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1 Introduction

The purpose of these notes is to precisely define all the objects one needs to talk
about projection-valued measures and the spectral theorem.

2 Orthogonal complements

Let H be a separable complex Hilbert space.
If W is a subset of H, the span of W is the set of all finite linear combinations

of elements of W . If Wα, α ∈ I, are subsets of H, let∨
α∈I

Wα

denote the closure of the span of
⋃

α∈I Wα. It is straightforward to check that
this is the intersection of all closed subspaces of H that contain each of the Wα.

1

If V is a subspace of H, define

V ⊥ = {f ∈ H : ⟨f, g⟩ = 0 for all g ∈ V },

called the orthogonal complement of V . If V is a subspace of H then V ⊥ is a
closed subspace of H.

Let V be a closed subspace of H and let f ∈ H. It is a fact that there is a
unique g0 ∈ V such that

∥f − g0∥ = inf
g∈V

∥f − g∥ ,

and that f − g0 ∈ V ⊥. Then, f = g0 + (f − g0) ∈ V + V ⊥. Therefore, if V is a
closed subspace of H then

H = V + V ⊥. (1)

1Let L be the set of all closed subspaces of H. Set inclusion ⊆ is a partial order on L. L
is a lattice: if M,N ∈ L, then M ∩ N is the greatest element in L that is contained both in
M and in N , and M ∨ N is the least element in L that contains each of M and N . L is a
complete lattice: if Mα ∈ L, then

⋃
α Mα is the greatest element in L that is contained in

each Mα, and
∨

α Mα is the least element in L that contains each Mα. (For comparison, the
set of finite dimensional subspaces of an infinite dimensional Hilbert space is a lattice but is
not a complete lattice.)
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If V and W are subspaces of H, we write V ⊥ W if ⟨v, w⟩ = 0 for all
v ∈ V,w ∈ W . If V,W are closed subspaces of H and V ⊥ W , we can show
that V +W = V ∨W , and thus V +W is in particular a closed subspace of H.2

By induction, we obtain V1 + · · · + Vn =
∨n

k=1 Vk. If Vk, k ≥ 1, are mutually
orthogonal closed subspaces of H, we define

∞⊕
k=1

Vk =

∞∨
k=1

Vk,

called the orthogonal direct sum of the subspaces Vk. The orthogonal direct sum⊕∞
k=1 Vk is equal to the closure of the set of all finite sums of the form

∑
vk,

where vk ∈ Vk.
3

If V is a closed subspace of H, then (1) is

H = V ⊕ V ⊥.

The subobjects of a Hilbert space that we care about are mostly closed
subspaces, because they are themselves Hilbert spaces (a closed subset of a
complete metric space is itself a complete metric space). Generally, when talking
about one type of object, we care mostly about those subsets of it that are the
same type of object, which is why, for example, that we are so glad to know
when closed subspaces are mutually orthogonal, because then their sum is itself
a closed subspace.4

3 Projections

Let V be a closed subspace of H. The projection onto V is the map PV : H → H
defined in the following way: if f ∈ H = V ⊕ V ⊥, let f = g + h, g ∈ V, h ∈ V ⊥,
and set PV (f) = g. The image of PV is V : if f ∈ imPV then there is some
f0 ∈ H such that PV f0 = f and f0 = g + h, g ∈ V, h ∈ V ⊥, so by the definition
of PV we get PV f0 = g, giving f = g ∈ V ; on the other hand, if f ∈ V then
PV f = f , so f ∈ imP .

The image of a projection is closed.5 Hence if P is a projection, we have

H = imPV ⊕ (imPV )
⊥ = imPV ⊕ kerPV .

2If zn ∈ V +W and zn → z ∈ H, write zn = vn+wn, vn ∈ V and wn ∈ W . Using V ⊥ W
we get ∥zn − zm∥2 = ∥vn − vm∥2 + ∥wn − wm∥2, which we use to prove the claim. On the
other hand, there are examples of closed subspaces V,W of a Hilbert space that do not satisfy
V ⊥ W for which V +W is not itself closed.

