Orthonormal bases for product measures

Jordan Bell

October 22, 2015

1 Measure and integration theory

Let \mathscr{B} be the Borel σ-algebra of \mathbb{R}, and let $\overline{\mathscr{B}}$ be the Borel σ-algebra of $[-\infty, \infty]=\mathbb{R} \cup\{-\infty, \infty\}$: the elements of $\overline{\mathscr{B}}$ are those subsets of $\overline{\mathbb{R}}$ of the form $B, B \cup\{-\infty\}, B \cup\{\infty\}, B \cup\{-\infty, \infty\}$, with $B \in \mathscr{B}$.

Let (X, \mathscr{A}, μ) be a measure space. It is a fact that if f_{n} is a sequence of $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable functions then $\sup _{n} f_{n}$ and $\inf _{n} f_{n}$ are $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable, and thus if f_{n} is a sequence of $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable functions that converge pointwise to a function $f: X \rightarrow \overline{\mathbb{R}}$, then f is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable. ${ }^{1}$ If f_{1}, \ldots, f_{n} are $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable, then so are $f_{1} \vee \cdots \vee f_{n}$ and $f_{1} \wedge \cdots \wedge f_{n}$, and a function $f: X \rightarrow \overline{\mathbb{R}}$ is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable if and only if both $f^{+}=f \vee 0$ and $f^{-}=-(f \wedge 0)$ are $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable. In particular, if f is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable then so is $|f|=f^{+}+f^{-}$.

A simple function is a function $f: X \rightarrow \mathbb{R}$ that is $\mathscr{A} \rightarrow \mathscr{B}$ measurable and whose range is finite. Let $E=E(\mathscr{A})$ be the collection of nonnegative simple functions. It is straightforward to prove that

$$
u, v \in E, \alpha \geq 0 \quad \Rightarrow \quad \alpha u, u+v, u \cdot v, u \vee v, u \wedge v \in E
$$

Define $I_{\mu}: E \rightarrow[0, \infty]$ by

$$
I_{\mu} u=\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)
$$

where u has range $\left\{a_{1}, \ldots, a_{n}\right\}$ and $A_{i}=u^{-1}\left(a_{i}\right)$. One proves that $I_{\mu}: E \rightarrow$ $[0, \infty]$ is positive homogeneous, additive, and order preserving. ${ }^{2}$

It is a fact ${ }^{3}$ that if u_{n} is a nondecreasing sequence in E and $u \in E$ then

$$
u \leq \sup _{n} u_{n} \quad \Rightarrow \quad I_{\mu} u \leq \sup _{n} I_{\mu} u_{n} .
$$

It follows that if u_{n} and v_{n} are sequences in E then

$$
\begin{equation*}
\sup _{n} u_{n}=\sup _{n} v_{n} \Rightarrow \sup _{n} I_{\mu} u_{n}=\sup _{n} I_{\mu} v_{n} \tag{1}
\end{equation*}
$$

[^0]Define $E^{*}=E^{*}(\mathscr{A})$ to be the set of all functions $f: X \rightarrow[0, \infty]$ for which there is a nondecreasing sequence u_{n} in E satisfying $\sup _{n} u_{n}=f$, in other words, there is a sequence u_{n} in E satisfying $u_{n} \uparrow f$. From (1), for $f \in E^{*}$ and sequences $u_{n}, v_{n} \in E$ with $\sup _{n} u_{n}=f$ and $\sup _{n} v_{n}=f$, it holds that $\sup _{n} I_{\mu} u_{n}=\sup _{n} I_{\mu} v_{n}$. Also, if $u \in E$ then $u_{n}=u$ is a nondecreasing sequence in E with $u=\sup _{n} u_{n}$, so $u \in E^{*}$. Then it makes sense to extend I_{μ} from $E \rightarrow[0, \infty]$ to $E^{*} \rightarrow[0, \infty]$ by defining $I_{\mu} f=\sup _{n} I_{\mu} u_{n}$. One proves ${ }^{4}$ that

$$
f, g \in E^{*}, \alpha \geq 0 \quad \Rightarrow \quad \alpha f, f+g, f \cdot g, f \vee g, f \wedge g \in E^{*}
$$

and that $I_{\mu}: E^{*} \rightarrow[0, \infty]$ is positive homogeneous, additive, and order preserving.

