)=\phi(x)
$$

[^2]Hence, as ϕ has period 1 and r has period 2,

$$
\begin{aligned}
J & =\int_{0}^{1} r_{k_{1}}(t) \phi\left(2^{k_{1}} t\right) d t \\
& =\int_{0}^{1} r\left(2^{k_{1}} t\right) \phi\left(2^{k_{1}} t\right) d t \\
& =\frac{1}{2^{k_{1}}} \int_{0}^{2^{k_{1}}} r(x) \phi(x) d x \\
& =\frac{1}{2^{k_{1}}} \sum_{j=0}^{2^{k_{1}-1}-1} \int_{2 j}^{2 j+2} r(x) \phi(x) d x \\
& =\frac{1}{2^{k_{1}}} \sum_{j=0}^{2^{k_{1}-1}-1} \int_{0}^{2} r(x) \phi(x) d x \\
& =\frac{1}{2} \int_{0}^{2} r(x) \phi(x) d x .
\end{aligned}
$$

But, as ϕ has period 1,

$$
\int_{0}^{2} r(x) \phi(x) d x=\int_{0}^{1} \phi(x) d x-\int_{1}^{2} \phi(x) d x=\int_{0}^{1} \phi(x) d x-\int_{0}^{1} \phi(x) d x=0
$$

hence $J=0$, proving the claim.
For each $n \in \mathbb{N}$, if f is a function defined on the integers we define

$$
I_{n}(f)=\int_{0}^{1} f\left(\sum_{k=1}^{n} r_{k}(t)\right) d t
$$

Lemma 5. For any $n \in \mathbb{N}$,

$$
I_{n}\left(x^{2}\right)=n, \quad I_{n}\left(x^{4}\right)=3 n^{2}-2 n
$$

Proof. Using Theorem 4 we get

$$
\begin{aligned}
I_{n}\left(x^{2}\right) & =\int_{0}^{1}\left(\sum_{k=1}^{n} r_{k}(t)\right)^{2} d t \\
& =\int_{0}^{1} \sum_{k=1}^{n} r_{k}(t)^{2}+\sum_{j \neq k} r_{j}(t) r_{k}(t) d t \\
& =\int_{0}^{1} \sum_{k=1}^{n} r_{k}(t)^{2} d t \\
& =n
\end{aligned}
$$

Using Theorem 4 we get, since $r_{j}(t)^{4}=r_{j}(t)^{2}=1$ and $r_{j}(t)^{3}=r_{j}(t)$,

$$
\begin{aligned}
I_{n}\left(x^{4}\right)= & \int_{0}^{1}\left(\sum_{k=1}^{n} r_{k}(t)\right)^{4} d t \\
= & \int_{0}^{1} \sum_{k=1}^{n} r_{k}(t)^{4}+\binom{4}{3} \sum_{j=1}^{n} \sum_{k \neq j} r_{j}(t)^{3} r_{k}(t)+\binom{4}{2} \sum_{j=1}^{n} \sum_{k \neq j} r_{j}(t)^{2} r_{k}(t)^{2} \\
& +\binom{4}{2} \sum_{j=1}^{n} \sum_{j, k, l \text { all distinct }} r_{j}(t)^{2} r_{k}(t) r_{l}(t) \\
& +\sum_{j, k, l, m \text { all distinct }} r_{j}(t) r_{k}(t) r_{l}(t) r_{m}(t) d t \\
= & n+\binom{4}{2} n(n-1) .
\end{aligned}
$$

Our proof of the next identity follows Hata. ${ }^{4}$
Lemma 6. For any $n \in \mathbb{N}$,

$$
I_{n}(|x|)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos ^{n} x}{x^{2}} d x
$$

Proof. For $n \in \mathbb{N}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$,

$$
\int_{0}^{1} \exp \left(i \sum_{k=1}^{n} c_{k} r_{k}(t)\right) d t=\int_{0}^{1} \cos \left(\sum_{k=1}^{n} c_{k} r_{k}(t)\right) d t+i \int_{0}^{1} \sin \left(\sum_{k=1}^{n} c_{k} r_{k}(t)\right) d t
$$

and since (4) tells us that the left-hand side of the above is real, it follows that we can write (4) as

$$
\begin{equation*}
\int_{0}^{1} \cos \left(\sum_{k=1}^{n} c_{k} r_{k}(t)\right) d t=\prod_{k=1}^{n} \cos c_{k} \tag{7}
\end{equation*}
$$

