Orthonormal bases for product measures

Jordan Bell

October 22, 2015

1 Measure and integration theory

Let \mathscr{B} be the Borel σ -algebra of \mathbb{R} , and let $\overline{\mathscr{B}}$ be the Borel σ -algebra of $[-\infty,\infty] = \mathbb{R} \cup \{-\infty,\infty\}$: the elements of $\overline{\mathscr{B}}$ are those subsets of \mathbb{R} of the form $B, B \cup \{-\infty\}, B \cup \{\infty\}, B \cup \{-\infty,\infty\}$, with $B \in \mathscr{B}$.

Let (X, \mathscr{A}, μ) be a measure space. It is a fact that if f_n is a sequence of $\mathscr{A} \to \overline{\mathscr{B}}$ measurable functions then $\sup_n f_n$ and $\inf_n f_n$ are $\mathscr{A} \to \overline{\mathscr{B}}$ measurable, and thus if f_n is a sequence of $\mathscr{A} \to \overline{\mathscr{B}}$ measurable functions that converge pointwise to a function $f: X \to \overline{\mathbb{R}}$, then f is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable.¹ If f_1, \ldots, f_n are $\mathscr{A} \to \overline{\mathscr{B}}$ measurable, then so are $f_1 \vee \cdots \vee f_n$ and $f_1 \wedge \cdots \wedge f_n$, and a function $f: X \to \overline{\mathbb{R}}$ is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable if and only if both $f^+ = f \vee 0$ and $f^- = -(f \wedge 0)$ are $\mathscr{A} \to \overline{\mathscr{B}}$ measurable. In particular, if f is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable then so is $|f| = f^+ + f^-$.

A simple function is a function $f: X \to \mathbb{R}$ that is $\mathscr{A} \to \mathscr{B}$ measurable and whose range is finite. Let $E = E(\mathscr{A})$ be the collection of nonnegative simple functions. It is straightforward to prove that

$$u, v \in E, \ \alpha \ge 0 \quad \Rightarrow \quad \alpha u, \ u + v, \ u \cdot v, \ u \lor v, \ u \land v \in E.$$

Define $I_{\mu}: E \to [0, \infty]$ by

$$I_{\mu}u = \sum_{i=1}^{n} a_i \mu(A_i),$$

where u has range $\{a_1, \ldots, a_n\}$ and $A_i = u^{-1}(a_i)$. One proves that $I_{\mu} : E \to [0, \infty]$ is positive homogeneous, additive, and order preserving.²

It is a fact³ that if u_n is a nondecreasing sequence in E and $u \in E$ then

$$u \leq \sup_{n} u_n \quad \Rightarrow \quad I_{\mu} u \leq \sup_{n} I_{\mu} u_n.$$

It follows that if u_n and v_n are sequences in E then

$$\sup_{n} u_{n} = \sup_{n} v_{n} \quad \Rightarrow \quad \sup_{n} I_{\mu} u_{n} = \sup_{n} I_{\mu} v_{n}. \tag{1}$$

¹Heinz Bauer, Measure and Integration Theory, p. 52, Corollary 9.7.

²Heinz Bauer, Measure and Integration Theory, pp. 55–56, §10.

³Heinz Bauer, Measure and Integration Theory, p. 57, Theorem 11.1.

Define $E^* = E^*(\mathscr{A})$ to be the set of all functions $f: X \to [0, \infty]$ for which there is a nondecreasing sequence u_n in E satisfying $\sup_n u_n = f$, in other words, there is a sequence u_n in E satisfying $u_n \uparrow f$. From (1), for $f \in E^*$ and sequences $u_n, v_n \in E$ with $\sup_n u_n = f$ and $\sup_n v_n = f$, it holds that $\sup_n I_{\mu}u_n = \sup_n I_{\mu}v_n$. Also, if $u \in E$ then $u_n = u$ is a nondecreasing sequence in E with $u = \sup_n u_n$, so $u \in E^*$. Then it makes sense to extend I_{μ} from $E \to [0, \infty]$ to $E^* \to [0, \infty]$ by defining $I_{\mu}f = \sup_n I_{\mu}u_n$. One proves⁴ that

$$f,g \in E^*, \ \alpha \ge 0 \quad \Rightarrow \quad \alpha f, \ f+g, \ f \cdot g, \ f \lor g, \ f \land g \in E^*$$

and that $I_{\mu}: E^* \to [0, \infty]$ is positive homogeneous, additive, and order preserving.