The monotone convergence theorem ${ }^{5}$ states that if f_{n} is a sequence in E^{*} then $\sup _{n} f_{n} \in E^{*}$ and

$$
I_{\mu}\left(\sup _{n} f_{n}\right)=\sup _{n} I_{\mu} f_{n}
$$

We now prove a characterization of $E^{*} .{ }^{6}$
Theorem 1. E^{*} is equal to the set of functions $X \rightarrow[0, \infty]$ that are $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable.

Proof. If $f \in E^{*}$, then there is a sequence u_{n} in E with $u_{n} \uparrow f$. Because each u_{n} is measurable $\mathscr{A} \rightarrow \overline{\mathscr{B}}$, so is f.

Now suppose that $f: X \rightarrow[0, \infty]$ is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable. For $n \geq 1$ and $0 \leq i \leq n 2^{n}-1$ let

$$
A_{i, n}=\left\{f \geq i 2^{-n}\right\} \cap\left\{f<(i+1) 2^{-n}\right\}=\left\{i 2^{-n} \leq f<(i+1) 2^{-n}\right\},
$$

and for $i=n 2^{n}$ let

$$
A_{i, n}=\{f \geq n\} .
$$

Because f is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable, the sets $A_{i, n}$ belong to \mathscr{A}. For each n, the sets $A_{0, n}, \ldots A_{n 2^{n}-1, n}, A_{n 2^{n}, n}$ are pairwise disjoint and their union is equal to X. It is apparent that

$$
\begin{equation*}
A_{i, n}=A_{2 i, n+1} \cup A_{2 i+1, n+1}, \quad 0 \leq i \leq n 2^{n}-1 . \tag{2}
\end{equation*}
$$

Define

$$
u_{n}=\sum_{i=0}^{n 2^{n}} i 2^{-n} 1_{A_{i, n}}
$$

which belongs to E. For $x \in X$, either $f(x)=\infty$ or $0 \leq f(x)<\infty$. In the first case, $u_{n}(x)=n$ for all $n \geq 1$. In the second case, $u_{n}(x) \leq f(x)<u_{n}(x)+2^{-n}$ for all $n>f(x)$. Therefore $u_{n}(x) \uparrow f(x)$ as $n \rightarrow \infty$, and because this is true for each $x \in X$, this means $u_{n} \uparrow f$ and so $f \in E^{*}$.

[^1]So far we have defined $I_{\mu}: E^{*} \rightarrow[0, \infty]$. Suppose that $f: X \rightarrow \overline{\mathbb{R}}$ is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable. Then $f^{+}, f^{-}: X \rightarrow[0, \infty]$ are $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable so by Theorem $1, f^{+}, f^{-} \in E^{*}$. Then $I_{\mu} f^{+}, I_{\mu} f^{-} \in[0, \infty]$. We say that a function $f: X \rightarrow \overline{\mathbb{R}}$ is μ-integrable if it is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable and $I_{\mu} f^{+}<\infty$ and $I_{\mu} f^{-}<\infty$. One checks that a function $f: X \rightarrow \overline{\mathbb{R}}$ is μ-integrable if and only if it is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable and $I_{\mu}|f|<\infty$. If $f: X \rightarrow \overline{\mathbb{R}}$ is μ-integrable, we now define $I_{\mu} f \in \mathbb{R}$ by

$$
I_{\mu} f=I_{\mu} f^{+}-I_{\mu} f^{-}
$$

For example, if $\mu(X)<\infty$ and S is a subset of X that does not belong to \mathscr{A}, define $f: X \rightarrow \mathbb{R}$ by $f=1_{S}-1_{X \backslash S}$. Then $f^{+}=1_{S}$ and $f^{-}=1_{X \backslash S}$, and thus f is not $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable, so it is not μ-integrable. But $|f|=1$ belongs to E, and $I_{\mu}|f|=\mu(X)<\infty$ by hypothesis, showing that $|f|$ is μ-integrable while f is not.

