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1 Measure and integration theory

Let % be the Borel o-algebra of R, and let % be the Borel o-algebra of
[~00,00] = RU {—00,00}: the elements of # are those subsets of R of the
form B, BU{—o0}, BU {0}, BU{—00, 0}, with B € A.

Let (X, 47, u) be a measure space. It is a fact that if f, is a sequence of
@/ — % measurable functions then sup,, f, and inf,, f, are & — % measurable,
and thus if f,, is a sequence of &/ — 2 measurable functions that converge
pointwise to a function f : X — R, then f is @/ — % measurable.r If fi,..., f,
are o/ — % measurable, then so are f; V---V f, and fi A --- A f,, and a
function f : X — R is &/ — % measurable if and only if both f* = fVv 0
and f~ = —(f A0) are &/ — 2% measurable. In particular, if f is &/ — %
measurable then so is |f| = f* + f~.

A simple function is a function f : X — R that is &/ — % measurable and
whose range is finite. Let F = FE () be the collection of nonnegative simple
functions. It is straightforward to prove that

wveEFE a>0 = au,u+v, u-v, uVv, uANv e E.
Define I, : E — [0, 00] by
Illu = Zalu(Al)a
i=1

where u has range {a1,...,a,} and A; = u~!(a;). One proves that I, : E —
[0, 0] is positive homogeneous, additive, and order preserving.?
It is a fact® that if u, is a nondecreasing sequence in E and u € E then

u<supu, = IT,u<suplyu,.
n n

It follows that if u, and v, are sequences in E then

sup u, =supv, = supl,u, =supl,v,. (1)
n n n n

Heinz Bauer, Measure and Integration Theory, p. 52, Corollary 9.7.
2Heinz Bauer, Measure and Integration Theory, pp. 55-56, §10.
3Heinz Bauer, Measure and Integration Theory, p. 57, Theorem 11.1.



Define E* = E*(&) to be the set of all functions f : X — [0, oc] for which
there is a nondecreasing sequence u, in E satisfying sup, u, = f, in other
words, there is a sequence w, in E satisfying w, 1 f. From (1), for f € E*
and sequences u,,v, € E with sup,, v, = f and sup, v, = f, it holds that
sup,, I, un = sup,, I,v,. Also, if v € E then u, = u is a nondecreasing sequence
in F with v = sup, un, so u € E*. Then it makes sense to extend I, from
E — [0,00] to E* — [0,00] by defining I,,f = sup,, I,u,,. One proves* that

vaGE*yaZO = afaf+gvfgvagang€E*

and that I, : E* — [0, 00 is positive homogeneous, additive, and order preserv-
ing.

The monotone convergence theorem® states that if f,, is a sequence in
E* then sup,, f, € E* and

1, (sup fn) =sup I, fn.

We now prove a characterization of E*.5

Theorem 1. E* is equal to the set of functions X — [0, 00| that are o — %
measurable.

Proof. If f € E*, then there is a sequence u,, in E with u,, T f. Because each
u,, is measurable &/ — %, so is f.

Now suppose that f : X — [0,00] is &/ — % measurable. For n > 1 and
0<t<n2™—1let

Ain ={fZ27"}n{f <(i+ 127"} ={27" < f < (i+1)27"},
and for 7 = n2" let

Because f is &/ — % measurable, the sets A;, belong to <. For each n, the
sets Ao n, ... Apan_1n, Anon n are pairwise disjoint and their union is equal to
X. It is apparent that

Ain = Azint1 U Azit1 nt, 0<i<n2"—1. (2)

Define

n2™

Un = 274, )
=0

which belongs to E. For x € X, either f(z) = oo or 0 < f(z) < co. In the first
case, un(x) = n for all n > 1. In the second case, u,(z) < f(x) < up(x) +277
for all n > f(z). Therefore u,(z) 1 f(x) as n — 0o, and because this is true for
each z € X, this means u, T f and so f € E*. O

4Heinz Bauer, Measure and Integration Theory, pp. 5859, §11.
5Heinz Bauer, Measure and Integration Theory, p. 59, Theorem 11.4.
SHeinz Bauer, Measure and Integration Theory, p. 61, Theorem 11.6.