The monotone convergence theorem⁵ states that if f_n is a sequence in E^* then $\sup_n f_n \in E^*$ and

$$I_{\mu}\left(\sup_{n}f_{n}\right) = \sup_{n}I_{\mu}f_{n}$$

We now prove a characterization of E^* .⁶

Theorem 1. E^* is equal to the set of functions $X \to [0, \infty]$ that are $\mathscr{A} \to \overline{\mathscr{B}}$ measurable.

Proof. If $f \in E^*$, then there is a sequence u_n in E with $u_n \uparrow f$. Because each u_n is measurable $\mathscr{A} \to \overline{\mathscr{B}}$, so is f.

Now suppose that $f: X \to [0,\infty]$ is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable. For $n \ge 1$ and $0 \le i \le n2^n - 1$ let

$$A_{i,n} = \{ f \ge i2^{-n} \} \cap \{ f < (i+1)2^{-n} \} = \{ i2^{-n} \le f < (i+1)2^{-n} \},\$$

and for $i = n2^n$ let

$$A_{i,n} = \{ f \ge n \}.$$

Because f is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable, the sets $A_{i,n}$ belong to \mathscr{A} . For each n, the sets $A_{0,n}, \ldots A_{n2^n-1,n}, A_{n2^n,n}$ are pairwise disjoint and their union is equal to X. It is apparent that

$$A_{i,n} = A_{2i,n+1} \cup A_{2i+1,n+1}, \qquad 0 \le i \le n2^n - 1.$$
(2)

Define

$$u_n = \sum_{i=0}^{n2^n} i2^{-n} \mathbf{1}_{A_{i,n}},$$

which belongs to E. For $x \in X$, either $f(x) = \infty$ or $0 \le f(x) < \infty$. In the first case, $u_n(x) = n$ for all $n \ge 1$. In the second case, $u_n(x) \le f(x) < u_n(x) + 2^{-n}$ for all n > f(x). Therefore $u_n(x) \uparrow f(x)$ as $n \to \infty$, and because this is true for each $x \in X$, this means $u_n \uparrow f$ and so $f \in E^*$.

⁴Heinz Bauer, Measure and Integration Theory, pp. 58–59, §11.

⁵Heinz Bauer, Measure and Integration Theory, p. 59, Theorem 11.4.

⁶Heinz Bauer, Measure and Integration Theory, p. 61, Theorem 11.6.

So far we have defined $I_{\mu}: E^* \to [0, \infty]$. Suppose that $f: X \to \overline{\mathbb{R}}$ is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable. Then $f^+, f^-: X \to [0, \infty]$ are $\mathscr{A} \to \overline{\mathscr{B}}$ measurable so by Theorem 1, $f^+, f^- \in E^*$. Then $I_{\mu}f^+, I_{\mu}f^- \in [0, \infty]$. We say that a function $f: X \to \overline{\mathbb{R}}$ is μ -integrable if it is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable and $I_{\mu}f^+ < \infty$ and $I_{\mu}f^- < \infty$. One checks that a function $f: X \to \overline{\mathbb{R}}$ is μ -integrable if and only if it is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable and $I_{\mu}|f| < \infty$. If $f: X \to \overline{\mathbb{R}}$ is μ -integrable, we now define $I_{\mu}f \in \mathbb{R}$ by

$$I_{\mu}f = I_{\mu}f^{+} - I_{\mu}f^{-}.$$

For example, if $\mu(X) < \infty$ and S is a subset of X that does not belong to \mathscr{A} , define $f: X \to \mathbb{R}$ by $f = 1_S - 1_{X \setminus S}$. Then $f^+ = 1_S$ and $f^- = 1_{X \setminus S}$, and thus f is not $\mathscr{A} \to \overline{\mathscr{B}}$ measurable, so it is not μ -integrable. But |f| = 1 belongs to E, and $I_{\mu}|f| = \mu(X) < \infty$ by hypothesis, showing that |f| is μ -integrable while f is not.