One proves that if $f, g: X \rightarrow \overline{\mathbb{R}}$ are μ-integrable and $\alpha \in \mathbb{R}$ then αf is μ-integrable and

$$
I_{\mu}(\alpha f)=\alpha I_{\mu} f
$$

if $f+g$ is defined on all X then $f+g$ is μ-integrable and

$$
I_{\mu}(f+g)=I_{\mu} f+I_{\mu} g
$$

and $f \vee g, f \wedge g$ are μ-integrable. ${ }^{7}$ Furthermore, I_{μ} is order preserving.
Let $f: X \rightarrow \mathbb{C}$ be a function and write $f=u+i v$. One proves that f is Borel measurable (i.e. $\mathscr{A} \rightarrow \mathscr{B}_{\mathbb{C}}$ measurable), if and only if u and v are measurable $\mathscr{A} \rightarrow \mathscr{B}$. We define f to be μ-integrable if both u and v are μ-integrable, and define

$$
I_{\mu} f=I_{\mu} u+i I_{\mu} v
$$

$2 \mathscr{L}^{2}$

Let (X, \mathscr{A}, μ) be a measure space and for $1 \leq p<\infty$ let $\mathscr{L}^{p}(\mu)$ be the collection of Borel measurable functions $f: X \rightarrow \mathbb{C}$ such that $|f|^{p}$ is μ-integrable. For complex a, b, because $x \mapsto x^{p}$ is convex we have by Jensen's inequality

$$
\left|\frac{a+b}{2}\right|^{p} \leq\left(\frac{1}{2}|a|+\frac{1}{2}|b|\right)^{p} \leq \frac{1}{2}|a|^{p}+\frac{1}{2}|b|^{p}=\frac{1}{2}\left(|a|^{p}+|b|^{p}\right),
$$

so $|a+b|^{p} \leq 2^{p-1}\left(|a|^{p}+|b|^{p}\right)$. Thus if $f, g \in \mathscr{L}^{p}(\mu)$ then

$$
|f+g|^{p} \leq 2^{p-1}\left(|f|^{p}+|g|^{p}\right),
$$

which implies that $\mathscr{L}^{p}(\mu)$ is a linear space.
For Borel measurable $f: X \rightarrow \mathbb{C}$ define

$$
\|f\|_{L^{p}}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p} .
$$

[^2]For $f, g \in \mathscr{L}^{p}(\mu)$, by Hölder's inequality, with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ (for which $\left.p^{\prime}=\frac{p}{p-1}\right)$,

$$
\begin{aligned}
\|f+g\|_{L^{p}}^{p} & \leq \int_{X}|f \| f+g|^{p-1} d \mu+\int_{X}|g||f+g|^{p-1} d \mu \\
& \leq\|f\|_{L^{p}}\left\||f+g|^{p-1}\right\|_{L^{p^{\prime}}}+\|g\|_{L^{p}}\left\||f+g|^{p-1}\right\|_{L^{p^{\prime}}} \\
& =\|f\|_{L^{p}}\|f+g\|_{L^{p}}^{p-1}+\|g\|_{L^{p}}\|f+g\|_{L^{p}}^{p-1},
\end{aligned}
$$

which implies that $\|f+g\|_{L^{p}} \leq\|f\|_{L^{p}}+\|g\|_{L^{p}}$, and hence $\|\cdot\|_{L^{p}}$ is a seminorm on $\mathscr{L}^{p}(\mu)$.