So far we have defined I, : E* — [0, 00]. Suppose that f : X — Ris o — %
measurable. Then f*, f~: X — [0,0c] are &/ — % measurable so by Theorem
1, f*t,f~ € B*. Then I,f*,1,f~ € [0,00]. We say that a function f: X — R
is p-integrable if it is &/ — 2 measurable and I,,f* < oo and I,f~ < oo.
One checks that a function f : X — R is u-integrable if and only if it is &/ — %
measurable and I,,|f| < oo. If f : X — R is p-integrable, we now define I, f € R
by

Lf=If"—1.,f".

For example, if u(X) < oo and S is a subset of X that does not belong to
o/, define f: X - Rby f=1g5—1x\s. Then f* =15 and f~ = 1x\g, and
thus f is not &/ — % measurable, so it is not y-integrable. But |f| = 1 belongs
to £, and I,|f| = u(X) < oo by hypothesis, showing that |f| is p-integrable
while f is not.

One proves that if f,g : X — R are p-integrable and o € R then of is
p-integrable and

IIJ«(af) = alﬂf7

if f 4 g is defined on all X then f + g is u-integrable and

L(f+g)=1.f+1.9,

and f Vg, f A g are p-integrable.” Furthermore, I,, is order preserving.

Let f : X — C be a function and write f = u+iv. One proves that f is Borel
measurable (i.e. &/ — B¢ measurable), if and only if v and v are measurable
o/ — 9B. We define f to be p-integrable if both u and v are p-integrable, and
define

I.f=ITu+il,v.

2 2

Let (X, o, 1) be a measure space and for 1 < p < oo let £P(u) be the collection
of Borel measurable functions f : X — C such that |f|P is p-integrable. For
complex a, b, because z — zP is convex we have by Jensen’s inequality

a+b
2

P 1.\" 1 1 1

<[z Z < ZlalP + Z1plP = Z(lal? P
"< (Glal+ 5101) < gl S = S0l + o),
so |a + bjP < 2P~ 1(|a|P + |b|P). Thus if f,g € £P(u) then

|f +gl” <227 fP +gl?),

which implies that Z?(u) is a linear space.
For Borel measurable f : X — C define

1/p
1l = ( /. fl”du> .

"Heinz Bauer, Measure and Integration Theory, p. 65, Theorem 12.3.




For f,g € £P(u), by Holder’s inequality, with % + ; =1 (for which p’ = ﬁ),

I+ gl _/ AN+ g 1du+/ 9l1 + gl dy

<I£llzo I +9lP~ 1HLp/ + gl I1F + g7~ L
= I fllzo IS + 9l + gl 1 +9l70"

which implies that || f 4+ g||.» < [|fll» + |9l -, and hence ||-||,, is a seminorm
on ZLP(u).

Let AP (1) be the set of those f € £ (u) such that || f||,, = 0. AP(u) is a
linear subspace of .Z?(u), and we define

LP(p) = 22 [ AP () ={f + AP (n): e LP(w)}

LP(pu) is a normed linear space with the norm ||-||,,.

It is a fact that if V is a normed linear space then V is complete if and
only if each absolutely convergent series in V' converges in V. Suppose that
fr is a sequence in ZP(u) with > o, || fll» < co. For n > 1 let g,(z) =
(X h_y |fx(@)])" and define g : X — [0, 00] by

7) = (Zm(x)) = Tim ga(x),
k=1

which is & — 2 measurable, being the pointwise limit of a sequence of functions
each of which is &/ — % measurable. Because g1 < go < ---, by the monotone

convergence theorem,
/gdu: lim / gndp.
X n—oo X

1/p n e’}
(/ gndu) = SZHf]fHLPSZ”kaLP}
X k=1 k=1

which implies that fx gdp < 0o, meaning that g : X — [0, oo is integrable. The
fact that g is integrable implies p(E) = 0, where E = {z € X : g(z) = o0} € .
For z € X \ E, > p—, |fx(x)| < co and because C is complete this implies that
Y re fr(z) € C, and so it makes sense to define f: X — C by