One proves that if $f,g:X\to\overline{\mathbb{R}}$ are μ -integrable and $\alpha\in\mathbb{R}$ then αf is μ -integrable and

$$I_{\mu}(\alpha f) = \alpha I_{\mu} f,$$

if f + g is defined on all X then f + g is μ -integrable and

$$I_{\mu}(f+g) = I_{\mu}f + I_{\mu}g,$$

and $f \lor g, f \land g$ are μ -integrable.⁷ Furthermore, I_{μ} is order preserving.

Let $f: X \to \mathbb{C}$ be a function and write f = u + iv. One proves that f is Borel measurable (i.e. $\mathscr{A} \to \mathscr{B}_{\mathbb{C}}$ measurable), if and only if u and v are measurable $\mathscr{A} \to \mathscr{B}$. We define f to be μ -integrable if both u and v are μ -integrable, and define

$$I_{\mu}f = I_{\mu}u + iI_{\mu}v.$$

$2 \quad \mathscr{L}^2$

Let (X, \mathscr{A}, μ) be a measure space and for $1 \leq p < \infty$ let $\mathscr{L}^p(\mu)$ be the collection of Borel measurable functions $f : X \to \mathbb{C}$ such that $|f|^p$ is μ -integrable. For complex a, b, because $x \mapsto x^p$ is convex we have by Jensen's inequality

$$\left|\frac{a+b}{2}\right|^{p} \le \left(\frac{1}{2}|a| + \frac{1}{2}|b|\right)^{p} \le \frac{1}{2}|a|^{p} + \frac{1}{2}|b|^{p} = \frac{1}{2}(|a|^{p} + |b|^{p}),$$

so $|a+b|^p \leq 2^{p-1}(|a|^p+|b|^p)$. Thus if $f,g \in \mathscr{L}^p(\mu)$ then

$$|f + g|^p \le 2^{p-1}(|f|^p + |g|^p),$$

which implies that $\mathscr{L}^p(\mu)$ is a linear space.

For Borel measurable $f: X \to \mathbb{C}$ define

$$\|f\|_{L^p} = \left(\int_X |f|^p d\mu\right)^{1/p}$$

⁷Heinz Bauer, *Measure and Integration Theory*, p. 65, Theorem 12.3.

For $f, g \in \mathscr{L}^p(\mu)$, by Hölder's inequality, with $\frac{1}{p} + \frac{1}{p'} = 1$ (for which $p' = \frac{p}{p-1}$),

$$\begin{split} \|f+g\|_{L^{p}}^{p} &\leq \int_{X} |f| |f+g|^{p-1} d\mu + \int_{X} |g| |f+g|^{p-1} d\mu \\ &\leq \|f\|_{L^{p}} \left\| |f+g|^{p-1} \right\|_{L^{p'}} + \|g\|_{L^{p}} \left\| |f+g|^{p-1} \right\|_{L^{p'}} \\ &= \|f\|_{L^{p}} \left\| f+g \right\|_{L^{p}}^{p-1} + \|g\|_{L^{p}} \left\| f+g \right\|_{L^{p}}^{p-1}, \end{split}$$

which implies that $||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$, and hence $||\cdot||_{L^p}$ is a seminorm on $\mathscr{L}^p(\mu)$.