3See Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity,
p. 26, §13, Theorem 2.

4Paul Halmos in his Introduction to Hilbert Space and the Theory of Spectral Multiplicity
uses the term linear manifold to refer to what I call a subspace and subspace to refer to what I
call a closed subspace. I think even better terms would be linear subspace and Hilbert subspace,
respectively; this would emphasize the category of objects with which one is working.

5We call P : H → H a projection if there is some closed subspace V of H such that P is
the projection onto V , and this V will be the image of P . We often talk about a projection
in H without specifying what it is a projection onto.
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If PV is a projection onto a closed subspace V of H, we check that PV ∈
B(H). If g ∈ V, h ∈ V ⊥, then, because ⟨g, h⟩ = 0,

∥PV (g + h)∥2 = ∥g∥2 ≤ ∥g∥2+∥h∥2 = ⟨g, g⟩+⟨h, h⟩ = ⟨g + h, g + h⟩ = ∥g + h∥2 ,

so ∥PV ∥ ≤ 1. If V ̸= {0}, let g ∈ V , g ̸= 0. Then∥∥∥∥ g

∥g∥

∥∥∥∥ = 1,

∥∥∥∥PV

(
g

∥g∥

)∥∥∥∥ =

∥∥∥∥ g

∥g∥

∥∥∥∥ = 1.

Hence if PV is a projection and PV ̸= 0, then ∥PV ∥ = 1. Of course, if PV = 0
then ∥PV ∥ = 0. Using H = V ⊕ V ⊥, we check that if f1, f2 ∈ H then

⟨PV f1, f2⟩ = ⟨f1, PV f2⟩ ,

hence PV is self-adjoint.
We call P ∈ B(H) idempotent if P 2 = P .6 The following conditions are each

equivalent to a nonzero idempotent P being a projection:

• P is positive

• P is self-adjoint

• P is normal

• kerP = (imP )⊥

• ∥P∥ = 1

4 The lattice of projections

Two important projections: idH is the projection ontoH, and 0 is the projection
onto {0}.

If T ∈ B(H) is self-adjoint, we say that T is positive if, for all v ∈ H,

⟨Tv, v⟩ ≥ 0.

If S, T ∈ B(H) are self-adjoint, we say that S ≥ T if, for all v ∈ H,

⟨Sv, v⟩ ≥ ⟨Tv, v⟩ .

This is equivalent to S − T being a positive operator. Thus, T ∈ B(H) is a
positive operator if and only if T ≥ 0. One checks that ≤ is a partial order on
the set of bounded self-adjoint operators on H.

Let P ∈ B(H) be a projection. As H = imP ⊕ (imP )⊥ = imP ⊕ kerP , if
v ∈ H then v = v1 + v2, v1 ∈ imP, v2 ∈ (imP )⊥,

⟨Pv, v⟩ = ⟨v1, v1 + v2⟩ = ⟨v1, v1⟩+ ⟨v1, v2⟩ = ⟨v1, v1⟩ ≥ 0.

6Often the term projection is used to refer to a thing we would call an idempotent, and
the term orthogonal projection is used to refer to a thing we would call a projection.
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Hence P ≥ 0.
Let P,Q ∈ B(H) be projections. It is a fact that the following statements

are equivalent:

• P ≤ Q

• imP ⊆ imQ

• QP = P

• PQ = P

• ∥Pv∥ ≤ ∥Qv∥ for all v ∈ H

The set of projections is a complete lattice.7

5 Sums of projections

If P,Q ∈ B(H) are projections, we write P ⊥ Q if imP ⊥ imQ, which is
equivalent to PQ = 0 and QP = 0; neither one of those by itself is sufficient. It
is a fact8 that P +Q is a projection if and only if P ⊥ Q, in which case P +Q
is a projection onto imP ⊕ imQ. The product PQ is a projection if and only if
PQ = QP , in which case it is a projection onto imP ∩ imQ.

