Infinite product measures

Jordan Bell

May 10, 2015

1 Introduction

The usual proof that the product of a collection of probability measures exists uses Fubini's theorem. This is unsatisfying because one ought not need to use Fubini's theorem to prove things having only to do with σ -algebras and measures. In this note I work through the proof given by Saeki of the existence of the product of a collection of probability measures.¹ We speak only about the Lebesgue integral of characteristic functions.

2 Rings of sets and Hopf's extension theorem

If X is a set and \mathscr{R} is a collection of subsets of X, we call \mathscr{R} a **ring of sets** when (i) $\emptyset \in \mathscr{R}$ and (ii) if A and B belong to \mathscr{R} then $A \cup B$ and $A \setminus B$ belong to \mathscr{R} . If \mathscr{R} is a ring of sets and $A, B \in \mathscr{R}$, then $A \cap B = A \setminus (A \setminus B) \in \mathscr{R}$. Equivalently, one checks that a collection of subsets \mathscr{R} of X is a ring of sets if and only if (i) $\emptyset \in \mathscr{R}$ and (ii) if A and B belong to \mathscr{R} then $A \triangle B$ and $A \cap B$ belong to \mathscr{R} , where $A \triangle B = (A \setminus B) \cup (B \setminus A)$ is the **symmetric difference**. One checks that indeed a ring of sets is a ring with addition \triangle and multiplication \cap . If \mathscr{S} is a nonempty collection of subsets of X, one proves that there is a unique ring of sets $\mathscr{R}(\mathscr{S})$ that (i) contains \mathscr{S} and (ii) is contained in any ring of sets that contains \mathscr{S} . We call $\mathscr{R}(\mathscr{S})$ the **ring of sets generated by** \mathscr{S} .

If \mathscr{A} is a ring of subsets of a set X, we call \mathscr{A} an **algebra of sets** when $X \in \mathscr{A}$. Namely, an algebra of sets is a unital ring of sets. If \mathscr{S} is a nonempty collection of subsets of X, one proves that there is a unique algebra of sets $\mathscr{A}(\mathscr{S})$ that (i) contains \mathscr{S} and (ii) is contained in any algebra of sets that contains \mathscr{S} . We call $\mathscr{A}(\mathscr{S})$ the **algebra of sets generated by** \mathscr{S} .

For a nonempty collection \mathscr{G} of subsets of a set X, we denote by $\sigma(\mathscr{G})$ the smallest σ -algebra of subsets of X such that $\mathscr{G} \subset \sigma(\mathscr{G})$.

If \mathscr{R} is a ring of subsets of a set X and $\tau : \mathscr{R} \to [0, \infty]$ is a function such that (i) $\mu(\emptyset) = 0$ and (ii) when $\{A_n\}$ is a countable subset of \mathscr{R} whose members

¹Sadahiro Saeki, A Proof of the Existence of Infinite Product Probability Measures, Amer. Math. Monthly **103** (1996), no. 8, 682–682.

are pairwise disjoint and which satisfies $\bigcup_{n=1}^{\infty} A_n \in \mathscr{R}$, then

$$\tau\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\tau(A_n),$$

we call τ a measure on \mathscr{R} . The following is Hopf's extension theorem.²

Theorem 1 (Hopf's extension theorem). Suppose that X is a set, that \mathscr{R} is a ring of subsets of X, and that τ is a measure on \mathscr{R} . If there is a countable subset $\{E_n\}$ of \mathscr{R} with $\tau(E_n) < \infty$ for each n and such that $\bigcup_{n=1}^{\infty} E_n = X$, then there is a unique measure $\mu : \sigma(\mathscr{R}) \to [0, \infty]$ whose restriction to \mathscr{R} is equal to τ .

3 Semirings of sets

If X is a set and \mathscr{S} is a collection of subsets of X, we call \mathscr{S} a **semiring of** sets when (i) $\emptyset \in \mathscr{S}$, (ii) if A and B belong to \mathscr{S} then $A \cap B \in \mathscr{S}$, and (iii) if A and B belong to \mathscr{S} then there are pairwise disjoint $C_1, \ldots, C_n \in \mathscr{S}$ such that

$$A \setminus B = \bigcup_{i=1}^{n} C_i.$$

If \mathscr{S} is a semiring of subsets of a set X, we call \mathscr{S} a **semialgebra of sets** when $X \in \mathscr{S}$. One proves that if \mathscr{S} is a semialgebra, then the collection \mathscr{A} of all finite unions of elements of \mathscr{S} is equal to the algebra generated by \mathscr{S} , and that each element of \mathscr{A} is equal to a finite union of pairwise disjoint elements of \mathscr{S} .³

4 Cylinder sets

Suppose that $\{(\Omega_i, \mathscr{F}_i, P_i) : i \in I\}$ is a nonempty collection of probability spaces and let

$$\Omega = \prod_{i \in I} \Omega_i.$$

If $A_i \in \mathscr{F}_i$ for each $i \in I$ and $\{i \in I : A_i \neq \Omega_i\}$ is finite, we call

$$A = \prod_{i \in I} A_i$$

a **cylinder set**. Let $\mathscr C$ be the collection of all cylinder sets. One checks that $\mathscr C$ is a semialgebra of sets.⁴

²Karl Stromberg, *Probability for Analysts*, p. 52, Theorem A3.6.

