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1 Topological rings and inverse systems

By a topological ring we mean a ring X with a Hausdorff topology such
that (x, y) 7→ x + y, x 7→ −x, (x, y) 7→ x · y are continuous. A morphism of
topological rings is a continuous homomorphism of rings. An inverse system
of topological rings is a family of topological rings Xi and a family of morphisms
πi,j : Xi → Xj for i, j ∈ I with i ≥ j, such that when i ≥ j ≥ k,

πi,k = πj,k ◦ πi,j .

If Y is a topological ring, we say that a family of morphisms ψi : Y → Xi is
compatible with the inverse system if, whenever i ≥ j,

πi,j ◦ ψi = ψj .

A topological ring X and a compatible family of morphisms πi : X → Xi is
said to be an inverse limit of the inverse system if whenever Y is a topological
ring and ψi : Y → Xi is a compatible family of morphisms, there is a unique
morphism ψ : Y → X such that for all i,

πi ◦ ψ = ψi.

If (X,πi), (Y, ψi) are inverse limits of an inverse system, one checks that there is
a unique isomorphism ψ : X → Y such that ψi ◦ψ = πi for all i.

1 If at least one
inverse limit exists for an inverse system, we permit ourselves to speak about
the inverse limit of the inverse system.

For showing that the inverse limit of an inverse system exists and for estab-
lishing properties of the inverse limit, rather than stating that it is an object
satisfying a universal property we can construct it in the following way. Let X
be those x ∈

∏
i∈I Xi such that for i ≥ j,

πi,j(xi) = xj .

1Luis Ribes and Pavel Zalesskii, Profinite Groups, second ed., Chapter 1, “Inverse and
Direct Limits”, p. 2, Proposition 1.1.1 (b).
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It is straightforward to check that X is a subring of
∏

i∈I Xi and that with the
subspace topology inherited from the direct product it is a topological ring. We
define πi : X → Xi by πi = pi ◦ ι, where ι : X →

∏
i∈Xi

is the inclusion map
and pi :

∏
j∈I Xj → Xi is the projection map. One checks that the morphisms

πi are compatible with the inverse system, and then that X together with this
family of morphisms is an inverse limit of the inverse system.2 This establishes
that the inverse system has an inverse limit. Furthermore, one proves that X is
a closed subset of

∏
i∈I Xi.

3 This lets us deduce properties of the inverse limit
from weakly hereditary properties of the direct product.

2 Profinite rings

A profinite ring is a topological ring that is the inverse limit of an inverse
system of finite topological rings; since we demand that topological rings be
Hausdorff, being finite implies having the discrete topology. Suppose that Xi

with morphisms πi,j , i ≥ j, i, j ∈ i, are an inverse system of finite topological
rings. Because Xi is finite it is compact, so the direct product

∏
i∈I Xi is

compact. As the inverse limit X of this inverse system is a closed subset of the
direct product, X is a compact topological space.

A topological space is called totally disconnected if a subset being con-
nected implies that the subset contains at most one point .In other words, a
topological space is totally disconnected if its connected components are all the
singletons. One checks that a discrete topological space is totally disconnected,
and that a product of totally disconnected spaces is totally disconnected, and
that being totally disconnected is hereditary.4 Therefore, a profinite ring is
compact and totally disconnected.5

3 Profinite completion of the integers

With the discrete topology, Z/n is a topological ring. For m|n, we take ϕn,m :
Z/n→ Z/m to be the projection map. The topological rings Z/n and the mor-
phisms ϕn,m are an inverse system in the category of topological rings (ordering

the indices by n ≥ m when m|n), and we denote the inverse limit by Ẑ, with
morphisms ϕn : Ẑ→ Z/n satisfying

ϕn,m ◦ ϕn = ϕm, m|n,

called the profinite completion of Z. Ẑ is a profinite ring, hence it is compact
and totally disconnected, and because the inverse system consists of countably

2Luis Ribes and Pavel Zalesskii, Profinite Groups, second ed., Chapter 1, “Inverse and
Direct Limits”, p. 2, Proposition 1.1.1 (a).

3Luis Ribes and Pavel Zalesskii, Profinite Groups, second ed., Chapter 1, “Inverse and
Direct Limits”, p. 3, Lemma 1.1.2.

4Stephen Willard, General Topology, p. 210, §29.
5In fact, a totally disconnected compact group must be an inverse limit of finite discrete

groups: Markus Stroppel, Locally Compact Groups, p. 172.
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many metrizable limitands, the direct product
∏∞

n=1 Z/n and thus the inverse
limit is metrizable.

