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1 Measure and integration theory

Let B be the Borel σ-algebra of R, and let B be the Borel σ-algebra of
[−∞,∞] = R ∪ {−∞,∞}: the elements of B are those subsets of R of the
form B,B ∪ {−∞}, B ∪ {∞}, B ∪ {−∞,∞}, with B ∈ B.

Let (X,A , µ) be a measure space. It is a fact that if fn is a sequence of
A → B measurable functions then supn fn and infn fn are A → B measurable,
and thus if fn is a sequence of A → B measurable functions that converge
pointwise to a function f : X → R, then f is A → B measurable.1 If f1, . . . , fn
are A → B measurable, then so are f1 ∨ · · · ∨ fn and f1 ∧ · · · ∧ fn, and a
function f : X → R is A → B measurable if and only if both f+ = f ∨ 0
and f− = −(f ∧ 0) are A → B measurable. In particular, if f is A → B
measurable then so is |f | = f+ + f−.

A simple function is a function f : X → R that is A → B measurable and
whose range is finite. Let E = E(A ) be the collection of nonnegative simple
functions. It is straightforward to prove that

u, v ∈ E, α ≥ 0 ⇒ αu, u+ v, u · v, u ∨ v, u ∧ v ∈ E.

Define Iµ : E → [0,∞] by

Iµu =

n∑
i=1

aiµ(Ai),

where u has range {a1, . . . , an} and Ai = u−1(ai). One proves that Iµ : E →
[0,∞] is positive homogeneous, additive, and order preserving.2

It is a fact3 that if un is a nondecreasing sequence in E and u ∈ E then

u ≤ sup
n

un ⇒ Iµu ≤ sup
n

Iµun.

It follows that if un and vn are sequences in E then

sup
n

un = sup
n

vn ⇒ sup
n

Iµun = sup
n

Iµvn. (1)

1Heinz Bauer, Measure and Integration Theory, p. 52, Corollary 9.7.
2Heinz Bauer, Measure and Integration Theory, pp. 55–56, §10.
3Heinz Bauer, Measure and Integration Theory, p. 57, Theorem 11.1.
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Define E∗ = E∗(A ) to be the set of all functions f : X → [0,∞] for which
there is a nondecreasing sequence un in E satisfying supn un = f , in other
words, there is a sequence un in E satisfying un ↑ f . From (1), for f ∈ E∗

and sequences un, vn ∈ E with supn un = f and supn vn = f , it holds that
supn Iµun = supn Iµvn. Also, if u ∈ E then un = u is a nondecreasing sequence
in E with u = supn un, so u ∈ E∗. Then it makes sense to extend Iµ from
E → [0,∞] to E∗ → [0,∞] by defining Iµf = supn Iµun. One proves4 that

f, g ∈ E∗, α ≥ 0 ⇒ αf, f + g, f · g, f ∨ g, f ∧ g ∈ E∗

and that Iµ : E∗ → [0,∞] is positive homogeneous, additive, and order preserv-
ing.

The monotone convergence theorem5 states that if fn is a sequence in
E∗ then supn fn ∈ E∗ and

Iµ

(
sup
n

fn

)
= sup

n
Iµfn.

We now prove a characterization of E∗.6

Theorem 1. E∗ is equal to the set of functions X → [0,∞] that are A → B
measurable.

Proof. If f ∈ E∗, then there is a sequence un in E with un ↑ f . Because each
un is measurable A → B, so is f .

Now suppose that f : X → [0,∞] is A → B measurable. For n ≥ 1 and
0 ≤ i ≤ n2n − 1 let

Ai,n = {f ≥ i2−n} ∩ {f < (i+ 1)2−n} = {i2−n ≤ f < (i+ 1)2−n},

and for i = n2n let
Ai,n = {f ≥ n}.