Suppose that ξ is a positive real number. Using $t=x \xi$ and doing integration by parts,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1-\cos x \xi}{x^{2}} d x & =\xi \int_{0}^{\infty} \frac{1-\cos t}{t^{2}} d t \\
& =\left.\xi \frac{1-\cos t}{-t}\right|_{0} ^{\infty}+\xi \int_{0}^{\infty} \frac{\sin t}{t} d t \\
& =\xi \int_{0}^{\infty} \frac{\sin t}{t} d t \\
& =\xi \frac{\pi}{2}
\end{aligned}
$$

[^3]It is thus apparent that for any real ξ,

$$
\int_{0}^{\infty} \frac{1-\cos x \xi}{x^{2}} d x=|\xi| \frac{\pi}{2}
$$

For any $n \in \mathbb{N}$, applying the above with $\xi=\sum_{k=1}^{n} r_{k}(t)$ we get

$$
\begin{aligned}
I_{n}(|x|) & =\frac{2}{\pi} \int_{0}^{1}\left|\sum_{k=1}^{n} r_{k}(t)\right| \frac{\pi}{2} d t \\
& =\frac{2}{\pi} \int_{0}^{1} \int_{0}^{\infty} \frac{1-\cos \left(x \sum_{k=1}^{n} r_{k}(t)\right)}{x^{2}} d x d t \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \int_{0}^{1} 1-\cos \left(x \sum_{k=1}^{n} r_{k}(t)\right) d t d x \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}}\left(1-I_{n}(\cos x \cdot)\right) d x
\end{aligned}
$$

Applying (7) with $c_{k}=x$ for each k, this is equal to

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}}\left(1-\prod_{k=1}^{n} \cos x\right) d x=\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos ^{n} x}{x^{2}} d x
$$

completing the proof.
We use the above formula for $I_{n}(|x|)$ to obtain an asymptotic formula for $I_{n}(|x|) .{ }^{5}$

Theorem 7.

$$
I_{n}(|x|) \sim \sqrt{\frac{2}{\pi}} \sqrt{n}
$$

Proof. By Lemma 6,

$$
I_{n}(|x|)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos ^{n} x}{x^{2}} d x
$$

For $0 \leq \epsilon<1$, define $\phi_{\epsilon}:\left[0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ by

$$
\phi_{\epsilon}(x)=\frac{x^{2}}{2(1-\epsilon)}+\log \cos x
$$

We also define

$$
\alpha_{\epsilon}=\arccos \sqrt{1-\epsilon}, \quad \beta_{\epsilon}=\int_{\alpha_{\epsilon}}^{\infty} \frac{1-\cos ^{n} x}{x^{2}} d x
$$

[^4]and for $\sigma>0$,
$$
K_{\epsilon, \sigma}=\int_{0}^{\alpha_{\epsilon}} \frac{1-\exp \left(-\frac{n x^{2}}{\sigma}\right)}{x^{2}} d x
$$

Let $0<\epsilon<1$. Until the end of the proof, at which point we take $\epsilon \rightarrow 0$, we shall keep ϵ fixed. For $0<x<\alpha_{\epsilon}$ we have, using $\arccos \sqrt{1-\epsilon} \leq \sqrt{\epsilon}$,

$$
\phi_{0}(x)=\frac{x^{2}}{2}+\log \cos x<\frac{\epsilon}{2}+\log \sqrt{1-\epsilon}=\frac{\epsilon}{2}+\frac{1}{2} \log (1-\epsilon)<0
$$

hence

$$
\cos x<\exp \left(-\frac{x^{2}}{2}\right)
$$

On the other hand,

$$
\phi_{\epsilon}^{\prime}(x)=\frac{x}{1-\epsilon}-\tan x, \quad \phi_{\epsilon}^{\prime \prime}(x)=\frac{1}{1-\epsilon}-\sec ^{2} x
$$

so $\phi_{\epsilon}(0)=\phi_{\epsilon}^{\prime}(0)=0$ and $\phi_{\epsilon}^{\prime \prime}(t)>0$ for all $0 \leq t<\alpha_{\epsilon}$, giving

$$
\phi_{\epsilon}(x)>0
$$

and hence

$$
\exp \left(-\frac{x^{2}}{2(1-\epsilon)}\right)<\cos x
$$

Collecting what we have established so far, for $0<x<\alpha_{\epsilon}$ we have

$$
\exp \left(-\frac{x^{2}}{2(1-\epsilon)}\right)<\cos x<\exp \left(-\frac{x^{2}}{2}\right)
$$