³V. I. Bogachev, *Measure Theory*, volume I, p. 8, Lemma 1.2.14.

⁴S. J. Taylor, Introduction to Measure and Integration, p. 136, §6.1, Lemma.

Lemma 2. Suppose that $P: \mathscr{C} \to [0,1]$ is a function such that

$$\sum_{n=1}^{\infty} P(A_n) = 1$$

whenever A_n are pairwise disjoint elements of \mathscr{C} whose union is equal to Ω . Then there is a unique probability measure on $\sigma(\mathscr{C})$ whose restriction to \mathscr{C} is equal to P.

Proof. Let \mathscr{A} be the collection of all finite unions of cylinder sets. Because \mathscr{C} is a semialgebra of sets, \mathscr{A} is the algebra of sets generated by \mathscr{C} , and any element of \mathscr{A} is equal to a finite union of pairwise disjoint elements of \mathscr{C} . Let $A \in \mathscr{A}$. There are pairwise disjoint $B_1, \ldots, B_j \in \mathscr{C}$ whose union is equal to A. Suppose also that $\{C_i\}$ is a countable subset of \mathscr{C} with pairwise disjoint members whose union is equal to A. Moreover, as $\Omega \setminus A \in \mathscr{A}$ there are pairwise disjoint $W_1, \ldots, W_p \in \mathscr{C}$ such that $\Omega \setminus A = \bigcup_{i=1}^p W_i$. On the one hand, $W_1, \ldots, W_p, B_1, \ldots, B_j$ are pairwise disjoint cylinder sets with union Ω , so

$$\sum_{i=1}^{j} P(B_i) + \sum_{i=1}^{p} P(W_i) = 1.$$

On the other hand, $W_1, \ldots, W_p, C_1, C_2, \ldots$ are pairwise disjoint cylinder sets with union Ω , so

$$\sum_{i=1}^{\infty} P(C_i) + \sum_{i=1}^{p} P(W_i) = 1.$$

Hence,

$$\sum_{i=1}^{j} P(B_i) = \sum_{i=1}^{\infty} P(C_i);$$

this conclusion does not involve W_1, \ldots, W_p . Thus it makes sense to define $\tau(A)$ to be this common value, and this defines a function $\tau : \mathscr{A} \to [0, 1]$. For $C \in \mathscr{C}$, $\tau(C) = P(C)$, i.e. the restriction of τ to P is equal to \mathscr{C} .

If $\{A_n\}$ is a countable subset of \mathscr{A} whose members are pairwise disjoint and $A = \bigcup_{n=1}^{\infty} A_n \in \mathscr{A}$, for each n let $C_{n,1}, \ldots, C_{n,j(n)} \in \mathscr{C}$ be pairwise disjoint cylinder sets with union A_n . Then

$$\{C_{n,i} : n \ge 1, 1 \le i \le j(n)\}$$

is a countable subset of ${\mathscr C}$ whose elements are pairwise disjoint and with union A, so

$$\tau(A) = \sum_{n=1}^{\infty} \sum_{i=1}^{j(n)} P(C_{n,i}).$$

But for each n,

$$\tau(A_n) = \sum_{i=1}^{j(n)} P(C_{n,i}),$$

$$\tau(A) = \sum_{n=1}^{\infty} \tau(A_n)$$

This shows that $\tau : \mathscr{A} \to [0, 1]$ is a measure. Then applying Hopf's extension theorem, we get that there is a unique measure $\mu : \sigma(\mathscr{A}) \to [0, 1]$ whose restriction to \mathscr{A} is equal to τ . It is apparent that the σ -algebra generated by a semialgebra is equal to the σ -algebra generated by the algebra generated by the semialgebra, so $\sigma(\mathscr{A}) = \sigma(\mathscr{C})$. Because the restriction of τ to \mathscr{C} is equal to P, the restriction of μ to \mathscr{C} is equal to P. Now suppose that $\nu : \sigma(\mathscr{A}) \to [0, 1]$ is a measure whose restriction to \mathscr{C} is equal to P. For $A \in \mathscr{A}$, there are disjoint $C_1, \ldots, C_n \in \mathscr{C}$ with $A = \bigcup_{i=1}^n C_i$. Then

$$\nu(A) = \sum_{i=1}^{n} \nu(C_i) = \sum_{i=1}^{n} P(C_i) = \sum_{i=1}^{n} \mu(C_i) = \mu(A),$$

showing that the restriction of ν to \mathscr{A} is equal to the restriction of μ to \mathscr{A} , from which it follows that $\nu = \mu$.