Paul Halmos shows the following in Question 94 of his Hilbert Space Problem
Book: If Tn ∈ B(H) are self-adjoint such that Tn ≤ Tn+1 for all n and if there
is some self-adjoint T ′ ∈ B(H) such that Tn ≤ T ′ for all n, then there is some
self-adjoint T ∈ B(H) such that Tn → T in the strong operator topology.9 This
is analogous to how a nondecreasing sequence of real numbers that has an upper
bound converges to a real number.

Let Mn, n ≥ 1, be closed subspaces of H such that Mn ⊆ Mn+1 and let Pn

be the projection onto Mn. As Mn ⊆ Mn+1 we have Pn ≤ Pn+1 for all n. Also,
Pn ≤ idH for all n, as idH is the projection onto H and Mn ⊆ H. Hence by
the result from Halmos stated above, there is some self-adjoint P ∈ B(H) such
that Pn → P in the strong operator topology. Let

M =

∞∨
n=1

Mn.

I claim that P is the projection onto M .10

7If P,Q ∈ B(H) are projections, then the infimum of P and Q is the projection onto
imP ∩ imQ, and the supremum of P and Q is the projection onto imP ∨ imQ. See Problem
96 of Paul Halmos’s Hilbert Space Problem Book.

8See Steven Roman, Advanced Linear Algebra, third ed., p. 78
9Recall that if Tn ∈ B(H) and T ∈ B(H), we say that Tn → T in the strong operator

topology if for all v ∈ H we have Tnv → Tv. (If Tn → T in B(H) then Tn → T in the strong
operator topology.)

10cf. Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity,
p. 46, §28, Theorem 1.
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If Pn ∈ B(H), n ≥ 1, are projections and Pi ⊥ Pj for i ̸= j, let

Mn =

n⊕
k=1

imPk.

Define Tnv =
∑n

k=1 Pkv. As Mn is a closed subspace of H, we have

H = Mn ⊕M⊥
n = imP1 ⊕ · · ·Pn ⊕M⊥

n .

If v = v1 + · · ·+ vn + v′, v1 ∈ imP1, . . . , vn ∈ imPn, v
′ ∈ M⊥

n , then

Tnv =

n∑
k=1

(Pk(v1 + · · ·+ vn + v′)) =

n∑
k=1

vk.

Thus Tn is the projection onto Mn. Therefore, there is some self-adjoint P ∈
B(H) such that Tn → P in the strong operator topology, and with

M =

∞∨
n=1

n∨
k=1

imPk =

∞∨
n=1

imPk =

∞⊕
n=1

imPn,

P is the projection onto M .
∑n

k=1 Pk → P in the strong operator topology, and
we denote P by

∑∞
k=1 Pk.

6 Definition of projection-valued measures

Let P(H) be the set of projections in B(H). Let B(C) be the Borel σ-algebra
of C. A projection-valued measure on C is a map E : B(C) → P(H) such that

• E(∅) = 0 and E(C) = idH

• If Bn ∈ B(C), n ≥ 1, are pairwise disjoint, then

E
( ⋃

n≥1

Bn

)
=
∑
n≥1

E(Bn),

where
∑

n≥1 E(Bn) is the limit of
∑

1≤n≤N E(Bn) in the strong operator
topology.

7 Finite additivity

If E : B(C) → P(H) is any function that satisfies E(B1∪B2) = E(B1)+E(B2)
for disjoint B1, B2 ∈ B(C), then it satisfies the following four properties. In
particular, if E is a projection-valued measure it satisfies them.