Because f is A → B measurable, the sets Ai,n belong to A . For each n, the
sets A0,n, . . . An2n−1,n, An2n,n are pairwise disjoint and their union is equal to
X. It is apparent that

Ai,n = A2i,n+1 ∪A2i+1,n+1, 0 ≤ i ≤ n2n − 1. (2)

Define

un =

n2n∑
i=0

i2−n1Ai,n
,

which belongs to E. For x ∈ X, either f(x) = ∞ or 0 ≤ f(x) < ∞. In the first
case, un(x) = n for all n ≥ 1. In the second case, un(x) ≤ f(x) < un(x) + 2−n

for all n > f(x). Therefore un(x) ↑ f(x) as n → ∞, and because this is true for
each x ∈ X, this means un ↑ f and so f ∈ E∗.

4Heinz Bauer, Measure and Integration Theory, pp. 58–59, §11.
5Heinz Bauer, Measure and Integration Theory, p. 59, Theorem 11.4.
6Heinz Bauer, Measure and Integration Theory, p. 61, Theorem 11.6.
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So far we have defined Iµ : E∗ → [0,∞]. Suppose that f : X → R is A → B
measurable. Then f+, f− : X → [0,∞] are A → B measurable so by Theorem
1, f+, f− ∈ E∗. Then Iµf

+, Iµf
− ∈ [0,∞]. We say that a function f : X → R

is µ-integrable if it is A → B measurable and Iµf
+ < ∞ and Iµf

− < ∞.
One checks that a function f : X → R is µ-integrable if and only if it is A → B
measurable and Iµ|f | < ∞. If f : X → R is µ-integrable, we now define Iµf ∈ R
by

Iµf = Iµf
+ − Iµf

−.

For example, if µ(X) < ∞ and S is a subset of X that does not belong to
A , define f : X → R by f = 1S − 1X\S . Then f+ = 1S and f− = 1X\S , and

thus f is not A → B measurable, so it is not µ-integrable. But |f | = 1 belongs
to E, and Iµ|f | = µ(X) < ∞ by hypothesis, showing that |f | is µ-integrable
while f is not.

One proves that if f, g : X → R are µ-integrable and α ∈ R then αf is
µ-integrable and

Iµ(αf) = αIµf,

if f + g is defined on all X then f + g is µ-integrable and

Iµ(f + g) = Iµf + Iµg,

and f ∨ g, f ∧ g are µ-integrable.7 Furthermore, Iµ is order preserving.
Let f : X → C be a function and write f = u+iv. One proves that f is Borel

measurable (i.e. A → BC measurable), if and only if u and v are measurable
A → B. We define f to be µ-integrable if both u and v are µ-integrable, and
define

Iµf = Iµu+ iIµv.

2 L 2

Let (X,A , µ) be a measure space and for 1 ≤ p < ∞ let L p(µ) be the collection
of Borel measurable functions f : X → C such that |f |p is µ-integrable. For
complex a, b, because x 7→ xp is convex we have by Jensen’s inequality∣∣∣∣a+ b

2

∣∣∣∣p ≤
(
1

2
|a|+ 1

2
|b|
)p

≤ 1

2
|a|p + 1

2
|b|p =

1

2
(|a|p + |b|p),

so |a+ b|p ≤ 2p−1(|a|p + |b|p). Thus if f, g ∈ L p(µ) then

|f + g|p ≤ 2p−1(|f |p + |g|p),

which implies that L p(µ) is a linear space.
For Borel measurable f : X → C define

∥f∥Lp =

(∫
X

|f |pdµ
)1/p

.

7Heinz Bauer, Measure and Integration Theory, p. 65, Theorem 12.3.

3



For f, g ∈ L p(µ), by Hölder’s inequality, with 1
p + 1

p′ = 1 (for which p′ = p
p−1 ),

∥f + g∥pLp ≤
∫
X

|f ||f + g|p−1dµ+

∫
X

|g||f + g|p−1dµ

≤ ∥f∥Lp

∥∥|f + g|p−1
∥∥
Lp′ + ∥g∥Lp

∥∥|f + g|p−1
∥∥
Lp′

= ∥f∥Lp ∥f + g∥p−1
Lp + ∥g∥Lp ∥f + g∥p−1

Lp ,

which implies that ∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp , and hence ∥·∥Lp is a seminorm
on L p(µ).