Let ψn : Z→ Z/n be the projection map. For m|n,

ϕn,m ◦ ψn = ψm.

Namely, the morphisms ψn are compatible with the inverse system. For exam-
ple,

ϕ15,3 ◦ ψ15(22) = ϕ15,3(7 + (15)) = 1 + (3) = ψ3(22).

Hence there is a unique morphism ψ : Z→ Ẑ such that for all n ≥ 1,

ϕn ◦ ψ = ψn.

If a, b ∈ Z and a ̸= b, there is some n such that a ̸≡ b (mod n), that is,
ψn(a) ̸= ψn(b). It must then be that ψ(a) ̸= ψ(b). Therefore, ψ is one-to-one.

Because Ẑ is compact and metrizable it is separable. We prove that the image
of Z in its profinite completion is dense, which explicitly displays a countable
dense subset.6

Theorem 1. ψ(Z) is a dense subset of Ẑ.

Proof. Let U be a nonempty subset of Ẑ. Ẑ has the subspace topology inherited
from the direct product

∏∞
n=1 Z/n, so there are open sets Vn in Z/n, where there

are only finitely many n such that Vn ̸= Z/n, such that for V =
∏∞

n=1 Vn, the

set Ẑ ∩ V is nonempty and is contained in U . To prove that ψ(Z) is dense in Ẑ
it will suffice to prove that there is some a ∈ Z such that ψ(a) ∈ Ẑ ∩ V ⊂ U .

Take n0 such that for n > n0, Vn = Z/n. (In this proof by ≥ we mean the

usual order on the positive integers, not n ≥ m when m|n.) Because Ẑ ∩ V
is nonempty, there is some x ∈ Ẑ ∩ V . Let N = lcm(1, 2, . . . , n0) and let
a ∈ ψ−1

N (ϕN (x)) ⊂ Z. For 1 ≤ n ≤ n0, n|N and

ϕn(ψ(a)) = (ϕN,n ◦ ϕN )(ψ(a))

= (ϕN,n ◦ ϕN ◦ ψ)(a)
= (ϕN,n ◦ ψN )(a)

= ϕN,n(ψN (a))

= ϕN,n(ϕN (x))

= (ϕN,n ◦ ϕN )(x)

= ϕn(x).

Hence ϕn(ψ(a)) ∈ Vn, and so ψ(a) ∈ V . ψ : Z → Ẑ so ψ(a) ∈ Ẑ. Therefore,

ψ(a) ∈ Ẑ ∩ V , which proves the claim.

6Brian Osserman, Inverse limits and profinite groups, https://www.math.ucdavis.edu/

~osserman/classes/250C/notes/profinite.pdf
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4 p-adic integers

Let p be a prime. Z/pn with the discrete topology is a topological ring. For
n ≥ m, let πn,m : Z/pn → Z/pm be the projection map. For example, with
p = 3,

π3,2(15 + (33)) = 6 + (32).

The topological rings Z/pn and the morphisms πn,m are an inverse system in
the category of topological rings. The inverse limit of this inverse system is a
topological ring denoted by Zp, together with morphisms πn : Zp → Z/pn such
that

πn,m ◦ πn = πm

for n ≥ m. We call Zp the ring of p-adic integers. It is compact and
totally disconnected. Furthermore, because each limitand Z/pn is metrizable
by the discrete metric, the countable direct product

∏∞
n=1 Z/pn is metrizable,

and therefore so is Zp.
Let χn : Z→ Z/pn be the projection maps. For n ≥ m,

πn,m ◦ χn = χm.

Namely, the morphisms χn are compatible with the inverse system, and therefore
there is a unique morphism χ : Z→ Zp such that for all n ≥ 1,

πn ◦ χ = χn.

If a, b ∈ Z and a ̸= b, there is some n such that a ̸≡ b (mod pn), so that
χn(a) ̸= χn(b), whence χ(a) ̸= χ(b). This shows that χ : Z→ Zp is one-to-one.

Furthermore, like how the image of Z in Ẑ is dense, the image of Z in Zp is
dense.

Theorem 2. χ(Z) is a dense subset of Zp.

5 The Chinese remainder theorem

For n a positive integer, let vp(n) denote the highest power of the prime p that
divides n. For example, v3(45) = 2 and v3(11) = 0. The Chinese remainder
theorem states that

Z/n ∼=
∏
p

Z/pvp(n).