Let $\mathscr{N}^{p}(\mu)$ be the set of those $f \in \mathscr{L}^{p}(\mu)$ such that $\|f\|_{L^{p}}=0 . \mathscr{N}^{p}(\mu)$ is a linear subspace of $\mathscr{L}^{p}(\mu)$, and we define

$$
L^{p}(\mu)=\mathscr{L}^{p}(\mu) / \mathscr{N}^{p}(\mu)=\left\{f+\mathscr{N}^{p}(\mu): f \in \mathscr{L}^{p}(\mu)\right\}
$$

$L^{p}(\mu)$ is a normed linear space with the norm $\|\cdot\|_{L^{p}}$.
It is a fact that if V is a normed linear space then V is complete if and only if each absolutely convergent series in V converges in V. Suppose that f_{k} is a sequence in $\mathscr{L}^{p}(\mu)$ with $\sum_{k=1}^{\infty}\|f\|_{L^{p}}<\infty$. For $n \geq 1$ let $g_{n}(x)=$ $\left(\sum_{k=1}^{n}\left|f_{k}(x)\right|\right)^{p}$ and define $g: X \rightarrow[0, \infty]$ by

$$
g(x)=\left(\sum_{k=1}^{\infty}\left|f_{k}(x)\right|\right)^{p}=\lim _{n \rightarrow \infty} g_{n}(x)
$$

which is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable, being the pointwise limit of a sequence of functions each of which is $\mathscr{A} \rightarrow \overline{\mathscr{B}}$ measurable. Because $g_{1} \leq g_{2} \leq \cdots$, by the monotone convergence theorem,

$$
\int_{X} g d \mu=\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu
$$

But

$$
\left(\int_{X} g_{n} d \mu\right)^{1 / p}=\left\|\sum_{k=1}^{n}\left|f_{k}\right|\right\|_{L^{p}} \leq \sum_{k=1}^{n}\left\|f_{k}\right\|_{L^{p}} \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{L^{p}}
$$

which implies that $\int_{X} g d \mu<\infty$, meaning that $g: X \rightarrow[0, \infty]$ is integrable. The fact that g is integrable implies $\mu(E)=0$, where $E=\{x \in X: g(x)=\infty\} \in \mathscr{A}$. For $x \in X \backslash E, \sum_{k=1}^{\infty}\left|f_{k}(x)\right|<\infty$ and because \mathbb{C} is complete this implies that $\sum_{k=1}^{\infty} f_{k}(x) \in \mathbb{C}$, and so it makes sense to define $f: X \rightarrow \mathbb{C}$ by

$$
f(x)=1_{X \backslash E}(x) \sum_{k=1}^{\infty} f_{k}(x),
$$

which is Borel measurable. Furthermore, $|f|^{p} \leq g$, and because g is integrable this implies that $f \in \mathscr{L}^{p}(\mu)$. For $x \in X \backslash E$,

$$
\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{n} f_{k}(x)-f(x)\right|^{p}=0
$$

and

$$
\left|\sum_{k=1}^{n} f_{k}(x)-f(x)\right|^{p} \leq g(x)
$$

so by the dominated convergence theorem, ${ }^{8}$

$$
\lim _{n \rightarrow \infty} \int_{X}\left|\sum_{k=1}^{n} f_{k}(x)-f(x)\right|^{p} d \mu=0
$$

Because $x \mapsto x^{1 / p}$ is continuous this implies

$$
\lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n} f_{k}-f\right\|_{L^{p}}=0
$$

Hence, if f_{k} is a sequence in $L^{p}(\mu)$ such that $\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{L^{p}}<\infty$ then there is some $f \in L^{p}(\mu)$ such that $\sum_{k=1}^{n} f_{k} \rightarrow f$ in the norm $\|\cdot\|_{L^{p}}$. This implies that $L^{p}(\mu)$ is a Banach space.