Let $\mathscr{N}^p(\mu)$ be the set of those $f \in \mathscr{L}^p(\mu)$ such that $||f||_{L^p} = 0$. $\mathscr{N}^p(\mu)$ is a linear subspace of $\mathscr{L}^p(\mu)$, and we define

$$L^p(\mu) = \mathscr{L}^p(\mu) / \mathscr{N}^p(\mu) = \{f + \mathscr{N}^p(\mu) : f \in \mathscr{L}^p(\mu)\}$$

 $L^p(\mu)$ is a normed linear space with the norm $\|\cdot\|_{L^p}$.

It is a fact that if V is a normed linear space then V is complete if and only if each absolutely convergent series in V converges in V. Suppose that f_k is a sequence in $\mathscr{L}^p(\mu)$ with $\sum_{k=1}^{\infty} ||f||_{L^p} < \infty$. For $n \ge 1$ let $g_n(x) = (\sum_{k=1}^n |f_k(x)|)^p$ and define $g: X \to [0, \infty]$ by

$$g(x) = \left(\sum_{k=1}^{\infty} |f_k(x)|\right)^p = \lim_{n \to \infty} g_n(x),$$

which is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable, being the pointwise limit of a sequence of functions each of which is $\mathscr{A} \to \overline{\mathscr{B}}$ measurable. Because $g_1 \leq g_2 \leq \cdots$, by the monotone convergence theorem,

$$\int_X gd\mu = \lim_{n \to \infty} \int_X g_n d\mu.$$

But

$$\left(\int_X g_n d\mu\right)^{1/p} = \left\|\sum_{k=1}^n |f_k|\right\|_{L^p} \le \sum_{k=1}^n \|f_k\|_{L^p} \le \sum_{k=1}^\infty \|f_k\|_{L^p},$$

which implies that $\int_X gd\mu < \infty$, meaning that $g: X \to [0, \infty]$ is integrable. The fact that g is integrable implies $\mu(E) = 0$, where $E = \{x \in X : g(x) = \infty\} \in \mathscr{A}$. For $x \in X \setminus E$, $\sum_{k=1}^{\infty} |f_k(x)| < \infty$ and because \mathbb{C} is complete this implies that $\sum_{k=1}^{\infty} f_k(x) \in \mathbb{C}$, and so it makes sense to define $f: X \to \mathbb{C}$ by

$$f(x) = 1_{X \setminus E}(x) \sum_{k=1}^{\infty} f_k(x),$$

which is Borel measurable. Furthermore, $|f|^p \leq g$, and because g is integrable this implies that $f \in \mathscr{L}^p(\mu)$. For $x \in X \setminus E$,

$$\lim_{n \to \infty} \left| \sum_{k=1}^n f_k(x) - f(x) \right|^p = 0$$

$$\sum_{k=1}^{n} f_k(x) - f(x) \bigg|^p \le g(x),$$

so by the dominated convergence theorem,⁸

$$\lim_{n \to \infty} \int_X \left| \sum_{k=1}^n f_k(x) - f(x) \right|^p d\mu = 0.$$

Because $x \mapsto x^{1/p}$ is continuous this implies

$$\lim_{n \to \infty} \left\| \sum_{k=1}^n f_k - f \right\|_{L^p} = 0$$

Hence, if f_k is a sequence in $L^p(\mu)$ such that $\sum_{k=1}^{\infty} \|f_k\|_{L^p} < \infty$ then there is some $f \in L^p(\mu)$ such that $\sum_{k=1}^n f_k \to f$ in the norm $\|\cdot\|_{L^p}$. This implies that $L^p(\mu)$ is a Banach space.

We say that the σ -algebra \mathscr{A} is **countably generated** if there is a countable subset \mathscr{C} of \mathscr{A} such that $\mathscr{A} = \sigma(\mathscr{C})$ and we say that a topological space is **separable** if there exists a countable dense subset of it. It can be proved that if \mathscr{A} is countably generated and μ is σ -finite, then for $1 \leq p < \infty$ there is a countable collection of simple functions that is dense in $L^p(\mu)$, showing that $L^p(\mu)$ is separable.⁹

Theorem 2. Let (X, \mathscr{A}, μ) be a measure space and let $1 \leq p < \infty$. $L^p(\mu)$ with the norm $\|\cdot\|_{L^p}$ is a Banach space, and if \mathscr{A} is countably generated and μ is σ -finite then $L^p(\mu)$ is separable.