Then, supposing that the following steps are correct,7

Ẑ = lim←−
n

Z/n ∼= lim←−
n

∏
p

Z/pvp(n) ∼=
∏
p

lim←−
ν

Z/pν ∼=
∏
p

Zp

as topological rings.

7See Paul Garrett, The ur-solenoid and the adeles, http://www.math.umn.edu/~garrett/
m/mfms/notes/04_ur_solenoid.pdf
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6 Direct systems

A direct system of abelian groups is a family of abelian groups Ai and a family
of group homomorphisms ϕi,j : Ai → Aj for i, j ∈ I with i ≤ j, such that when
i ≤ j ≤ k,

ϕi,k = ϕj,k ◦ ϕi,j .

If A is an abelian group, we say that a family of group homomorphisms
ψi : Ai → A is compatible with the direct system if, whenever i ≤ j,

ψj ◦ ϕi,j = ψi.

An abelian group A and a compatible family of group homomorphisms ϕi :
Ai → A is said to be a direct limit of the direct system if whenever B is an
abelian group and ψi : Ai → B is a compatible family of group homomorphisms,
there is a unique group homomorphism ψ : A→ B such that for all i,

ψ ◦ ϕi = ψi.

It can be proved that a direct system of abelian groups has a direct limit, and
that if if (A, ϕi), (B,ψi) are direct limits of a direct system, then there is a
unique group isomorphism ψ : A → B such that ψi = ψ ◦ ϕi for all i.8 We
permit ourselves to speak about the direct limit of the direct system.

7 Pontryagin duality

A morphism of a locally compact abelian group is a continuous group homo-
morphism. Let S1 = {z ∈ C : |z| = 1}. The Pontryagin dual of a locally
compact abelian group G is the collection of morphisms G → S1, where we
define ϕ1ϕ2 by (ϕ1ϕ2)(x) = ϕ1(x)ϕ2(x).

It is a fact that if Gi is an inverse system of compact abelian groups with
surjective morphisms Gi → Gj for i ≥ j, then the Pontryagin dual of the inverse
limit is isomorphic to the direct limit of the Pontryagin duals of the Gi, and that
the direct limit is equal to the union of the images of the Pontryagin duals.9

The Pontryagin dual of the compact abelian group Z/N is isomorphic to the
discrete abelian group Z/N . (The discrete topology on a finite abelian group is
compact.) The dual of the inverse system of projections πn,m : Z/pn → Z/pm,
n ≥ m, is the direct system of inclusion maps im,n : Z/pm → Z/pn, m ≤ n,
and the direct limit of this direct system is a discrete abelian group denoted by
Z(p∞), called the Prüfer p-group, with morphisms in : Z/pn → Z(p∞) and
which satisfies

Z(p∞) =
⋃

n∈Z+

in(Z/pn).

8Luis Ribes and Pavel Zalesskii, Profinite Groups, second ed., Chapter 1, “Inverse and
Direct Limits”, p. 15, Proposition 1.2.1.

9Karl H. Hofmann and Sidney A. Morris, The Structure of Compact Groups, 2nd revised
and augmented edition, p. 24, Proposition 1.36.
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8 Solenoids

For n ≥ 0, let πn : R→ R/pnZ be the projection map, and give R/pnZ the final
topology induced by this map, with which R/pnZ is a compact abelian group.
For n ≥ m, let

φn,m : R/pnZ→ R/pmZ

be the projection map. The following diagram commutes:

R R

R/pnZ R/pmZ

idR

πmπn

φn,m

It is immediate that the compact abelian groups R/pn and the morphisms
φn,m, n ≥ m, are an inverse system. We call the inverse limit of this sytem the
p-adic solenoid, denoted Tp, with morphisms φn : Tp → R/pnZ.10 Tp is a
compact abelian group.

One proves that each morphism φn : Tp → R/pnZ is onto. We now relate the
p-adic solenoid to the p-adic integers.11 Z ⊂ R implies that Z/pn = Z/pnZ ⊂
R/pnZ. We model Zp as a subset of the direct product

∏
Z/pn and model Tp as

a subset of the direct product
∏

R/pnZ, and thus the statement of the following
theorem makes sense.

Theorem 3. kerφn = pnZp.

10There are few books that present the p-adic solenoid. Two are Alain M. Robert, A Course
in p-adic Analysis, p. 54, Appendix to Chapter 1, and Karl A. Hofmann and Sidney A. Morris,
The Lie Theory of Connected Pro-Lie Groups, p. 589, Example 14.4.

11Alain M. Robert, A Course in p-adic Analysis, p. 55, Appendix A.1.
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