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1 Introduction

The usual proof that the product of a collection of probability measures exists
uses Fubini’s theorem. This is unsatisfying because one ought not need to
use Fubini’s theorem to prove things having only to do with σ-algebras and
measures. In this note I work through the proof given by Saeki of the existence
of the product of a collection of probability measures.1 We speak only about
the Lebesgue integral of characteristic functions.

2 Rings of sets and Hopf’s extension theorem

If X is a set and R is a collection of subsets of X, we call R a ring of sets when
(i) ∅ ∈ R and (ii) if A and B belong to R then A∪B and A\B belong to R. If
R is a ring of sets and A,B ∈ R, then A ∩B = A \ (A \B) ∈ R. Equivalently,
one checks that a collection of subsets R of X is a ring of sets if and only if
(i) ∅ ∈ R and (ii) if A and B belong to R then A△B and A ∩B belong to R,
where A△B = (A \ B) ∪ (B \ A) is the symmetric difference. One checks
that indeed a ring of sets is a ring with addition △ and multiplication ∩. If S
is a nonempty collection of subsets of X, one proves that there is a unique ring
of sets R(S ) that (i) contains S and (ii) is contained in any ring of sets that
contains S . We call R(S ) the ring of sets generated by S .

If A is a ring of subsets of a set X, we call A an algebra of sets when
X ∈ A . Namely, an algebra of sets is a unital ring of sets. If S is a nonempty
collection of subsets ofX, one proves that there is a unique algebra of sets A (S )
that (i) contains S and (ii) is contained in any algebra of sets that contains S .
We call A (S ) the algebra of sets generated by S .

For a nonempty collection G of subsets of a set X, we denote by σ(G ) the
smallest σ-algebra of subsets of X such that G ⊂ σ(G ).

If R is a ring of subsets of a set X and τ : R → [0,∞] is a function such
that (i) µ(∅) = 0 and (ii) when {An} is a countable subset of R whose members

1Sadahiro Saeki, A Proof of the Existence of Infinite Product Probability Measures, Amer.
Math. Monthly 103 (1996), no. 8, 682–682.
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are pairwise disjoint and which satisfies
⋃∞

n=1 An ∈ R, then

τ

( ∞⋃
n=1

An

)
=

∞∑
n=1

τ(An),

we call τ a measure on R. The following is Hopf’s extension theorem.2

Theorem 1 (Hopf’s extension theorem). Suppose that X is a set, that R is
a ring of subsets of X, and that τ is a measure on R. If there is a countable
subset {En} of R with τ(En) < ∞ for each n and such that

⋃∞
n=1 En = X, then

there is a unique measure µ : σ(R) → [0,∞] whose restriction to R is equal to
τ .

3 Semirings of sets

If X is a set and S is a collection of subsets of X, we call S a semiring of
sets when (i) ∅ ∈ S , (ii) if A and B belong to S then A ∩ B ∈ S , and (iii)
if A and B belong to S then there are pairwise disjoint C1, . . . , Cn ∈ S such
that

A \B =

n⋃
i=1

Ci.

If S is a semiring of subsets of a set X, we call S a semialgebra of sets
when X ∈ S . One proves that if S is a semialgebra, then the collection A of
all finite unions of elements of S is equal to the algebra generated by S , and
that each element of A is equal to a finite union of pairwise disjoint elements
of S .3

4 Cylinder sets

Suppose that {(Ωi,Fi, Pi) : i ∈ I} is a nonempty collection of probability spaces
and let

Ω =
∏
i∈I

Ωi.

If Ai ∈ Fi for each i ∈ I and {i ∈ I : Ai ̸= Ωi} is finite, we call

A =
∏
i∈I

Ai

a cylinder set. Let C be the collection of all cylinder sets. One checks that C
is a semialgebra of sets.4

2Karl Stromberg, Probability for Analysts, p. 52, Theorem A3.6.
3V. I. Bogachev, Measure Theory, volume I, p. 8, Lemma 1.2.14.
4S. J. Taylor, Introduction to Measure and Integration, p. 136, §6.1, Lemma.
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Lemma 2. Suppose that P : C → [0, 1] is a function such that

∞∑
n=1

P (An) = 1

whenever An are pairwise disjoint elements of C whose union is equal to Ω.
Then there is a unique probability measure on σ(C ) whose restriction to C is
equal to P .

Proof. Let A be the collection of all finite unions of cylinder sets. Because C is a
semialgebra of sets, A is the algebra of sets generated by C , and any element of
A is equal to a finite union of pairwise disjoint elements of C . Let A ∈ A . There
are pairwise disjoint B1, . . . , Bj ∈ C whose union is equal to A. Suppose also
that {Ci} is a countable subset of C with pairwise disjoint members whose union
is equal to A. Moreover, as Ω\A ∈ A there are pairwise disjointW1, . . . ,Wp ∈ C
such that Ω \ A =

⋃p
i=1 Wi. On the one hand, W1, . . . ,Wp, B1, . . . , Bj are

pairwise disjoint cylinder sets with union Ω, so

j∑
i=1

P (Bi) +

p∑
i=1

P (Wi) = 1.