1. E(∅) = E(∅ ∪ ∅) = E(∅) + E(∅), so E(∅) = 0.
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2. If B1, B2 ∈ B(C) and B1 ⊆ B2, then

E(B2) = E(B2 \B1 ∪B1) = E(B2 \B1) + E(B1) ≥ E(B1),

since E(B2\B1) is a projection and hence is a positive operator. Therefore,
if B1 ⊆ B2 then E(B1) ≤ E(B2).

3. Let B1, B2 ∈ B(C). We have

E(B1) = E(B1 ∩B2) + E(B1 \B2),

and
E(B2) = E(B1 ∩B2) + E(B2 \B1),

and
E(B1 ∪B2) = E(B1 ∩B2) + E(B1 \B2) + E(B2 \B1),

and combining these gives, for any B1, B2 ∈ B(C),

E(B1) + E(B2) = E(B1 ∩B2) + E(B1 ∩B2) + E(B1 \B2) + E(B2 \B1)

= E(B1 ∩B2) + E(B1 ∪B2).

4. Let B1, B2 ∈ B(C). Multiplying both sides of the above equation on the
left by E(B2) gives

E(B1)E(B2) + E(B2)E(B2) = E(B1 ∩B2)E(B2) + E(B1 ∪B2)E(B2).

As E(B1 ∪ B2) and E(B2) are projections and E(B1 ∪ B2) ≥ E(B2), we
have

E(B1 ∪B2)E(B2) = E(B2),

which with E(B2)E(B2) = E(B2) gives

E(B1)E(B2) + E(B2) = E(B1 ∩B2) + E(B2).

Hence, for any B1, B2 ∈ B(C),

E(B1)E(B2) = E(B1 ∩B2).

8 Complex measures

Suppose that E : B(C) → P(H) is a function such that E(C) = idH , and that
for all v, w ∈ H, the function Ev,w : B(C) → C defined by

Ev,w(B) = ⟨E(B)v, w⟩

is a complex measure. I will show that E is a projection-valued measure. Let
Bn ∈ B(C), n ≥ 1, be pairwise disjoint.11 If B1, B2 ∈ B(C) are disjoint, then

11cf. Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity,
p. 59, §36, Theorem 3.
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for all v, w ∈ H,

⟨E(B1 ∪B2)v, w⟩ = Ev,w(B1 ∪B2)

= Ev,w(B1) + Ev,w(B2)

= ⟨E(B1)v, w⟩+ ⟨E(B2)v, w⟩
= ⟨(E(B1) + E(B2))v, w⟩ ,

and since this holds for all v, w ∈ H, we obtain E(B1 ∪B2) = E(B1) + E(B2).
Therefore, from §7, if B1, B2 ∈ B(C) are disjoint then

E(B1)E(B2) = E(B1 ∩B2) = E(∅) = 0.

If v ∈ H and vn = E(Bn)v, then, for m ̸= n,

⟨vn, vm⟩ = ⟨E(Bn)v,E(Bm)v⟩ = ⟨E(Bm)E(Bn)v, v⟩ = ⟨0v, 0⟩ = 0.

For an ∈ C, for the sequence
∑N

n=1 anvn to converge in H it is equivalent to∑∞
n=1 ∥anvn∥

2
< ∞;12 but ∥vn∥ ≤ ∥v∥, so it suffices to show that

∑∞
n=1 |an|2 <

∞. Using that if T is a projection then T is self-adjoint and T 2 = T , and that
Ev,v is a complex measure,

∞∑
n=1

∥E(Bn)v∥2 =

N∑
n=1

⟨E(Bn)v,E(Bn)v⟩

=

∞∑
n=1

⟨E(Bn)E(Bn)v, v⟩

=

∞∑
n=1

⟨E(Bn)v, v⟩

=

∞∑
n=1

Ev,v(Bn)

= Ev,v

( ∞⋃
n=1

Bn

)

=

〈
E

( ∞⋃
n=1

Bn

)
v, v

〉

=

∥∥∥∥∥E
( ∞⋃

n=1

Bn

)
v

∥∥∥∥∥
2

≤ ∥v∥ .
12e.g. Walter Rudin’s Functional Analysis, p. 295, Theorem 12.6: if xn ∈ H are pairwise

orthogonal, not necessarily of unit norm, then for
∑∞

n=1 xn to converge is equivalent to∑∞
n=1 ∥xn∥2 < ∞.
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Therefore, the sequence
∑N

n=1 E(Bn)v converges in H; namely,
∑N

n=1 E(Bn)
converges in the strong operator topology. Let P be its limit. By §5, P is the
projection onto

⊕∞
n=1 imE(Bn).