We say that the σ-algebra \mathscr{A} is countably generated if there is a countable subset \mathscr{C} of \mathscr{A} such that $\mathscr{A}=\sigma(\mathscr{C})$ and we say that a topological space is separable if there exists a countable dense subset of it. It can be proved that if \mathscr{A} is countably generated and μ is σ-finite, then for $1 \leq p<\infty$ there is a countable collection of simple functions that is dense in $L^{p}(\mu)$, showing that $L^{p}(\mu)$ is separable. ${ }^{9}$

Theorem 2. Let (X, \mathscr{A}, μ) be a measure space and let $1 \leq p<\infty . L^{p}(\mu)$ with the norm $\|\cdot\|_{L^{p}}$ is a Banach space, and if \mathscr{A} is countably generated and μ is σ-finite then $L^{p}(\mu)$ is separable.

For $f, g \in \mathscr{L}^{2}(\mu)$, let

$$
\langle f, g\rangle_{L^{2}(\mu)}=\int_{X} f \cdot \bar{g} d \mu
$$

This is an inner product on $L^{2}(\mu)$, and thus $L^{2}(\mu)$ is a Hilbert space.

3 Product measures

Let $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ and $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ be measure spaces and let $\mathscr{A}_{1} \otimes \mathscr{A}_{2}$ be the product σ-algebra. For $Q \subset X_{1} \times X_{2}$, write

$$
Q_{x_{1}}=\left\{x_{2} \in X_{2}:\left(x_{1}, x_{2}\right) \in Q\right\}, \quad Q_{x_{2}}=\left\{x_{1} \in X_{1}:\left(x_{1}, x_{2}\right) \in Q\right\}
$$

One proves that if μ_{1} and μ_{2} are σ-finite, then for each $Q \in \mathscr{A}_{1} \otimes \mathscr{A}_{2}$ the function $x_{1} \mapsto \mu_{2}\left(Q_{x_{1}}\right)$ is $\mathscr{A}_{1} \rightarrow \overline{\mathscr{B}}$ measurable and the function $x_{2} \mapsto \mu_{1}\left(Q_{x_{2}}\right)$

[^3]is $\mathscr{A}_{2} \rightarrow \overline{\mathscr{B}}$ measurable. ${ }^{10}$ If μ_{1} and μ_{2} are σ-finite, one proves ${ }^{11}$ that there is a unique measure $\mu: \mathscr{A}_{1} \otimes \mathscr{A}_{2} \rightarrow[0, \infty]$ that satisfies
$$
\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right), \quad A_{1} \in \mathscr{A}_{1}, A_{2} \in \mathscr{A}_{2} .
$$

The measure μ satisfies

$$
\mu(Q)=\int_{X_{1}} \mu_{2}\left(Q_{x_{1}}\right) d \mu_{1}\left(x_{1}\right)=\int_{X_{2}} \mu_{1}\left(Q_{x_{2}}\right) d \mu_{2}\left(x_{2}\right)
$$

for $Q \in \mathscr{A}_{1} \otimes \mathscr{A}_{2}$, and is itself σ-finite. We write $\mu=\mu_{1} \otimes \mu_{2}$, and call μ the product measure of μ_{1} and μ_{2}.

Let X^{\prime} be a set and let $f: X_{1} \times X_{2} \rightarrow X^{\prime}$ be a function. For $x_{1} \in X_{1}$, define $f_{x_{1}}: X_{2} \rightarrow X^{\prime}$ by

$$
f_{x_{1}}\left(x_{2}\right)=f\left(x_{1}, x_{2}\right), \quad x_{2} \in X_{2}
$$

and for $x_{2} \in X_{2}$, define $f_{x_{2}}: X_{1} \rightarrow X^{\prime}$ by

$$
f_{x_{2}}\left(x_{1}\right)=f\left(x_{1}, x_{2}\right), \quad x_{1} \in X_{1} .
$$

For $Q \subset X_{1} \times X_{2}$,

$$
\left(1_{Q}\right)_{x_{1}}=1_{Q_{x_{1}}}, \quad\left(1_{Q}\right)_{x_{2}}=1_{Q_{x_{2}}}
$$