Let N p(µ) be the set of those f ∈ L p(µ) such that ∥f∥Lp = 0. N p(µ) is a
linear subspace of L p(µ), and we define

Lp(µ) = L p(µ)/N p(µ) = {f + N p(µ) : f ∈ L p(µ)}.

Lp(µ) is a normed linear space with the norm ∥·∥Lp .
It is a fact that if V is a normed linear space then V is complete if and

only if each absolutely convergent series in V converges in V . Suppose that
fk is a sequence in L p(µ) with

∑∞
k=1 ∥f∥Lp < ∞. For n ≥ 1 let gn(x) =

(
∑n

k=1 |fk(x)|)
p
and define g : X → [0,∞] by

g(x) =

( ∞∑
k=1

|fk(x)|

)p

= lim
n→∞

gn(x),

which is A → B measurable, being the pointwise limit of a sequence of functions
each of which is A → B measurable. Because g1 ≤ g2 ≤ · · · , by the monotone
convergence theorem, ∫

X

gdµ = lim
n→∞

∫
X

gndµ.

But (∫
X

gndµ

)1/p

=

∥∥∥∥∥
n∑

k=1

|fk|

∥∥∥∥∥
Lp

≤
n∑

k=1

∥fk∥Lp ≤
∞∑
k=1

∥fk∥Lp ,

which implies that
∫
X
gdµ < ∞, meaning that g : X → [0,∞] is integrable. The

fact that g is integrable implies µ(E) = 0, where E = {x ∈ X : g(x) = ∞} ∈ A .
For x ∈ X \ E,

∑∞
k=1 |fk(x)| < ∞ and because C is complete this implies that∑∞

k=1 fk(x) ∈ C, and so it makes sense to define f : X → C by

f(x) = 1X\E(x)

∞∑
k=1

fk(x),

which is Borel measurable. Furthermore, |f |p ≤ g, and because g is integrable
this implies that f ∈ L p(µ). For x ∈ X \ E,

lim
n→∞

∣∣∣∣∣
n∑

k=1

fk(x)− f(x)

∣∣∣∣∣
p

= 0
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and ∣∣∣∣∣
n∑

k=1

fk(x)− f(x)

∣∣∣∣∣
p

≤ g(x),

so by the dominated convergence theorem,8

lim
n→∞

∫
X

∣∣∣∣∣
n∑

k=1

fk(x)− f(x)

∣∣∣∣∣
p

dµ = 0.

Because x 7→ x1/p is continuous this implies

lim
n→∞

∥∥∥∥∥
n∑

k=1

fk − f

∥∥∥∥∥
Lp

= 0.

Hence, if fk is a sequence in Lp(µ) such that
∑∞

k=1 ∥fk∥Lp < ∞ then there is
some f ∈ Lp(µ) such that

∑n
k=1 fk → f in the norm ∥·∥Lp . This implies that

Lp(µ) is a Banach space.
We say that the σ-algebra A is countably generated if there is a countable

subset C of A such that A = σ(C ) and we say that a topological space is
separable if there exists a countable dense subset of it. It can be proved that
if A is countably generated and µ is σ-finite, then for 1 ≤ p < ∞ there is a
countable collection of simple functions that is dense in Lp(µ), showing that
Lp(µ) is separable.9

Theorem 2. Let (X,A , µ) be a measure space and let 1 ≤ p < ∞. Lp(µ) with
the norm ∥·∥Lp is a Banach space, and if A is countably generated and µ is
σ-finite then Lp(µ) is separable.

For f, g ∈ L 2(µ), let

⟨f, g⟩L2(µ) =

∫
X

f · gdµ.

This is an inner product on L2(µ), and thus L2(µ) is a Hilbert space.