On the other hand, W1, . . . ,Wp, C1, C2, . . . are pairwise disjoint cylinder sets
with union Ω, so

∞∑
i=1

P (Ci) +

p∑
i=1

P (Wi) = 1.

Hence,
j∑

i=1

P (Bi) =

∞∑
i=1

P (Ci);

this conclusion does not involve W1, . . . ,Wp. Thus it makes sense to define τ(A)
to be this common value, and this defines a function τ : A → [0, 1]. For C ∈ C ,
τ(C) = P (C), i.e. the restriction of τ to P is equal to C .

If {An} is a countable subset of A whose members are pairwise disjoint and
A =

⋃∞
n=1 An ∈ A , for each n let Cn,1, . . . , Cn,j(n) ∈ C be pairwise disjoint

cylinder sets with union An. Then

{Cn,i : n ≥ 1, 1 ≤ i ≤ j(n)}

is a countable subset of C whose elements are pairwise disjoint and with union
A, so

τ(A) =

∞∑
n=1

j(n)∑
i=1

P (Cn,i).

But for each n,

τ(An) =

j(n)∑
i=1

P (Cn,i),
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so

τ(A) =

∞∑
n=1

τ(An).

This shows that τ : A → [0, 1] is a measure. Then applying Hopf’s extension
theorem, we get that there is a unique measure µ : σ(A ) → [0, 1] whose re-
striction to A is equal to τ . It is apparent that the σ-algebra generated by a
semialgebra is equal to the σ-algebra generated by the algebra generated by the
semialgebra, so σ(A ) = σ(C ). Because the restriction of τ to C is equal to P ,
the restriction of µ to C is equal to P . Now suppose that ν : σ(A ) → [0, 1] is
a measure whose restriction to C is equal to P . For A ∈ A , there are disjoint
C1, . . . , Cn ∈ C with A =

⋃n
i=1 Ci. Then

ν(A) =

n∑
i=1

ν(Ci) =

n∑
i=1

P (Ci) =

n∑
i=1

µ(Ci) = µ(A),

showing that the restriction of ν to A is equal to the restriction of µ to A , from
which it follows that ν = µ.

5 Product measures

Suppose that {(Ωi,Fi, Pi) : i ∈ I} is a nonempty collection of probability spaces.
The product σ-algebra is σ(C ), the σ-algebra generated by the cylinder sets.
We define P : C → [0, 1] by

P (A) =
∏
i∈IA

Pi(Ai) =
∏
i∈I

Pi(Ai),

for A ∈ C and with IA = {i ∈ I : Ai ̸= Ωi}, which is finite.

Lemma 3. Suppose that I is the set of positive integers. If {An} is a countable
subset of C with pairwise disjoint elements whose union is equal to Ω, then

∞∑
n=1

P (An) = 1.

Proof. For each k ≥ 1, there is some ik and Ak,1 ∈ F1, . . . , Ak,ik ∈ Fik such
that

Ak =

∞∏
i=1

Ak,i,

with Ak,i = Ωi for i > ik. Let m ≥ 1, let x = (xi) ∈ Am, and let n ≥ 1. If
n = m, (

im∏
i=1

χAn,i(xi)

)(∏
i>im

Pi(An,i)

)
= 1 = δm,n.
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If m ̸= n and yi ∈ Ωi for each i > im and we set yi = xi for 1 ≤ i ≤ im, then
because Am and An are disjoint and y ∈ Am, we have y ̸∈ An and therefore
there is some i, 1 ≤ i ≤ in, such that yi ̸∈ An,i. Thus(

im∏
i=1

χAn,i(xi)

)(∏
i>im

χAn,i(yi)

)
=

∞∏
i=1

χAn,i(yi) = 0. (1)

Either in ≤ im or in > im. In the case in ≤ im we have An,i = Ωi for i > im
and thus (

im∏
i=1

χAn,i
(xi)

)(∏
i>im

χAn,i
(yi)

)
=

im∏
i=1

χAn,i
(xi),

hence by (1),(
im∏
i=1

χAn,i(xi)

)(∏
i>im

Pi(An,i)

)
=

im∏
i=1

χAn,i(xi) = 0 = δm,n.

In the case in > im, we have An,i = Ωi for i > in and thus(
im∏
i=1

χAn,i
(xi)

)(∏
i>im

χAn,i
(yi)

)
=

(
im∏
i=1

χAn,i
(xi)

)(
in∏

i=im+1

χAn,i
(yi)

)
,

hence by (1) we have that for yi ∈ Ωi, i > im,(
im∏
i=1

χAn,i(xi)

)(
in∏

i=im+1

χAn,i(yi)

)
= 0.