It is straightforward to prove that if $\left(X^{\prime}, \mathscr{A}^{\prime}\right)$ is a measurable space and f : $\left(X_{1} \times X_{2}, \mathscr{A}_{1} \otimes \mathscr{A}_{2}\right) \rightarrow\left(X^{\prime}, \mathscr{A}^{\prime}\right)$ is measurable, then for each $x_{1} \in X_{1}$ the function $f_{x_{1}}: X_{2} \rightarrow X^{\prime}$ is measurable $\mathscr{A}_{2} \rightarrow \mathscr{A}^{\prime}$ and for each $x_{2} \in X_{2}$ the function $f_{x_{2}}: X_{1} \rightarrow X^{\prime}$ is measurable $\mathscr{A}_{1} \rightarrow \mathscr{A}^{\prime} .{ }^{12}$

Tonelli's theorem ${ }^{13}$ states that if $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ and $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ are σ-finite measure spaces and $f: X_{1} \times X_{2} \rightarrow[0, \infty]$ is $\mathscr{A}_{1} \otimes \mathscr{A}_{2} \rightarrow \overline{\mathscr{B}}$ measurable, then the functions

$$
x_{2} \mapsto \int_{X_{1}} f_{x_{2}} d \mu_{1}, \quad x_{1} \mapsto \int_{X_{2}} f_{x_{1}} d \mu_{2}
$$

are $\mathscr{A}_{2} \rightarrow \overline{\mathscr{B}}$ measurable and $\mathscr{A}_{1} \rightarrow \overline{\mathscr{B}}$ measurable respectively, and

$$
\begin{align*}
& \int_{X_{1} \times X_{2}} f d\left(\mu_{1} \otimes \mu_{2}\right) \\
= & \int_{X_{2}}\left(\int_{X_{1}} f_{x_{2}} d \mu_{1}\right) d \mu_{2}\left(x_{2}\right) \tag{3}\\
= & \int_{X_{1}}\left(\int_{X_{2}} f_{x_{1}} d \mu_{2}\right) d \mu_{1}\left(x_{1}\right) .
\end{align*}
$$

Fubini's theorem ${ }^{14}$ states that if $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{A}_{2}, \mu_{2}\right)$ are σ-finite measure spaces and $f: X_{1} \times X_{2} \rightarrow \overline{\mathbb{R}}$ is $\mu_{1} \otimes \mu_{2}$-integrable then there is some

[^4]$A_{1} \in \mathscr{A}_{1}$ with $\mu_{1}\left(A_{1}\right)=0$ such that for $x_{1} \in X_{1} \backslash A_{1}$ the function $f_{x_{1}}: X_{2} \rightarrow \overline{\mathbb{R}}$ is μ_{2}-integrable, and there is some $A_{2} \in \mathscr{A}_{2}$ with $\mu_{2}\left(A_{2}\right)=0$ such that for $x_{2} \in X_{2} \backslash A_{2}$ the function $f_{x_{2}}: X_{1} \rightarrow \overline{\mathbb{R}}$ is μ_{1}-integrable. Furthermore, define $F_{1}: X_{1} \rightarrow \mathbb{R}$ by $F_{1}\left(x_{1}\right)=\int_{X_{2}} f_{x_{1}} d \mu_{2}$ for $x_{1} \in X_{1} \backslash A_{1}$ and $F_{1}\left(x_{1}\right)=0$ for $x_{1} \in A_{1}$, and define $F_{2}: X_{2} \rightarrow \mathbb{R}$ by $F_{2}\left(x_{2}\right)=\int_{X_{1}} f_{x_{2}} d \mu_{1}$ for $x_{2} \in X_{2} \backslash A_{2}$ and $F_{2}\left(x_{2}\right)=0$ for $x_{2} \in A_{2}$. The functions F_{1} and F_{2} are μ_{1}-integrable and μ_{2}-integrable respectively, and
$$
\int_{X_{1} \times X_{2}} f d\left(\mu_{1} \otimes \mu_{2}\right)=\int_{X_{1}} F_{1} d \mu_{1}=\int_{X_{2}} F_{2} d \mu_{2}
$$