3 Product measures

Let (X1,A1, µ1) and (X1,A1, µ1) be measure spaces and let A1 ⊗ A2 be the
product σ-algebra. For Q ⊂ X1 ×X2, write

Qx1 = {x2 ∈ X2 : (x1, x2) ∈ Q}, Qx2 = {x1 ∈ X1 : (x1, x2) ∈ Q}.

One proves that if µ1 and µ2 are σ-finite, then for each Q ∈ A1 ⊗ A2 the
function x1 7→ µ2(Qx1) is A1 → B measurable and the function x2 7→ µ1(Qx2)

8Heinz Bauer, Measure and Integration Theory, p. 83, Theorem 15.6.
9Donald L. Cohn, Measure Theory, second ed., p. 102, Proposition 3.4.5.
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is A2 → B measurable.10 If µ1 and µ2 are σ-finite, one proves11 that there is a
unique measure µ : A1 ⊗ A2 → [0,∞] that satisfies

µ(A1 ×A2) = µ1(A1)µ2(A2), A1 ∈ A1, A2 ∈ A2.

The measure µ satisfies

µ(Q) =

∫
X1

µ2(Qx1
)dµ1(x1) =

∫
X2

µ1(Qx2
)dµ2(x2)

for Q ∈ A1 ⊗ A2, and is itself σ-finite. We write µ = µ1 ⊗ µ2, and call µ the
product measure of µ1 and µ2.

Let X ′ be a set and let f : X1×X2 → X ′ be a function. For x1 ∈ X1, define
fx1 : X2 → X ′ by

fx1
(x2) = f(x1, x2), x2 ∈ X2

and for x2 ∈ X2, define fx2
: X1 → X ′ by

fx2(x1) = f(x1, x2), x1 ∈ X1.

For Q ⊂ X1 ×X2,

(1Q)x1
= 1Qx1

, (1Q)x2
= 1Qx2

.

It is straightforward to prove that if (X ′,A ′) is a measurable space and f :
(X1 × X2,A1 ⊗ A2) → (X ′,A ′) is measurable, then for each x1 ∈ X1 the
function fx1

: X2 → X ′ is measurable A2 → A ′ and for each x2 ∈ X2 the
function fx2

: X1 → X ′ is measurable A1 → A ′.12

Tonelli’s theorem13 states that if (X1,A1, µ1) and (X1,A1, µ1) are σ-finite
measure spaces and f : X1 × X2 → [0,∞] is A1 ⊗ A2 → B measurable, then
the functions

x2 7→
∫
X1

fx2
dµ1, x1 7→

∫
X2

fx1
dµ2

are A2 → B measurable and A1 → B measurable respectively, and∫
X1×X2

fd(µ1 ⊗ µ2)

=

∫
X2

(∫
X1

fx2dµ1

)
dµ2(x2)

=

∫
X1

(∫
X2

fx1
dµ2

)
dµ1(x1).

(3)

Fubini’s theorem14 states that if (X1,A1, µ1) and (X2,A2, µ2) are σ-finite
measure spaces and f : X1 ×X2 → R is µ1 ⊗ µ2-integrable then there is some

10Heinz Bauer, Measure and Integration Theory, p. 135, Lemma 23.2.
11Heinz Bauer, Measure and Integration Theory, p. 136, Theorem 23.3.
12Heinz Bauer, Measure and Integration Theory, p. 138, Lemma 23.5.
13Heinz Bauer, Measure and Integration Theory, p. 138, Theorem 23.6.
14Heinz Bauer, Measure and Integration Theory, p. 139, Corollary 23.7.
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A1 ∈ A1 with µ1(A1) = 0 such that for x1 ∈ X1 \A1 the function fx1
: X2 → R

is µ2-integrable, and there is some A2 ∈ A2 with µ2(A2) = 0 such that for
x2 ∈ X2 \ A2 the function fx2

: X1 → R is µ1-integrable. Furthermore, define
F1 : X1 → R by F1(x1) =

∫
X2

fx1
dµ2 for x1 ∈ X1 \ A1 and F1(x1) = 0 for

x1 ∈ A1, and define F2 : X2 → R by F2(x2) =
∫
X1

fx2dµ1 for x2 ∈ X2 \ A2

and F2(x2) = 0 for x2 ∈ A2. The functions F1 and F2 are µ1-integrable and
µ2-integrable respectively, and∫

X1×X2

fd(µ1 ⊗ µ2) =

∫
X1

F1dµ1 =

∫
X2

F2dµ2.

