Infinite product measures

Jordan Bell

May 10, 2015

1 Introduction

The usual proof that the product of a collection of probability measures exists uses Fubini's theorem. This is unsatisfying because one ought not need to use Fubini's theorem to prove things having only to do with σ-algebras and measures. In this note I work through the proof given by Saeki of the existence of the product of a collection of probability measures. ${ }^{1}$ We speak only about the Lebesgue integral of characteristic functions.

2 Rings of sets and Hopf's extension theorem

If X is a set and \mathscr{R} is a collection of subsets of X, we call \mathscr{R} a ring of sets when (i) $\emptyset \in \mathscr{R}$ and (ii) if A and B belong to \mathscr{R} then $A \cup B$ and $A \backslash B$ belong to \mathscr{R}. If \mathscr{R} is a ring of sets and $A, B \in \mathscr{R}$, then $A \cap B=A \backslash(A \backslash B) \in \mathscr{R}$. Equivalently, one checks that a collection of subsets \mathscr{R} of X is a ring of sets if and only if (i) $\emptyset \in \mathscr{R}$ and (ii) if A and B belong to \mathscr{R} then $A \triangle B$ and $A \cap B$ belong to \mathscr{R}, where $A \triangle B=(A \backslash B) \cup(B \backslash A)$ is the symmetric difference. One checks that indeed a ring of sets is a ring with addition \triangle and multiplication \cap. If \mathscr{S} is a nonempty collection of subsets of X, one proves that there is a unique ring of sets $\mathscr{R}(\mathscr{S})$ that (i) contains \mathscr{S} and (ii) is contained in any ring of sets that contains \mathscr{S}. We call $\mathscr{R}(\mathscr{S})$ the ring of sets generated by \mathscr{S}.

If \mathscr{A} is a ring of subsets of a set X, we call \mathscr{A} an algebra of sets when $X \in \mathscr{A}$. Namely, an algebra of sets is a unital ring of sets. If \mathscr{S} is a nonempty collection of subsets of X, one proves that there is a unique algebra of sets $\mathscr{A}(\mathscr{S})$ that (i) contains \mathscr{S} and (ii) is contained in any algebra of sets that contains \mathscr{S}. We call $\mathscr{A}(\mathscr{S})$ the algebra of sets generated by \mathscr{S}.

For a nonempty collection \mathscr{G} of subsets of a set X, we denote by $\sigma(\mathscr{G})$ the smallest σ-algebra of subsets of X such that $\mathscr{G} \subset \sigma(\mathscr{G})$.

If \mathscr{R} is a ring of subsets of a set X and $\tau: \mathscr{R} \rightarrow[0, \infty]$ is a function such that (i) $\mu(\emptyset)=0$ and (ii) when $\left\{A_{n}\right\}$ is a countable subset of \mathscr{R} whose members

[^0]are pairwise disjoint and which satisfies $\bigcup_{n=1}^{\infty} A_{n} \in \mathscr{R}$, then
$$
\tau\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \tau\left(A_{n}\right),
$$
we call τ a measure on \mathscr{R}. The following is Hopf's extension theorem. ${ }^{2}$
Theorem 1 (Hopf's extension theorem). Suppose that X is a set, that \mathscr{R} is a ring of subsets of X, and that τ is a measure on \mathscr{R}. If there is a countable subset $\left\{E_{n}\right\}$ of \mathscr{R} with $\tau\left(E_{n}\right)<\infty$ for each n and such that $\bigcup_{n=1}^{\infty} E_{n}=X$, then there is a unique measure $\mu: \sigma(\mathscr{R}) \rightarrow[0, \infty]$ whose restriction to \mathscr{R} is equal to τ.