For v, w ∈ H, 〈
E

( ∞⋃
n=1

Bn

)
v, w

〉
= Ev,w

( ∞⋃
n=1

Bn

)

=

∞∑
n=1

Ev,w(Bn)

=

∞∑
n=1

⟨E(Bn)v, w⟩

= ⟨Pv,w⟩ ,

and since this is true for all v, w ∈ H, we obtain

E

( ∞⋃
n=1

Bn

)
= P,

where P is the limit of
∑N

n=1 E(Bn) in the strong operator topology. This
completes the proof that E is a projection-valued measure.

On the other hand, if E : B(C) → P(H) is a projection-valued measure,
we can show that for each v, w ∈ H the function Ev,w : B(C) → C defined by
Ev,w(B) = ⟨E(B)v, w⟩ is a complex measure.

9 Spectral integrals

Let B(C) be the set of bounded measurable functions C → C.13 It is a complex
vector space, and we define the norm ∥f∥ = supz∈C |f(z)|; one checks that B(C)
is a Banach space. Paul Halmos, Introduction to Hilbert Space and the Theory
of Spectral Multiplicity, p. 60, §37, proves14 that if E : B(C) → P(H) is a

13This is not L∞(C), the set of equivalence classes of essentially bounded measurable func-
tions, where two functions are equivalent if they are equal almost everywhere. Moreover, it is
not even the set L ∞(C) of essentially bounded measurable functions.

When does one speak about L ∞(C)? L ∞(C) is a vector space; let N (C) be the set of
those functions that are equal to 0 almost everywhere in C; N (C) is a vector space; then
L∞(C) is the vector space quotient L ∞(C)/N (C).

14The operator A is the operator obtained from the following statement, which itself follows
from the Riesz representation theorem. If ϕ : H ×H → C is sesquilinear (we take sesquilinear
to mean linear in the first entry and conjugate linear in the second entry) and

M = sup
∥v∥=∥w∥=1

|ϕ(v, w)| < ∞,

then there exists a unique A ∈ B(H) such that

ϕ(v, w) = ⟨Av,w⟩ , v, w ∈ H,

and ∥A∥ = M .
One also has to prove that for each f ∈ B, ϕ(v, w) = Ev,w(f) is sesquilinear.
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projection-valued measure and f ∈ B, then there is a unique A ∈ B(H) such
that, for all v, w ∈ H,

⟨Av,w⟩ = Ev,w(f) =

∫
fdEv,w =

∫
C
f(λ)dEv,w(λ),

and ∥A∥ ≤ 2 ∥f∥. We write

A = E(f) =

∫
fdE =

∫
C
f(λ)dE(λ).

We can check that B(C) is a C∗-algebra, with f∗ defined by f∗(z) = f(z).
It is a fact that B(H) is a C∗-algebra. If α ∈ C and f, g ∈ B(C), then15

E(αf) = αE(f), E(f + g) = E(f) + E(g); E(f∗) = (E(f))∗. (2)

The first two of these together with ∥E(f)∥ ≤ 2 ∥f∥ show that E : B(C) →
B(H) is a bounded linear map. If f, g ∈ B(C), then16

E(f)E(g) = E(fg).

This and the third statement in (2) show that E : B(C) → B(H) is a homo-
morphism of C∗-algebras:

From the fact that E : B(C) → B(H) is a homomorphism of C∗-algebras,
it follows in particular that E(f) is a normal operator for each f ∈ B(C).