This shows that

$$
K_{\epsilon, 2(1-\epsilon)}=\int_{0}^{\alpha_{\epsilon}} \frac{1-\exp \left(-\frac{n x^{2}}{2(1-\epsilon)}\right)}{x^{2}} d x \geq \int_{0}^{\alpha_{\epsilon}} \frac{1-\cos ^{n} x}{x^{2}} d x
$$

and therefore

$$
K_{\epsilon, 2(1-\epsilon)}+\beta_{\epsilon} \geq \frac{\pi}{2} I_{n}(|x|)
$$

On the other hand,

$$
K_{\epsilon, 2}=\int_{0}^{\alpha_{\epsilon}} \frac{1-\exp \left(-\frac{n x^{2}}{2}\right)}{x^{2}} d x \leq \int_{0}^{\alpha_{\epsilon}} \frac{1-\cos ^{n} x}{x^{2}} d x
$$

so

$$
K_{\epsilon, 2}+\beta_{\epsilon} \leq \frac{\pi}{2} I_{n}(|x|)
$$

Now summarizing what we have obtained, we have

$$
\begin{equation*}
K_{\epsilon, 2}+\beta_{\epsilon} \leq \frac{\pi}{2} I_{n}(|x|) \leq K_{\epsilon, 2(1-\epsilon)}+\beta_{\epsilon} . \tag{8}
\end{equation*}
$$

For $\sigma>0$, doing the change of variable $t=\sqrt{\frac{n}{\sigma}} x$,

$$
K_{\epsilon, \sigma}=\int_{0}^{\alpha_{\epsilon}} \frac{1-\exp \left(-\frac{n x^{2}}{\sigma}\right)}{x^{2}} d x=\sqrt{\frac{n}{\sigma}} \int_{0}^{\sqrt{\frac{n}{\sigma}} \alpha_{\epsilon}} \frac{1-e^{-t^{2}}}{t^{2}} d t
$$

As $n \rightarrow \infty$, the right-hand side of this is asymptotic to

$$
\sqrt{\frac{n}{\sigma}} \int_{0}^{\infty} \frac{1-e^{-t^{2}}}{t^{2}} d t=\sqrt{\frac{n}{\sigma}} \sqrt{\pi}
$$

Dividing (8) by \sqrt{n} and taking the limsup then gives

$$
\limsup _{n \rightarrow \infty} \frac{\pi}{2} \frac{I_{n}(|x|)}{\sqrt{n}} \leq \sqrt{\frac{\pi}{2(1-\epsilon)}},
$$

or

$$
\limsup _{n \rightarrow \infty} \frac{I_{n}(|x|)}{\sqrt{n}} \leq \sqrt{\frac{2}{\pi(1-\epsilon)}}
$$

indeed β_{ϵ} depends on n, but $\beta_{\epsilon}<\frac{2}{\alpha_{\epsilon}}$, which does not depend on n. Taking $\epsilon \rightarrow 0$ yields

$$
\limsup _{n \rightarrow \infty} \frac{I_{n}(|x|)}{\sqrt{n}} \leq \sqrt{\frac{2}{\pi}}
$$

On the other hand, taking the liminf of (8) divided by \sqrt{n} gives

$$
\liminf _{n \rightarrow \infty} \frac{\pi}{2} \frac{I_{n}(|x|)}{\sqrt{n}} \geq \sqrt{\frac{\pi}{2}}
$$

or

$$
\liminf _{n \rightarrow \infty} \frac{I_{n}(|x|)}{\sqrt{n}} \geq \sqrt{\frac{2}{\pi}}
$$

Combining the limsup and the liminf inequalities proves the claim.
Lemma 8. For any $\xi \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
I_{n}\left(e^{\xi|x|}\right)<I_{n}\left(e^{\xi x}\right)+I_{n}\left(e^{-\xi x}\right)=2(\cosh \xi)^{n}
$$

We will use the following theorem to establish an estimate similar to but weaker than the law of the iterated logarithm. ${ }^{6}$
Theorem 9. For any $\epsilon>0$, for almost all $t \in[0,1]$,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2+\epsilon}} \exp \left(\sqrt{\frac{2 \log n}{n}}\left|\sum_{k=1}^{n} r_{k}(t)\right|\right) d t<\infty
$$

[^5]Proof. Define $f_{n}:[0,1] \rightarrow(0, \infty)$ by

$$
f_{n}(t)=\frac{1}{n^{2+\epsilon}} \exp \left(\sqrt{\frac{2 \log n}{n}}\left|\sum_{k=1}^{n} r_{k}(t)\right|\right)
$$

Applying Lemma 8 with $\xi=\sqrt{\frac{2 \log n}{n}}$,

$$
\int_{0}^{1} f_{n}(t) d t \leq \frac{1}{n^{2+\epsilon}} \cdot 2 \cdot\left(\cosh \sqrt{\frac{2 \log n}{n}}\right)^{n}
$$