5 Product measures

Suppose that $\{(\Omega_i, \mathscr{F}_i, P_i) : i \in I\}$ is a nonempty collection of probability spaces. The **product** σ -algebra is $\sigma(\mathscr{C})$, the σ -algebra generated by the cylinder sets. We define $P : \mathscr{C} \to [0, 1]$ by

$$P(A) = \prod_{i \in I_A} P_i(A_i) = \prod_{i \in I} P_i(A_i),$$

for $A \in \mathscr{C}$ and with $I_A = \{i \in I : A_i \neq \Omega_i\}$, which is finite.

Lemma 3. Suppose that I is the set of positive integers. If $\{A_n\}$ is a countable subset of \mathscr{C} with pairwise disjoint elements whose union is equal to Ω , then

$$\sum_{n=1}^{\infty} P(A_n) = 1$$

Proof. For each $k \geq 1$, there is some i_k and $A_{k,1} \in \mathscr{F}_1, \ldots, A_{k,i_k} \in \mathscr{F}_{i_k}$ such that

$$A_k = \prod_{i=1}^{\infty} A_{k,i},$$

with $A_{k,i} = \Omega_i$ for $i > i_k$. Let $m \ge 1$, let $x = (x_i) \in A_m$, and let $n \ge 1$. If n = m,

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i>i_m} P_i(A_{n,i})\right) = 1 = \delta_{m,n}.$$

 \mathbf{SO}

If $m \neq n$ and $y_i \in \Omega_i$ for each $i > i_m$ and we set $y_i = x_i$ for $1 \leq i \leq i_m$, then because A_m and A_n are disjoint and $y \in A_m$, we have $y \notin A_n$ and therefore there is some $i, 1 \leq i \leq i_n$, such that $y_i \notin A_{n,i}$. Thus

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i>i_m} \chi_{A_{n,i}}(y_i)\right) = \prod_{i=1}^{\infty} \chi_{A_{n,i}}(y_i) = 0.$$
 (1)

Either $i_n \leq i_m$ or $i_n > i_m$. In the case $i_n \leq i_m$ we have $A_{n,i} = \Omega_i$ for $i > i_m$ and thus

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i>i_m} \chi_{A_{n,i}}(y_i)\right) = \prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i),$$

hence by (1),

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i>i_m} P_i(A_{n,i})\right) = \prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i) = 0 = \delta_{m,n}.$$

In the case $i_n > i_m$, we have $A_{n,i} = \Omega_i$ for $i > i_n$ and thus

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i>i_m} \chi_{A_{n,i}}(y_i)\right) = \left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i=i_m+1}^{i_n} \chi_{A_{n,i}}(y_i)\right),$$

hence by (1) we have that for $y_i \in \Omega_i$, $i > i_m$,

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i=i_m+1}^{i_n} \chi_{A_{n,i}}(y_i)\right) = 0.$$

Therefore, integrating over Ω_i for $i = i_m + 1, \ldots, i_n$,

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i=i_m+1}^{i_n} P_i(A_{n,i})\right) = 0,$$

 \mathbf{SO}

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i>i_m} P_i(A_{n,i})\right) = 0 = \delta_{m,n}.$$

We have thus established that for any $m \ge 1$, $x \in A_m$, and $n \ge 1$,

$$\left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i)\right) \left(\prod_{i>i_m} P_i(A_{n,i})\right) = \delta_{m,n}.$$
(2)

Suppose by contradiction that

$$\sum_{n=1}^{\infty} P(A_n) < 1,$$

$$\sum_{n=1}^{\infty} \prod_{i=1}^{\infty} P_i(A_{n,i}) < 1.$$
(3)

If

i.e.

$$\sum_{n=1}^{\infty} \chi_{A_{n,1}}(x_1) \prod_{i=2}^{\infty} P_i(A_{n,i}) = 1$$

for all $x_1 \in \Omega_1$, then integrating over Ω_1 we contradict (3). Hence there is some $x_1 \in \Omega_1$ such that

$$\sum_{n=1}^{\infty} \chi_{A_{n,1}}(x_1) \prod_{i=2}^{\infty} P_i(A_{n,i}) < 1.$$

Suppose by induction that for some $j \ge 1, x_1 \in \Omega_1, \ldots, x_j \in \Omega_j$ and

$$\sum_{n=1}^{\infty} \left(\prod_{i=1}^{j} \chi_{A_{n,i}}(x_i) \right) \left(\prod_{i=j+1}^{\infty} P_i(A_{n,i}) \right) < 1.$$