3 Semirings of sets

If X is a set and \mathscr{S} is a collection of subsets of X, we call \mathscr{S} a semiring of sets when (i) $\emptyset \in \mathscr{S}$, (ii) if A and B belong to \mathscr{S} then $A \cap B \in \mathscr{S}$, and (iii) if A and B belong to \mathscr{S} then there are pairwise disjoint $C_{1}, \ldots, C_{n} \in \mathscr{S}$ such that

$$
A \backslash B=\bigcup_{i=1}^{n} C_{i}
$$

If \mathscr{S} is a semiring of subsets of a set X, we call \mathscr{S} a semialgebra of sets when $X \in \mathscr{S}$. One proves that if \mathscr{S} is a semialgebra, then the collection \mathscr{A} of all finite unions of elements of \mathscr{S} is equal to the algebra generated by \mathscr{S}, and that each element of \mathscr{A} is equal to a finite union of pairwise disjoint elements of $\mathscr{S} .{ }^{3}$

4 Cylinder sets

Suppose that $\left\{\left(\Omega_{i}, \mathscr{F}_{i}, P_{i}\right): i \in I\right\}$ is a nonempty collection of probability spaces and let

$$
\Omega=\prod_{i \in I} \Omega_{i} .
$$

If $A_{i} \in \mathscr{F}_{i}$ for each $i \in I$ and $\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$ is finite, we call

$$
A=\prod_{i \in I} A_{i}
$$

a cylinder set. Let \mathscr{C} be the collection of all cylinder sets. One checks that \mathscr{C} is a semialgebra of sets. ${ }^{4}$

[^1]Lemma 2. Suppose that $P: \mathscr{C} \rightarrow[0,1]$ is a function such that

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=1
$$

whenever A_{n} are pairwise disjoint elements of \mathscr{C} whose union is equal to Ω. Then there is a unique probability measure on $\sigma(\mathscr{C})$ whose restriction to \mathscr{C} is equal to P.

Proof. Let \mathscr{A} be the collection of all finite unions of cylinder sets. Because \mathscr{C} is a semialgebra of sets, \mathscr{A} is the algebra of sets generated by \mathscr{C}, and any element of \mathscr{A} is equal to a finite union of pairwise disjoint elements of \mathscr{C}. Let $A \in \mathscr{A}$. There are pairwise disjoint $B_{1}, \ldots, B_{j} \in \mathscr{C}$ whose union is equal to A. Suppose also that $\left\{C_{i}\right\}$ is a countable subset of \mathscr{C} with pairwise disjoint members whose union is equal to A. Moreover, as $\Omega \backslash A \in \mathscr{A}$ there are pairwise disjoint $W_{1}, \ldots, W_{p} \in \mathscr{C}$ such that $\Omega \backslash A=\bigcup_{i=1}^{p} W_{i}$. On the one hand, $W_{1}, \ldots, W_{p}, B_{1}, \ldots, B_{j}$ are pairwise disjoint cylinder sets with union Ω, so

$$
\sum_{i=1}^{j} P\left(B_{i}\right)+\sum_{i=1}^{p} P\left(W_{i}\right)=1
$$

On the other hand, $W_{1}, \ldots, W_{p}, C_{1}, C_{2}, \ldots$ are pairwise disjoint cylinder sets with union Ω, so

$$
\sum_{i=1}^{\infty} P\left(C_{i}\right)+\sum_{i=1}^{p} P\left(W_{i}\right)=1
$$

Hence,

$$
\sum_{i=1}^{j} P\left(B_{i}\right)=\sum_{i=1}^{\infty} P\left(C_{i}\right)
$$

this conclusion does not involve W_{1}, \ldots, W_{p}. Thus it makes sense to define $\tau(A)$ to be this common value, and this defines a function $\tau: \mathscr{A} \rightarrow[0,1]$. For $C \in \mathscr{C}$, $\tau(C)=P(C)$, i.e. the restriction of τ to P is equal to \mathscr{C}.