For $f,g \in \mathscr{L}^2(\mu)$, let

$$\langle f,g\rangle_{L^2(\mu)} = \int_X f \cdot \overline{g} d\mu.$$

This is an inner product on $L^2(\mu)$, and thus $L^2(\mu)$ is a Hilbert space.

3 Product measures

Let $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_1, \mathscr{A}_1, \mu_1)$ be measure spaces and let $\mathscr{A}_1 \otimes \mathscr{A}_2$ be the product σ -algebra. For $Q \subset X_1 \times X_2$, write

$$Q_{x_1} = \{ x_2 \in X_2 : (x_1, x_2) \in Q \}, \qquad Q_{x_2} = \{ x_1 \in X_1 : (x_1, x_2) \in Q \}.$$

One proves that if μ_1 and μ_2 are σ -finite, then for each $Q \in \mathscr{A}_1 \otimes \mathscr{A}_2$ the function $x_1 \mapsto \mu_2(Q_{x_1})$ is $\mathscr{A}_1 \to \overline{\mathscr{B}}$ measurable and the function $x_2 \mapsto \mu_1(Q_{x_2})$

and

⁸Heinz Bauer, Measure and Integration Theory, p. 83, Theorem 15.6.

⁹Donald L. Cohn, *Measure Theory*, second ed., p. 102, Proposition 3.4.5.

is $\mathscr{A}_2 \to \overline{\mathscr{B}}$ measurable.¹⁰ If μ_1 and μ_2 are σ -finite, one proves¹¹ that there is a unique measure $\mu : \mathscr{A}_1 \otimes \mathscr{A}_2 \to [0, \infty]$ that satisfies

$$\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2), \qquad A_1 \in \mathscr{A}_1, A_2 \in \mathscr{A}_2.$$

The measure μ satisfies

$$\mu(Q) = \int_{X_1} \mu_2(Q_{x_1}) d\mu_1(x_1) = \int_{X_2} \mu_1(Q_{x_2}) d\mu_2(x_2)$$

for $Q \in \mathscr{A}_1 \otimes \mathscr{A}_2$, and is itself σ -finite. We write $\mu = \mu_1 \otimes \mu_2$, and call μ the **product measure of** μ_1 and μ_2 .

Let X' be a set and let $f: X_1 \times X_2 \to X'$ be a function. For $x_1 \in X_1$, define $f_{x_1}: X_2 \to X'$ by

$$f_{x_1}(x_2) = f(x_1, x_2), \qquad x_2 \in X_2$$

and for $x_2 \in X_2$, define $f_{x_2} : X_1 \to X'$ by

$$f_{x_2}(x_1) = f(x_1, x_2), \qquad x_1 \in X_1.$$

For $Q \subset X_1 \times X_2$,

$$(1_Q)_{x_1} = 1_{Q_{x_1}}, \qquad (1_Q)_{x_2} = 1_{Q_{x_2}}.$$

It is straightforward to prove that if (X', \mathscr{A}') is a measurable space and f: $(X_1 \times X_2, \mathscr{A}_1 \otimes \mathscr{A}_2) \to (X', \mathscr{A}')$ is measurable, then for each $x_1 \in X_1$ the function $f_{x_1} : X_2 \to X'$ is measurable $\mathscr{A}_2 \to \mathscr{A}'$ and for each $x_2 \in X_2$ the function $f_{x_2} : X_1 \to X'$ is measurable $\mathscr{A}_1 \to \mathscr{A}'$.¹² **Tonelli's theorem**¹³ states that if $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_1, \mathscr{A}_1, \mu_1)$ are σ -finite