Suppose that (X1,A1, µ1) and (X2,A2, µ2) are σ-finite measure spaces. For
e : X1 → C and f : X2 → C, define e⊗ f : X1 ×X2 → C by

(e⊗ f)(x1, x2) = e(x1)f(x2),

which is Borel measurable X1 × X2 → C if e and f are Borel measurable. If
e ∈ L 2(µ1) and f ∈ L 2(µ2), then by Tonelli’s theorem e ⊗ f : X1 ×X2 → C
belongs to L 2(µ1 ⊗ µ2). For e, e′ ∈ L 2(µ1) and f, f ′ ∈ L 2(µ2), by Fubini’s
theorem,

⟨e⊗ f, e′ ⊗ f ′⟩L2(µ1⊗µ2)

=

∫
X1×X2

e(x1)f(x2)e′(x1)f ′(x2)d(µ1 ⊗ µ2)(x1, x2)

=

∫
X2

(∫
X1

e(x1)e′(x1)dµ1(x1)

)
f(x2)f ′(x2)dµ2(x2)

= ⟨e, e′⟩L2(µ1)
· ⟨f, f ′⟩L2(µ2)

.

Therefore, if E ⊂ L 2(µ1) is an orthonormal set in L2(µ1) and F ⊂ L 2(µ2) is
an orthonormal set in L2(µ2), then {e⊗ f : e ∈ E, f ∈ F} ⊂ L 2(µ1 ⊗ µ2) is an
orthonormal set in L2(µ1 ⊗ µ2).

Theorem 3. Let (X1,A1, µ1) and (X2,A2, µ2) be σ-finite measure spaces and
suppose that L2(µ1) and L2(µ2) are separable. If E ⊂ L 2(µ1) is an orthonormal
basis for L2(µ1) and F ⊂ L 2(µ2) is an orthonormal basis for L2(µ2), then
Φ = {e ⊗ f : e ∈ E, f ∈ F} ⊂ L 2(µ1 ⊗ µ2) is an orthonormal basis for
L2(µ1 ⊗ µ2).

Proof. To show that Φ is an orthonormal basis for L2(µ1 ⊗ µ2) it suffices to
prove that if h ∈ L 2(µ1 ⊗ µ2) belongs to the orthogonal complement of Φ
then h ∈ N 2(µ1 ⊗ µ2). Thus, suppose that h ∈ L 2(µ1 ⊗ µ2) and that
⟨h, e⊗ f⟩L2(µ1⊗µ2)

= 0 for all e ∈ E, f ∈ F . Using Fubini’s theorem,∫
X1

e(x1)

(∫
X2

hx1
(x2)f(x2)dµ2(x2)

)
dµ1(x1) = 0.

Because this is true for all e ∈ E and E is dense in L2(µ1), it follows that there
is some Af ∈ A1 with µ1(Af ) = 0 such that

∫
X2

hx1
fdµ2 = 0 for x1 ̸∈ Af . Let
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A1 =
⋃

f∈F Af , for which µ1(A1) = 0. If x1 ̸∈ A1 then
∫
X2

hx1
fdµ2 = 0 for all

f ∈ F , and because F is dense in L2(µ2) this implies that hx1
= 0 µ2-almost

everywhere. Then∫
X1×X2

|h|2d(µ1 ⊗ µ2) =

∫
X1

(∫
X2

|hx1 |2dµ2

)
dµ1(x1)

=

∫
X1\A1

(∫
X2

|hx1
|2dµ2

)
dµ1(x1)

= 0,

which implies that h = 0 µ1 ⊗ µ2-almost everywhere.
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