Therefore, integrating over Ωi for i = im + 1, . . . , in,(
im∏
i=1

χAn,i(xi)

)(
in∏

i=im+1

Pi(An,i)

)
= 0,

so (
im∏
i=1

χAn,i
(xi)

)(∏
i>im

Pi(An,i)

)
= 0 = δm,n.

We have thus established that for any m ≥ 1, x ∈ Am, and n ≥ 1,(
im∏
i=1

χAn,i(xi)

)(∏
i>im

Pi(An,i)

)
= δm,n. (2)

Suppose by contradiction that

∞∑
n=1

P (An) < 1,
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i.e.
∞∑

n=1

∞∏
i=1

Pi(An,i) < 1. (3)

If
∞∑

n=1

χAn,1
(x1)

∞∏
i=2

Pi(An,i) = 1

for all x1 ∈ Ω1, then integrating over Ω1 we contradict (3). Hence there is some
x1 ∈ Ω1 such that

∞∑
n=1

χAn,1(x1)

∞∏
i=2

Pi(An,i) < 1.

Suppose by induction that for some j ≥ 1, x1 ∈ Ω1, . . . , xj ∈ Ωj and

∞∑
n=1

(
j∏

i=1

χAn,i(xi)

) ∞∏
i=j+1

Pi(An,i)

 < 1.

If
∞∑

n=1

(
j+1∏
i=1

χAn,i
(xi)

) ∞∏
i=j+2

Pi(An,i)

 = 1

for all xj+1 ∈ Ωj+1, then integrating over Ωj+1 we contradict (3). Hence there
is some xj+1 ∈ Ωj+1 such that

∞∑
n=1

(
j+1∏
i=1

χAn,i
(xi)

) ∞∏
i=j+2

Pi(An,i)

 < 1.

Therefore, by induction we obtain that for any j, there are x1 ∈ Ω1, . . . , xj ∈ Ωj

such that
∞∑

n=1

(
j∏

i=1

χAn,i
(xi)

) ∞∏
i=j+1

Pi(An,i)

 < 1. (4)

Write x = (x1, x2, . . .) ∈ Ω. Because Ω =
⋃∞

m=1 Am, there is some m for which
x ∈ Am. For j = im, (4) states

∞∑
n=1

(
im∏
i=1

χAn,i
(xi)

)(∏
i>im

Pi(An,i)

)
< 1.

But (2) tells us

∞∑
n=1

(
im∏
i=1

χAn,i
(xi)

)(∏
i>im

Pi(An,i)

)
=

∞∑
n=1

δm,n = 1,
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a contradiction. Therefore,
∞∑

n=1

P (An) = 1,

proving the claim.

Lemma 4. Suppose that I is an uncountable set. If {An} is a countable subset
of C with pairwise disjoint elements whose union is equal to Ω, then

∞∑
n=1

P (An) = 1.

Proof. For each n, there are An,i ∈ Fi with An,i = Ωi, and In = {i ∈ I :
Ai ̸= Ωi} is finite. Then J =

⋃∞
n=1 In is countable. Let ΩJ =

∏
i∈J Ωi, let

CJ be the collection of cylinder sets corresponding to the probability spaces
{(Ωi,Fi, Pi) : i ∈ J}, and define PJ : CJ → [0, 1] by

PJ(B) =
∏
i∈JB

Pi(Bi) =
∏
i∈J

Pi(Bi),

for B ∈ CJ and with JB = {i ∈ J : Bi ̸= Ωi}, which is finite. PJ satisfies

PJ(B) = P

B ×
∏

i∈I\J

Ωi

 , B ∈ CJ .

Let Bn =
∏

i∈J An,i, i.e. An = Bn ×
∏

i∈I\J An,i. Then {Bn} is a countable
subset of CJ with pairwise disjoint elements whose union is equal to ΩJ , and
applying Lemma 3 we get that

∞∑
n=1

PJ(Bn) = 1,

and therefore
∞∑

n=1

P (An) = 1.

Now by Lemma 2 and the above lemma, there is a unique probability measure
µ on σ(C ) whose restriction to C is equal to P . That is, when {(Ωi,Fi, Pi) : i ∈
I} are probability spaces and C is the collection of cylinder sets corresponding
to these probability spaces, with Ω =

∏
i∈I Ωi and P : C → [0, 1] defined by

P (A) =
∏
i∈I

P (Ai)
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for A =
∏

i∈I Ai ∈ C , then there is a unique probability measure µ on the the
product σ-algebra such that µ(A) = P (A) for each cylinder set A. We call µ
the product measure, and write⊗

i∈I

Fi = σ(C )

and ∏
i∈I

Pi = µ.
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