10 The spectrum of a projection-valued mea-
sure

If E : B(C) → P(H) is a projection-valued measure, let Uα, α ∈ I, be those
open sets Uα ⊆ C such that E(Uα) = 0. The spectrum of E is

σ(E) = C \
⋃
α∈I

Uα;

this may also be called the support of E, and is analogous to the support of a
nonnegative measure. Since σ(E) is the complement of a union of open sets, it
is closed.

15See Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity,
p. 60, §37, Theorem 2.

16From Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity,
p. 61, §37, Theorem 3. To understand the proof by Halmos (which is symbolically convincing
because of our familiarity with the permissible moves one can make when integrating functions
using complex measures), keep in mind that if B1, B2 ∈ B(C) then

EE(B1)v,w(B2) = ⟨E(B2)E(B1)v, w⟩ = ⟨E(B1 ∩B2)v, w⟩ = Ev,w(B1 ∩B2).
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For each n ≥ 1, letDn = {|z| ≤ n}. Dn is compact, so there are αn,1, . . . , αn,N

such that

Dn ⊆
N⋃

k=1

Uαn,k
.

But, using §7 and the fact that E(Uαn,k
) = 0 for 1 ≤ k ≤ N ,

E

(
N⋃

k=1

Uαn,k

)
= E(Uαn,1

) + E

(
N⋃

k=2

Uαn,k

)
− E

(
Uαn,1

∩
N⋃

k=2

Uαn,k

)

= E

(
N⋃

k=2

Uαn,k

)
− E(Uαn,1)E

(
N⋃

k=2

Uαn,k

)

= E

(
N⋃

k=2

Uαn,k

)
= · · ·
= 0,

therefore E(Dn) = 0 (it will be ≤ 0, and as a projection is a positive operator
it must equal 0). Let Bn = Dn+1 \ Dn; as Bn is a subset of Dn+1 we get
E(Bn) = 0. We have

⋃∞
n=1 Bn = C, and as the Bn are pairwise disjoint we get

E(C) = E

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

E(Bn) = 0,

contradicting that E(C) = idH . Therefore, if E is a projection-valued measure
then its spectrum is not empty.

Here are some facts about projection-valued measures. E(C \ σ(E)) = 0.17

Let BE(C) be the set of bounded measurable functions σ(E) → C, and let
∥f∥E = supz∈σ(E) |f(z)|. If E is a projection-valued measure with compact

spectrum and f : C → C is continuous, then18∥∥E(χσ(E)f)
∥∥ = ∥f∥E .

(We often talk about projection-valued measures whose spectrum is compact;
since their spectrum is closed, to demand that the spectrum of a projection-
valued measure is compact is to demand that it is bounded.)

If E is a projection-valued measure with compact spectrum and if A =
E(χσ(E)λ), then

19

σ(A) = σ(E).
17Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 62,

§38, Theorem 1. His statement is about regular measures, but a projection-valued measure
on the Borel σ-algebra of C is regular, as he shows on the page after that.

18Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 62,
§38, Theorem 2.

19Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 64,
§39, Theorem 2. The proof uses the fact that T ∈ B(H) is invertible if and only if there is
some α > 0 such that ∥Tv∥ ≥ α ∥v∥ for all v ∈ H.
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11 Statement of the spectral theorem

The spectral theorem, proved by in Paul Halmos, Introduction to Hilbert Space
and the Theory of Spectral Multiplicity, p. 69, §43, Theorem 1, states the fol-
lowing:

If A ∈ B(H) is self-adjoint, then there exists a unique projection-valued
measure E : B(C) → P(H), with σ(E) compact and σ(E) ⊂ R, such that

A = E(χσ(E)λ) =

∫
σ(E)

λdE(λ).

Since σ(E) ⊂ R, we can write E : B(R) → P(H).
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