Suppose that $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{A}_{2}, \mu_{2}\right)$ are σ-finite measure spaces. For $e: X_{1} \rightarrow \mathbb{C}$ and $f: X_{2} \rightarrow \mathbb{C}$, define $e \otimes f: X_{1} \times X_{2} \rightarrow \mathbb{C}$ by

$$
(e \otimes f)\left(x_{1}, x_{2}\right)=e\left(x_{1}\right) f\left(x_{2}\right),
$$

which is Borel measurable $X_{1} \times X_{2} \rightarrow \mathbb{C}$ if e and f are Borel measurable. If $e \in \mathscr{L}^{2}\left(\mu_{1}\right)$ and $f \in \mathscr{L}^{2}\left(\mu_{2}\right)$, then by Tonelli's theorem $e \otimes f: X_{1} \times X_{2} \rightarrow \mathbb{C}$ belongs to $\mathscr{L}^{2}\left(\mu_{1} \otimes \mu_{2}\right)$. For $e, e^{\prime} \in \mathscr{L}^{2}\left(\mu_{1}\right)$ and $f, f^{\prime} \in \mathscr{L}^{2}\left(\mu_{2}\right)$, by Fubini's theorem,

$$
\begin{aligned}
& \left\langle e \otimes f, e^{\prime} \otimes f^{\prime}\right\rangle_{L^{2}\left(\mu_{1} \otimes \mu_{2}\right)} \\
= & \int_{X_{1} \times X_{2}} e\left(x_{1}\right) f\left(x_{2}\right) \overline{e^{\prime}\left(x_{1}\right) f^{\prime}\left(x_{2}\right)} d\left(\mu_{1} \otimes \mu_{2}\right)\left(x_{1}, x_{2}\right) \\
= & \int_{X_{2}}\left(\int_{X_{1}} e\left(x_{1}\right) \overline{e^{\prime}\left(x_{1}\right)} d \mu_{1}\left(x_{1}\right)\right) f\left(x_{2}\right) \overline{f^{\prime}\left(x_{2}\right)} d \mu_{2}\left(x_{2}\right) \\
= & \left\langle e, e^{\prime}\right\rangle_{L^{2}\left(\mu_{1}\right)} \cdot\left\langle f, f^{\prime}\right\rangle_{L^{2}\left(\mu_{2}\right)} .
\end{aligned}
$$

Therefore, if $E \subset \mathscr{L}^{2}\left(\mu_{1}\right)$ is an orthonormal set in $L^{2}\left(\mu_{1}\right)$ and $F \subset \mathscr{L}^{2}\left(\mu_{2}\right)$ is an orthonormal set in $L^{2}\left(\mu_{2}\right)$, then $\{e \otimes f: e \in E, f \in F\} \subset \mathscr{L}^{2}\left(\mu_{1} \otimes \mu_{2}\right)$ is an orthonormal set in $L^{2}\left(\mu_{1} \otimes \mu_{2}\right)$.

Theorem 3. Let $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{A}_{2}, \mu_{2}\right)$ be σ-finite measure spaces and suppose that $L^{2}\left(\mu_{1}\right)$ and $L^{2}\left(\mu_{2}\right)$ are separable. If $E \subset \mathscr{L}^{2}\left(\mu_{1}\right)$ is an orthonormal basis for $L^{2}\left(\mu_{1}\right)$ and $F \subset \mathscr{L}^{2}\left(\mu_{2}\right)$ is an orthonormal basis for $L^{2}\left(\mu_{2}\right)$, then $\Phi=\{e \otimes f: e \in E, f \in F\} \subset \mathscr{L}^{2}\left(\mu_{1} \otimes \mu_{2}\right)$ is an orthonormal basis for $L^{2}\left(\mu_{1} \otimes \mu_{2}\right)$.
Proof. To show that Φ is an orthonormal basis for $L^{2}\left(\mu_{1} \otimes \mu_{2}\right)$ it suffices to prove that if $h \in \mathscr{L}^{2}\left(\mu_{1} \otimes \mu_{2}\right)$ belongs to the orthogonal complement of Φ then $h \in \mathscr{N}^{2}\left(\mu_{1} \otimes \mu_{2}\right)$. Thus, suppose that $h \in \mathscr{L}^{2}\left(\mu_{1} \otimes \mu_{2}\right)$ and that $\langle h, e \otimes f\rangle_{L^{2}\left(\mu_{1} \otimes \mu_{2}\right)}=0$ for all $e \in E, f \in F$. Using Fubini's theorem,