 \mathbf{If}

$$\sum_{n=1}^{\infty} \left(\prod_{i=1}^{j+1} \chi_{A_{n,i}}(x_i) \right) \left(\prod_{i=j+2}^{\infty} P_i(A_{n,i}) \right) = 1$$

for all $x_{j+1} \in \Omega_{j+1}$, then integrating over Ω_{j+1} we contradict (3). Hence there is some $x_{j+1} \in \Omega_{j+1}$ such that

$$\sum_{n=1}^{\infty} \left(\prod_{i=1}^{j+1} \chi_{A_{n,i}}(x_i) \right) \left(\prod_{i=j+2}^{\infty} P_i(A_{n,i}) \right) < 1.$$

Therefore, by induction we obtain that for any j, there are $x_1 \in \Omega_1, \ldots, x_j \in \Omega_j$ such that

$$\sum_{n=1}^{\infty} \left(\prod_{i=1}^{j} \chi_{A_{n,i}}(x_i) \right) \left(\prod_{i=j+1}^{\infty} P_i(A_{n,i}) \right) < 1.$$

$$\tag{4}$$

Write $x = (x_1, x_2, \ldots) \in \Omega$. Because $\Omega = \bigcup_{m=1}^{\infty} A_m$, there is some *m* for which $x \in A_m$. For $j = i_m$, (4) states

$$\sum_{n=1}^{\infty} \left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i) \right) \left(\prod_{i>i_m} P_i(A_{n,i}) \right) < 1.$$

But (2) tells us

$$\sum_{n=1}^{\infty} \left(\prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i) \right) \left(\prod_{i>i_m} P_i(A_{n,i}) \right) = \sum_{n=1}^{\infty} \delta_{m,n} = 1,$$

a contradiction. Therefore,

$$\sum_{n=1}^{\infty} P(A_n) = 1$$

proving the claim.

Lemma 4. Suppose that I is an uncountable set. If $\{A_n\}$ is a countable subset of \mathscr{C} with pairwise disjoint elements whose union is equal to Ω , then

$$\sum_{n=1}^{\infty} P(A_n) = 1.$$

Proof. For each *n*, there are $A_{n,i} \in \mathscr{F}_i$ with $A_{n,i} = \Omega_i$, and $I_n = \{i \in I : A_i \neq \Omega_i\}$ is finite. Then $J = \bigcup_{n=1}^{\infty} I_n$ is countable. Let $\Omega_J = \prod_{i \in J} \Omega_i$, let \mathscr{C}_J be the collection of cylinder sets corresponding to the probability spaces $\{(\Omega_i, \mathscr{F}_i, P_i) : i \in J\}$, and define $P_J : \mathscr{C}_J \to [0, 1]$ by

$$P_J(B) = \prod_{i \in J_B} P_i(B_i) = \prod_{i \in J} P_i(B_i),$$

for $B \in \mathscr{C}_J$ and with $J_B = \{i \in J : B_i \neq \Omega_i\}$, which is finite. P_J satisfies

$$P_J(B) = P\left(B \times \prod_{i \in I \setminus J} \Omega_i\right), \qquad B \in \mathscr{C}_J.$$

Let $B_n = \prod_{i \in J} A_{n,i}$, i.e. $A_n = B_n \times \prod_{i \in I \setminus J} A_{n,i}$. Then $\{B_n\}$ is a countable subset of \mathscr{C}_J with pairwise disjoint elements whose union is equal to Ω_J , and applying Lemma 3 we get that

$$\sum_{n=1}^{\infty} P_J(B_n) = 1$$

and therefore

$$\sum_{n=1}^{\infty} P(A_n) = 1$$

Now by Lemma 2 and the above lemma, there is a unique probability measure μ on $\sigma(\mathscr{C})$ whose restriction to \mathscr{C} is equal to P. That is, when $\{(\Omega_i, \mathscr{F}_i, P_i) : i \in I\}$ are probability spaces and \mathscr{C} is the collection of cylinder sets corresponding to these probability spaces, with $\Omega = \prod_{i \in I} \Omega_i$ and $P : \mathscr{C} \to [0, 1]$ defined by

$$P(A) = \prod_{i \in I} P(A_i)$$

for $A = \prod_{i \in I} A_i \in \mathscr{C}$, then there is a unique probability measure μ on the the product σ -algebra such that $\mu(A) = P(A)$ for each cylinder set A. We call μ the **product measure**, and write

$$\bigotimes_{i\in I}\mathscr{F}_i=\sigma(\mathscr{C})$$

and

$$\prod_{i\in I} P_i = \mu.$$