If $\left\{A_{n}\right\}$ is a countable subset of \mathscr{A} whose members are pairwise disjoint and $A=\bigcup_{n=1}^{\infty} A_{n} \in \mathscr{A}$, for each n let $C_{n, 1}, \ldots, C_{n, j(n)} \in \mathscr{C}$ be pairwise disjoint cylinder sets with union A_{n}. Then

$$
\left\{C_{n, i}: n \geq 1,1 \leq i \leq j(n)\right\}
$$

is a countable subset of \mathscr{C} whose elements are pairwise disjoint and with union A, so

$$
\tau(A)=\sum_{n=1}^{\infty} \sum_{i=1}^{j(n)} P\left(C_{n, i}\right)
$$

But for each n,

$$
\tau\left(A_{n}\right)=\sum_{i=1}^{j(n)} P\left(C_{n, i}\right)
$$

$$
\tau(A)=\sum_{n=1}^{\infty} \tau\left(A_{n}\right)
$$

This shows that $\tau: \mathscr{A} \rightarrow[0,1]$ is a measure. Then applying Hopf's extension theorem, we get that there is a unique measure $\mu: \sigma(\mathscr{A}) \rightarrow[0,1]$ whose restriction to \mathscr{A} is equal to τ. It is apparent that the σ-algebra generated by a semialgebra is equal to the σ-algebra generated by the algebra generated by the semialgebra, so $\sigma(\mathscr{A})=\sigma(\mathscr{C})$. Because the restriction of τ to \mathscr{C} is equal to P, the restriction of μ to \mathscr{C} is equal to P. Now suppose that $\nu: \sigma(\mathscr{A}) \rightarrow[0,1]$ is a measure whose restriction to \mathscr{C} is equal to P. For $A \in \mathscr{A}$, there are disjoint $C_{1}, \ldots, C_{n} \in \mathscr{C}$ with $A=\bigcup_{i=1}^{n} C_{i}$. Then

$$
\nu(A)=\sum_{i=1}^{n} \nu\left(C_{i}\right)=\sum_{i=1}^{n} P\left(C_{i}\right)=\sum_{i=1}^{n} \mu\left(C_{i}\right)=\mu(A),
$$

showing that the restriction of ν to \mathscr{A} is equal to the restriction of μ to \mathscr{A}, from which it follows that $\nu=\mu$.

5 Product measures

Suppose that $\left\{\left(\Omega_{i}, \mathscr{F}_{i}, P_{i}\right): i \in I\right\}$ is a nonempty collection of probability spaces. The product σ-algebra is $\sigma(\mathscr{C})$, the σ-algebra generated by the cylinder sets. We define $P: \mathscr{C} \rightarrow[0,1]$ by

$$
P(A)=\prod_{i \in I_{A}} P_{i}\left(A_{i}\right)=\prod_{i \in I} P_{i}\left(A_{i}\right)
$$

for $A \in \mathscr{C}$ and with $I_{A}=\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$, which is finite.
Lemma 3. Suppose that I is the set of positive integers. If $\left\{A_{n}\right\}$ is a countable subset of \mathscr{C} with pairwise disjoint elements whose union is equal to Ω, then

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=1
$$

Proof. For each $k \geq 1$, there is some i_{k} and $A_{k, 1} \in \mathscr{F}_{1}, \ldots, A_{k, i_{k}} \in \mathscr{F}_{i_{k}}$ such that

$$
A_{k}=\prod_{i=1}^{\infty} A_{k, i}
$$

with $A_{k, i}=\Omega_{i}$ for $i>i_{k}$. Let $m \geq 1$, let $x=\left(x_{i}\right) \in A_{m}$, and let $n \geq 1$. If $n=m$,

$$
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} P_{i}\left(A_{n, i}\right)\right)=1=\delta_{m, n}
$$

If $m \neq n$ and $y_{i} \in \Omega_{i}$ for each $i>i_{m}$ and we set $y_{i}=x_{i}$ for $1 \leq i \leq i_{m}$, then because A_{m} and A_{n} are disjoint and $y \in A_{m}$, we have $y \notin A_{n}$ and therefore there is some $i, 1 \leq i \leq i_{n}$, such that $y_{i} \notin A_{n, i}$. Thus

$$
\begin{equation*}
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} \chi_{A_{n, i}}\left(y_{i}\right)\right)=\prod_{i=1}^{\infty} \chi_{A_{n, i}}\left(y_{i}\right)=0 \tag{1}
\end{equation*}
$$