LP

f(z) =1x\p(z ka

which is Borel measurable. Furthermore, |f|? < g, and because g is integrable
this implies that f € ZP(u). Forz € X \ E,

> frl@) -
k=1

lim
n—o0



and
n

Y fule) = flx)

k=1

<g(x),

so by the dominated convergence theorem,®

p

lim dp = 0.
n—oo X

S fula) - £(x)
k=1

Because z — '/ is continuous this implies
n

S et

k=1

Hence, if f; is a sequence in LP(u) such that > .2, || fxll» < co then there is
some f € LP(u) such that > ;'_, fr — f in the norm |[|-||;,. This implies that
LP?(u) is a Banach space.

We say that the o-algebra <7 is countably generated if there is a countable
subset € of & such that &/ = o(%) and we say that a topological space is
separable if there exists a countable dense subset of it. It can be proved that
if o/ is countably generated and p is o-finite, then for 1 < p < oo there is a
countable collection of simple functions that is dense in LP(u), showing that
LP(u) is separable.”

=0.
Lr

lim
n— oo

Theorem 2. Let (X, o7, 1) be a measure space and let 1 < p < co. LP(u) with
the norm |-, is a Banach space, and if </ is countably generated and p is
o-finite then LP(u) is separable.

For f,g € ZL?(u), let

(f:9) 2 :/Xf'?d,u-

This is an inner product on L?(p), and thus L?(u) is a Hilbert space.

3 Product measures

Let (X1,,p1) and (X1, 94, 11) be measure spaces and let o) ® o be the
product o-algebra. For Q C X1 x X,, write

Qz, = {12 € Xo: (x1,22) € Q}, Qz, = {71 € X1 : (21,22) € Q}.

One proves that if p; and pp are o-finite, then for each Q € @ ® o4 the
function 1 — pe(Qy,) is @ — % measurable and the function zo — 11 (Q.,)

8Heinz Bauer, Measure and Integration Theory, p. 83, Theorem 15.6.
9Donald L. Cohn, Measure Theory, second ed., p. 102, Proposition 3.4.5.



is oy — % measurable.'® If ;11 and psy are o-finite, one proves'! that there is a
unique measure u : 2 ® o/ — [0,00] that satisfies

(AL x Ag) = pn(Ar1)pa(A2),  Ar € 4, Ay € .

The measure p satisfies

Q) = /X 2@ Y (1) = / 11 (Qus)djia()

X2

for Q € 94 ® 9, and is itself o-finite. We write p = 1 ® pe, and call p the
product measure of y; and pus.
Let X’ be a set and let f: X7 x Xo — X’ be a function. For z; € X3, define
fml : X2 — X’ by
foi (22) = f(21,22), T2 € Xo

and for z9 € Xo, define f,, : X; = X' by

f$2(m1):f(xlax2)v .’E1€X1.
For Q) C X1 x Xo,

(1Q)z, = 1q,, ; (1Q)z> = 1@, -

It is straightforward to prove that if (X', &/’) is a measurable space and f :
(X1 x Xo, 9 @ o) — (X', /') is measurable, then for each z; € X; the
function f,, : Xo — X’ is measurable o% — &/’ and for each x5 € X, the
function f,, : X; — X’ is measurable &} — &7".12

Tonelli’s theorem?? states that if (X1, %%, u1) and (X1, .94, 1) are o-finite
measure spaces and f : X1 X Xo — [0,00] is & ® o — 2 measurable, then
the functions

To Saodptn, Ty fardp
X1 XZ

are oy — 9 measurable and /] — % measurable respectively, and

/ fd(p ® p2)
X1 X X2

_ /X 2 ( 5 fmdm) dpis (o) (3)

-/ ( fmdm)dmxl).
X1 Xo

Fubini’s theorem™ states that if (X1, 94, 1) and (Xz, b, i2) are o-finite
measure spaces and f : X7 X Xo — R is pu; ® po-integrable then there is some

10Heinz Bauer, Measure and Integration Theory, p. 135, Lemma 23.2.
1 Heinz Bauer, Measure and Integration Theory, p. 136, Theorem 23.3.
12Heinz Bauer, Measure and Integration Theory, p. 138, Lemma 23.5.
13Heinz Bauer, Measure and Integration Theory, p. 138, Theorem 23.6.
4 Heinz Bauer, Measure and Integration Theory, p. 139, Corollary 23.7.