Tonelli's theorem¹³ states that if $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_1, \mathscr{A}_1, \mu_1)$ are σ -finite measure spaces and $f: X_1 \times X_2 \to [0, \infty]$ is $\mathscr{A}_1 \otimes \mathscr{A}_2 \to \overline{\mathscr{B}}$ measurable, then the functions

$$x_2 \mapsto \int_{X_1} f_{x_2} d\mu_1, \qquad x_1 \mapsto \int_{X_2} f_{x_1} d\mu_2$$

are $\mathscr{A}_2 \to \overline{\mathscr{B}}$ measurable and $\mathscr{A}_1 \to \overline{\mathscr{B}}$ measurable respectively, and

$$\int_{X_1 \times X_2} f d(\mu_1 \otimes \mu_2) = \int_{X_2} \left(\int_{X_1} f_{x_2} d\mu_1 \right) d\mu_2(x_2) = \int_{X_1} \left(\int_{X_2} f_{x_1} d\mu_2 \right) d\mu_1(x_1).$$
(3)

Fubini's theorem¹⁴ states that if $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ are σ -finite measure spaces and $f: X_1 \times X_2 \to \overline{\mathbb{R}}$ is $\mu_1 \otimes \mu_2$ -integrable then there is some

¹⁰Heinz Bauer, *Measure and Integration Theory*, p. 135, Lemma 23.2.

¹¹Heinz Bauer, Measure and Integration Theory, p. 136, Theorem 23.3.

¹²Heinz Bauer, Measure and Integration Theory, p. 138, Lemma 23.5.

¹³Heinz Bauer, Measure and Integration Theory, p. 138, Theorem 23.6.

¹⁴Heinz Bauer, Measure and Integration Theory, p. 139, Corollary 23.7.

 $A_1 \in \mathscr{A}_1$ with $\mu_1(A_1) = 0$ such that for $x_1 \in X_1 \setminus A_1$ the function $f_{x_1} : X_2 \to \overline{\mathbb{R}}$ is μ_2 -integrable, and there is some $A_2 \in \mathscr{A}_2$ with $\mu_2(A_2) = 0$ such that for $x_2 \in X_2 \setminus A_2$ the function $f_{x_2} : X_1 \to \overline{\mathbb{R}}$ is μ_1 -integrable. Furthermore, define $F_1 : X_1 \to \mathbb{R}$ by $F_1(x_1) = \int_{X_2} f_{x_1} d\mu_2$ for $x_1 \in X_1 \setminus A_1$ and $F_1(x_1) = 0$ for $x_1 \in A_1$, and define $F_2 : X_2 \to \mathbb{R}$ by $F_2(x_2) = \int_{X_1} f_{x_2} d\mu_1$ for $x_2 \in X_2 \setminus A_2$ and $F_2(x_2) = 0$ for $x_2 \in A_2$. The functions F_1 and F_2 are μ_1 -integrable and μ_2 -integrable respectively, and

$$\int_{X_1 \times X_2} f d(\mu_1 \otimes \mu_2) = \int_{X_1} F_1 d\mu_1 = \int_{X_2} F_2 d\mu_2.$$

Suppose that $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ are σ -finite measure spaces. For $e: X_1 \to \mathbb{C}$ and $f: X_2 \to \mathbb{C}$, define $e \otimes f: X_1 \times X_2 \to \mathbb{C}$ by

$$(e \otimes f)(x_1, x_2) = e(x_1)f(x_2)$$

which is Borel measurable $X_1 \times X_2 \to \mathbb{C}$ if e and f are Borel measurable. If $e \in \mathscr{L}^2(\mu_1)$ and $f \in \mathscr{L}^2(\mu_2)$, then by Tonelli's theorem $e \otimes f : X_1 \times X_2 \to \mathbb{C}$ belongs to $\mathscr{L}^2(\mu_1 \otimes \mu_2)$. For $e, e' \in \mathscr{L}^2(\mu_1)$ and $f, f' \in \mathscr{L}^2(\mu_2)$, by Fubini's theorem,