Either $i_{n} \leq i_{m}$ or $i_{n}>i_{m}$. In the case $i_{n} \leq i_{m}$ we have $A_{n, i}=\Omega_{i}$ for $i>i_{m}$ and thus

$$
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} \chi_{A_{n, i}}\left(y_{i}\right)\right)=\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right),
$$

hence by (1),

$$
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} P_{i}\left(A_{n, i}\right)\right)=\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)=0=\delta_{m, n}
$$

In the case $i_{n}>i_{m}$, we have $A_{n, i}=\Omega_{i}$ for $i>i_{n}$ and thus

$$
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} \chi_{A_{n, i}}\left(y_{i}\right)\right)=\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i=i_{m}+1}^{i_{n}} \chi_{A_{n, i}}\left(y_{i}\right)\right)
$$

hence by (1) we have that for $y_{i} \in \Omega_{i}, i>i_{m}$,

$$
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i=i_{m}+1}^{i_{n}} \chi_{A_{n, i}}\left(y_{i}\right)\right)=0 .
$$

Therefore, integrating over Ω_{i} for $i=i_{m}+1, \ldots, i_{n}$,

$$
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i=i_{m}+1}^{i_{n}} P_{i}\left(A_{n, i}\right)\right)=0
$$

so

$$
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} P_{i}\left(A_{n, i}\right)\right)=0=\delta_{m, n}
$$

We have thus established that for any $m \geq 1, x \in A_{m}$, and $n \geq 1$,

$$
\begin{equation*}
\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} P_{i}\left(A_{n, i}\right)\right)=\delta_{m, n} \tag{2}
\end{equation*}
$$

Suppose by contradiction that

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)<1
$$

i.e.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \prod_{i=1}^{\infty} P_{i}\left(A_{n, i}\right)<1 \tag{3}
\end{equation*}
$$

If

$$
\sum_{n=1}^{\infty} \chi_{A_{n, 1}}\left(x_{1}\right) \prod_{i=2}^{\infty} P_{i}\left(A_{n, i}\right)=1
$$

for all $x_{1} \in \Omega_{1}$, then integrating over Ω_{1} we contradict (3). Hence there is some $x_{1} \in \Omega_{1}$ such that

$$
\sum_{n=1}^{\infty} \chi_{A_{n, 1}}\left(x_{1}\right) \prod_{i=2}^{\infty} P_{i}\left(A_{n, i}\right)<1
$$

Suppose by induction that for some $j \geq 1, x_{1} \in \Omega_{1}, \ldots, x_{j} \in \Omega_{j}$ and

$$
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{j} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i=j+1}^{\infty} P_{i}\left(A_{n, i}\right)\right)<1 .
$$

If

$$
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{j+1} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i=j+2}^{\infty} P_{i}\left(A_{n, i}\right)\right)=1
$$

for all $x_{j+1} \in \Omega_{j+1}$, then integrating over Ω_{j+1} we contradict (3). Hence there is some $x_{j+1} \in \Omega_{j+1}$ such that

$$
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{j+1} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i=j+2}^{\infty} P_{i}\left(A_{n, i}\right)\right)<1
$$

Therefore, by induction we obtain that for any j, there are $x_{1} \in \Omega_{1}, \ldots, x_{j} \in \Omega_{j}$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{j} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i=j+1}^{\infty} P_{i}\left(A_{n, i}\right)\right)<1 \tag{4}
\end{equation*}
$$

Write $x=\left(x_{1}, x_{2}, \ldots\right) \in \Omega$. Because $\Omega=\bigcup_{m=1}^{\infty} A_{m}$, there is some m for which $x \in A_{m}$. For $j=i_{m}$, (4) states

$$
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} P_{i}\left(A_{n, i}\right)\right)<1
$$