It is not obvious, but we take as given the asymptotic expansion

$$
\left(\cosh \sqrt{\frac{2 \log n}{n}}\right)^{n}=n-\frac{1}{3}(\log n)^{2}+\frac{\frac{8}{45}(\log n)^{3}+\frac{1}{18}(\log n)^{4}}{n}+O\left(n^{-3 / 2}\right)
$$

and using this,

$$
\frac{1}{n^{2+\epsilon}} \cdot 2 \cdot\left(\cosh \sqrt{\frac{2 \log n}{n}}\right)^{n}=\frac{2}{n^{1+\epsilon}}+O\left(\frac{(\log n)^{2}}{n^{2+\epsilon}}\right)=\frac{2}{n^{1+\epsilon}}+O\left(n^{-2}\right)
$$

Thus

$$
\sum_{n=1}^{\infty} \int_{0}^{1} f_{n}(t) d t=\sum_{n=1}^{\infty}\left(\frac{2}{n^{1+\epsilon}}+O\left(n^{-2}\right)\right)<\infty
$$

Because each f_{n} is nonnegative, using this with the monotone convergence theorem gives the claim.

Theorem 10. For almost all $t \in[0,1]$,

$$
\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k=1}^{n} r_{k}(t)\right|}{\sqrt{n \log n}} \leq \sqrt{2}
$$

Proof. Let $\epsilon>0$. By Theorem 9, for almost all $t \in[0,1]$ there is some n_{t} such that $n \geq n_{t}$ implies that $f_{n}(t)<1$, where we are talking about the functions f_{n} defined in the proof of that theorem; certainly the terms of a convergent series are eventually less than 1 . That is, for almost all $t \in[0,1]$ there is some n_{t} such that $n \geq n_{t}$ implies that (taking logarithms),

$$
(-2-\epsilon) \log n+\sqrt{\frac{2 \log n}{n}}\left|\sum_{k=1}^{n} r_{k}(t)\right|<0
$$

and rearranging,

$$
\frac{\left|\sum_{k=1}^{n} r_{k}(t)\right|}{\sqrt{n \log n}}<\sqrt{2}+\frac{\epsilon}{\sqrt{2}}=\sqrt{2}+\epsilon^{\prime}
$$

For each $s \in \mathbb{N}$, let E_{s} be those $t \in[0,1]$ such that

$$
\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k=1}^{n} r_{k}(t)\right|}{\sqrt{n \log n}}>\sqrt{2}+\frac{1}{s} .
$$

For each s, taking $0<\epsilon^{\prime}<\frac{1}{s}$ we get that almost all $t \in[0,1]$ do not belong to E_{s}. That is, for each s, the set E_{s} has measure 0 . Therefore

$$
E=\bigcup_{s=1}^{\infty} E_{s}
$$

has measure 0 . That is, for almost all $t \in[0,1]$, for all $s \in \mathbb{N}$ we have $t \notin E_{s}$, i.e.

$$
\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k=1}^{n} r_{k}(t)\right|}{\sqrt{n \log n}} \leq \sqrt{2}+\frac{1}{s}
$$

and this holding for all $s \in \mathbb{N}$ yields

$$
\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k=1}^{n} r_{k}(t)\right|}{\sqrt{n \log n}} \leq \sqrt{2}
$$

completing the proof.

3 Hypercubes

Let m_{n} be Lebesgue measure on \mathbb{R}^{n}, and let $Q_{n}=[0,1]^{n} .{ }^{7}$
Theorem 11. If $f \in C([0,1])$, then

$$
\lim _{n \rightarrow \infty} \int_{Q_{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) d m_{n}(x)=f\left(\frac{1}{2}\right)
$$

Proof. Define $X_{n}: Q_{n} \rightarrow \mathbb{R}$ by

$$
X_{n}=\frac{x_{1}+\cdots+x_{n}}{n}, \quad x \in Q_{n}
$$

We have

$$
\int_{Q_{n}} X_{n} d m_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} \int_{0}^{1} x_{k} \cdot 1 d x_{k}=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{2}=\frac{1}{2}
$$