$$
\int_{X_{1}} e\left(x_{1}\right)\left(\int_{X_{2}} h_{x_{1}}\left(x_{2}\right) f\left(x_{2}\right) d \mu_{2}\left(x_{2}\right)\right) d \mu_{1}\left(x_{1}\right)=0 .
$$

Because this is true for all $e \in E$ and E is dense in $L^{2}\left(\mu_{1}\right)$, it follows that there is some $A_{f} \in \mathscr{A}_{1}$ with $\mu_{1}\left(A_{f}\right)=0$ such that $\int_{X_{2}} h_{x_{1}} f d \mu_{2}=0$ for $x_{1} \notin A_{f}$. Let
$A_{1}=\bigcup_{f \in F} A_{f}$, for which $\mu_{1}\left(A_{1}\right)=0$. If $x_{1} \notin A_{1}$ then $\int_{X_{2}} h_{x_{1}} f d \mu_{2}=0$ for all $f \in F$, and because F is dense in $L^{2}\left(\mu_{2}\right)$ this implies that $h_{x_{1}}=0 \mu_{2}$-almost everywhere. Then

$$
\begin{aligned}
\int_{X_{1} \times X_{2}}|h|^{2} d\left(\mu_{1} \otimes \mu_{2}\right) & =\int_{X_{1}}\left(\int_{X_{2}}\left|h_{x_{1}}\right|^{2} d \mu_{2}\right) d \mu_{1}\left(x_{1}\right) \\
& =\int_{X_{1} \backslash A_{1}}\left(\int_{X_{2}}\left|h_{x_{1}}\right|^{2} d \mu_{2}\right) d \mu_{1}\left(x_{1}\right) \\
& =0
\end{aligned}
$$

which implies that $h=0 \mu_{1} \otimes \mu_{2}$-almost everywhere.

[^0]: ${ }^{1}$ Heinz Bauer, Measure and Integration Theory, p. 52, Corollary 9.7.
 ${ }^{2}$ Heinz Bauer, Measure and Integration Theory, pp. 55-56, §10.
 ${ }^{3}$ Heinz Bauer, Measure and Integration Theory, p. 57, Theorem 11.1.

[^1]: ${ }^{4}$ Heinz Bauer, Measure and Integration Theory, pp. 58-59, §11.
 ${ }^{5}$ Heinz Bauer, Measure and Integration Theory, p. 59, Theorem 11.4.
 ${ }^{6}$ Heinz Bauer, Measure and Integration Theory, p. 61, Theorem 11.6.

[^2]: ${ }^{7}$ Heinz Bauer, Measure and Integration Theory, p. 65, Theorem 12.3.

[^3]: ${ }^{8}$ Heinz Bauer, Measure and Integration Theory, p. 83, Theorem 15.6.
 ${ }^{9}$ Donald L. Cohn, Measure Theory, second ed., p. 102, Proposition 3.4.5.

[^4]: ${ }^{10}$ Heinz Bauer, Measure and Integration Theory, p. 135, Lemma 23.2.
 ${ }^{11}$ Heinz Bauer, Measure and Integration Theory, p. 136, Theorem 23.3.
 ${ }^{12}$ Heinz Bauer, Measure and Integration Theory, p. 138, Lemma 23.5.
 ${ }^{13}$ Heinz Bauer, Measure and Integration Theory, p. 138, Theorem 23.6.
 ${ }^{14}$ Heinz Bauer, Measure and Integration Theory, p. 139, Corollary 23.7.