But (2) tells us

$$
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{i_{m}} \chi_{A_{n, i}}\left(x_{i}\right)\right)\left(\prod_{i>i_{m}} P_{i}\left(A_{n, i}\right)\right)=\sum_{n=1}^{\infty} \delta_{m, n}=1
$$

a contradiction. Therefore,

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=1
$$

proving the claim.
Lemma 4. Suppose that I is an uncountable set. If $\left\{A_{n}\right\}$ is a countable subset of \mathscr{C} with pairwise disjoint elements whose union is equal to Ω, then

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=1
$$

Proof. For each n, there are $A_{n, i} \in \mathscr{F}_{i}$ with $A_{n, i}=\Omega_{i}$, and $I_{n}=\{i \in I$: $\left.A_{i} \neq \Omega_{i}\right\}$ is finite. Then $J=\bigcup_{n=1}^{\infty} I_{n}$ is countable. Let $\Omega_{J}=\prod_{i \in J} \Omega_{i}$, let \mathscr{C}_{J} be the collection of cylinder sets corresponding to the probability spaces $\left\{\left(\Omega_{i}, \mathscr{F}_{i}, P_{i}\right): i \in J\right\}$, and define $P_{J}: \mathscr{C}_{J} \rightarrow[0,1]$ by

$$
P_{J}(B)=\prod_{i \in J_{B}} P_{i}\left(B_{i}\right)=\prod_{i \in J} P_{i}\left(B_{i}\right),
$$

for $B \in \mathscr{C}_{J}$ and with $J_{B}=\left\{i \in J: B_{i} \neq \Omega_{i}\right\}$, which is finite. P_{J} satisfies

$$
P_{J}(B)=P\left(B \times \prod_{i \in I \backslash J} \Omega_{i}\right), \quad B \in \mathscr{C}_{J}
$$

Let $B_{n}=\prod_{i \in J} A_{n, i}$, i.e. $A_{n}=B_{n} \times \prod_{i \in I \backslash J} A_{n, i}$. Then $\left\{B_{n}\right\}$ is a countable subset of \mathscr{C}_{J} with pairwise disjoint elements whose union is equal to Ω_{J}, and applying Lemma 3 we get that

$$
\sum_{n=1}^{\infty} P_{J}\left(B_{n}\right)=1,
$$

and therefore

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=1
$$

Now by Lemma 2 and the above lemma, there is a unique probability measure μ on $\sigma(\mathscr{C})$ whose restriction to \mathscr{C} is equal to P. That is, when $\left\{\left(\Omega_{i}, \mathscr{F}_{i}, P_{i}\right): i \in\right.$ $I\}$ are probability spaces and \mathscr{C} is the collection of cylinder sets corresponding to these probability spaces, with $\Omega=\prod_{i \in I} \Omega_{i}$ and $P: \mathscr{C} \rightarrow[0,1]$ defined by

$$
P(A)=\prod_{i \in I} P\left(A_{i}\right)
$$

for $A=\prod_{i \in I} A_{i} \in \mathscr{C}$, then there is a unique probability measure μ on the the product σ-algebra such that $\mu(A)=P(A)$ for each cylinder set A. We call μ the product measure, and write

$$
\bigotimes_{i \in I} \mathscr{F}_{i}=\sigma(\mathscr{C})
$$

and

$$
\prod_{i \in I} P_{i}=\mu .
$$

[^0]: ${ }^{1}$ Sadahiro Saeki, A Proof of the Existence of Infinite Product Probability Measures, Amer. Math. Monthly 103 (1996), no. 8, 682-682.

[^1]: ${ }^{2}$ Karl Stromberg, Probability for Analysts, p. 52, Theorem A3.6.
 ${ }^{3}$ V. I. Bogachev, Measure Theory, volume I, p. 8, Lemma 1.2.14.
 ${ }^{4}$ S. J. Taylor, Introduction to Measure and Integration, p. 136, §6.1, Lemma.