Ay € @ with pu1(Ap) = 0 such that for x1 € X7 \ A the function f,, : Xo = R
is po-integrable, and there is some A; € o with ps(Az) = 0 such that for
w3 € X3\ Ay the function f,, : X; — R is yy-integrable. Furthermore, define
F; : Xy — R by Fl(ml) = sz fmldug for z1 € X3 \ A1 and Fl(Il) = 0 for
71 € Ay, and define Fy : Xo — R by Fy(z2) = le Juodpy for zo € X5\ Ag
and Fy(z2) = 0 for o € As. The functions F; and Fy are pi-integrable and
a-integrable respectively, and

/ fd(pr @ p2) = | Fidp =/ Fadps.
X1><X2 Xl X2

Suppose that (X1, .4, pu1) and (Xo, o, ug) are o-finite measure spaces. For
e: X7 —>Cand f: Xy ->C,definee® f: X7 x Xo - C by

(e® f)(z1,22) = e(z1) f(22),

which is Borel measurable X; x Xo — C if e and f are Borel measurable. If
e € L?(u1) and f € £?(uz), then by Tonelli’s theorem e ® f : X1 x Xy — C
belongs to .Z2(u; ® pg). For e,e’ € L?(uy) and f, f' € £?(us), by Fubini’s
theorem,

(€@ f.e @ f) L2 om)

- / o) f (22) @) F@a)d( © pa) (@1, o)
X1 xXo

:/X2 (/Xl e(l'l)el(l‘l)d,tn(xl)) f(x2)f/($2)d,u2($2)
= <e?el>L2(#1) : <f7 fI>L2(#2) .

Therefore, if E C £?(p1) is an orthonormal set in L?(pu1) and F C Z2(uo) is
an orthonormal set in L?(jz), then {e® f:e € E, f € F} C £?(u1 ® p2) is an
orthonormal set in L2(u; ® uz).

Theorem 3. Let (X, 4, p1) and (Xa, o4, 1) be o-finite measure spaces and
suppose that L*(p1) and L*(u2) are separable. If E C £?(u1) is an orthonormal
basis for L*(u1) and F C £*(p2) is an orthonormal basis for L*(uz), then
®={e®f:e€ E,feF} C L% @ u) is an orthonormal basis for
L2 (1 @ pa).

Proof. To show that ® is an orthonormal basis for LQ(,ul ® pe) it suffices to
prove that if h € Z?(u; ® pe) belongs to the orthogonal complement of ®

then h € A 2(uy ® p2). Thus, suppose that h € £?(u; ® p2) and that
(h,e® f>L2(u1®u2) =0 foralle € E, f € F. Using Fubini’s theorem,

/X1 e(x1) (/Xz hzl(mz)f(xg)dNQ(xz)) dps (1) = 0.

Because this is true for all e € E and F is dense in L?(u), it follows that there
is some Ay € # with pi(Ay) = 0 such that [\ hy, fdus =0 for 21 ¢ Ay. Let



Ay =Ujep Ay, for which pi1(Ar) = 0. If 21 € Ay then sz hy, fdpg = 0 for all
f € F, and because F is dense in L?(u2) this implies that h,, = 0 po-almost
everywhere. Then

[ ke = [ (/ Ihml?dm)dm(xl)
X1><X2 Xl X2
-/ (/ |hx1|2dlt2>du1(l’1)
X1\ A1 Xs

:O’

which implies that h = 0 p1 ® po-almost everywhere. O