[^6]and we define
\[

$$
\begin{aligned}
V_{n} & =\int_{Q_{n}}\left(X_{n}-\frac{1}{2}\right)^{2} d m_{n}(x) \\
& =\int_{Q_{n}} \sum_{k=1}^{n} \frac{x_{k}^{2}}{n^{2}}+\sum_{j \neq k} \frac{x_{j} x_{k}}{n^{2}}-X_{n}+\frac{1}{4} d m_{n}(x) \\
& =\frac{1}{n^{2}} \sum_{k=1}^{n} \int_{0}^{1} x_{k}^{2} d x_{k}+\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k \neq j} \int_{0}^{1} x_{j} d x_{j} \int_{0}^{1} x_{k} d x_{k}-\frac{1}{2}+\frac{1}{4} \\
& =\frac{1}{n^{2}} \sum_{k=1}^{n} \frac{1}{3}+\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k \neq j} \frac{1}{4}-\frac{1}{4} \\
& =\frac{1}{3 n}+\frac{n-1}{4 n}-\frac{1}{4} \\
& =\frac{n^{-1}}{12}
\end{aligned}
$$
\]

Suppose that c_{n} is a sequence of positive real numbers tending to 0 , and define $J_{n}=J_{n}(c)$ to be those $x \in Q_{n}$ such that

$$
\left|X_{n}(x)-\frac{1}{2}\right| \geq c_{n}
$$

Then

$$
\begin{aligned}
V_{n} & =\int_{Q_{n}}\left(X_{n}-\frac{1}{2}\right)^{2} d m_{n}(x) \\
& \geq \int_{J_{n}}\left(X_{n}-\frac{1}{2}\right)^{2} d m_{n}(x) \\
& \geq \int_{J_{n}} c_{n}^{2} d m_{n}(x) \\
& =c_{n}^{2} m_{n}\left(J_{n}\right)
\end{aligned}
$$

So

$$
m_{n}\left(J_{n}\right) \leq \frac{V_{n}}{c_{n}^{2}}=\frac{n^{-1}}{12 c_{n}^{2}}
$$

Take $c_{n}=n^{-1 / 3}$, giving

$$
m_{n}\left(J_{n}\right) \leq \frac{n^{-1 / 3}}{12}
$$

Let $\epsilon>0$. Because f is continuous, there is some $\delta>0$ such that $\left|t-\frac{1}{2}\right|<\delta$ implies that $\left|f(t)-f\left(\frac{1}{2}\right)\right|<\epsilon$; furthermore, we take δ such that

$$
\frac{\|f\|_{\infty} \delta}{6}<\epsilon .
$$

Set $N>\delta^{-3}$. For $n \geq N$ and $x \in Q_{n} \backslash J_{n}$,

$$
\left|X_{n}(x)-\frac{1}{2}\right|<c_{n}=n^{-1 / 3} \leq N^{-1 / 3}<\delta
$$

and so

$$
\left\lvert\,\left(\left.f\left(X_{n}(x)\right)-f\left(\frac{1}{2}\right) \right\rvert\,<\epsilon\right.\right.
$$

This gives us

$$
\begin{aligned}
&\left|\int_{Q_{n}} f\left(X_{n}(x)\right) d m_{n}(x)-f\left(\frac{1}{2}\right)\right|=\left|\int_{Q_{n}} f\left(X_{n}(x)\right)-f\left(\frac{1}{2}\right) d m_{n}(x)\right| \\
& \leq \int_{J_{n}}\left|f\left(X_{n}(x)\right)-f\left(\frac{1}{2}\right)\right| d m_{n}(x) \\
&+\int_{Q_{n} \backslash J_{n}}\left|f\left(X_{n}(x)\right)-f\left(\frac{1}{2}\right)\right| d m_{n}(x) \\
& \leq \int_{J_{n}} 2\|f\|_{\infty} d m_{n}(x)+\int_{Q_{n} \backslash J_{n}} \epsilon d m_{n}(x) \\
& \leq 2\|f\|_{\infty} m_{n}\left(J_{n}\right)+\epsilon \\
& \leq 2\|f\|_{\infty} \frac{n^{-1 / 3}}{12}+\epsilon \\
&<\|f\|_{\infty} \delta \\
& 6 \\
&< 2 \epsilon,
\end{aligned}
$$

which proves the claim.

[^0]: ${ }^{1}$ Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, p. 4, $\S 3$.

[^1]: ${ }^{2}$ Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, pp. 8-9.

[^2]: ${ }^{3}$ Masayoshi Hata, Problems and Solutions in Real Analysis, p. 185, Solution 13.2.

[^3]: ${ }^{4}$ Masayoshi Hata, Problems and Solutions in Real Analysis, p. 188, Solution 13.6.

[^4]: ${ }^{5}$ Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, p. 12, Masayoshi Hata, Problems and Solutions in Real Analysis, p. 188, Solution 13.6.

[^5]: ${ }^{6}$ Masayoshi Hata, Problems and Solutions in Real Analysis, p. 189, Solution 13.7.

[^6]: ${ }^{7}$ Masayoshi Hata, Problems and Solutions in Real Analysis, p. 161, Solution 11.1.