$$\langle e \otimes f, e' \otimes f' \rangle_{L^2(\mu_1 \otimes \mu_2)}$$

$$= \int_{X_1 \times X_2} e(x_1) f(x_2) \overline{e'(x_1)} f'(x_2) d(\mu_1 \otimes \mu_2)(x_1, x_2)$$

$$= \int_{X_2} \left(\int_{X_1} e(x_1) \overline{e'(x_1)} d\mu_1(x_1) \right) f(x_2) \overline{f'(x_2)} d\mu_2(x_2)$$

$$= \langle e, e' \rangle_{L^2(\mu_1)} \cdot \langle f, f' \rangle_{L^2(\mu_2)} .$$

Therefore, if $E \subset \mathscr{L}^2(\mu_1)$ is an orthonormal set in $L^2(\mu_1)$ and $F \subset \mathscr{L}^2(\mu_2)$ is an orthonormal set in $L^2(\mu_2)$, then $\{e \otimes f : e \in E, f \in F\} \subset \mathscr{L}^2(\mu_1 \otimes \mu_2)$ is an orthonormal set in $L^2(\mu_1 \otimes \mu_2)$.

Theorem 3. Let $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ be σ -finite measure spaces and suppose that $L^2(\mu_1)$ and $L^2(\mu_2)$ are separable. If $E \subset \mathscr{L}^2(\mu_1)$ is an orthonormal basis for $L^2(\mu_1)$ and $F \subset \mathscr{L}^2(\mu_2)$ is an orthonormal basis for $L^2(\mu_2)$, then $\Phi = \{e \otimes f : e \in E, f \in F\} \subset \mathscr{L}^2(\mu_1 \otimes \mu_2)$ is an orthonormal basis for $L^2(\mu_1 \otimes \mu_2)$.

Proof. To show that Φ is an orthonormal basis for $L^2(\mu_1 \otimes \mu_2)$ it suffices to prove that if $h \in \mathscr{L}^2(\mu_1 \otimes \mu_2)$ belongs to the orthogonal complement of Φ then $h \in \mathscr{N}^2(\mu_1 \otimes \mu_2)$. Thus, suppose that $h \in \mathscr{L}^2(\mu_1 \otimes \mu_2)$ and that $\langle h, e \otimes f \rangle_{L^2(\mu_1 \otimes \mu_2)} = 0$ for all $e \in E, f \in F$. Using Fubini's theorem,

$$\int_{X_1} e(x_1) \left(\int_{X_2} h_{x_1}(x_2) f(x_2) d\mu_2(x_2) \right) d\mu_1(x_1) = 0.$$

Because this is true for all $e \in E$ and E is dense in $L^2(\mu_1)$, it follows that there is some $A_f \in \mathscr{A}_1$ with $\mu_1(A_f) = 0$ such that $\int_{X_2} h_{x_1} f d\mu_2 = 0$ for $x_1 \notin A_f$. Let

 $A_1 = \bigcup_{f \in F} A_f$, for which $\mu_1(A_1) = 0$. If $x_1 \notin A_1$ then $\int_{X_2} h_{x_1} f d\mu_2 = 0$ for all $f \in F$, and because F is dense in $L^2(\mu_2)$ this implies that $h_{x_1} = 0$ μ_2 -almost everywhere. Then

$$\int_{X_1 \times X_2} |h|^2 d(\mu_1 \otimes \mu_2) = \int_{X_1} \left(\int_{X_2} |h_{x_1}|^2 d\mu_2 \right) d\mu_1(x_1)$$
$$= \int_{X_1 \setminus A_1} \left(\int_{X_2} |h_{x_1}|^2 d\mu_2 \right) d\mu_1(x_1)$$
$$= 0,$$

which implies that $h = 0 \ \mu_1 \otimes \mu_2$ -almost everywhere.