The Polya-Vinogradov inequality

Jordan Bell

April 3, 2014

Let $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ be a primitive Dirichlet character modulo m. χ being a Dirichlet character modulo m means that $\chi(k n)=\chi(k) \chi(n)$ for all k, n, that $\chi(n+m)=\chi(n)$ for all n, and that if $\operatorname{gcd}(n, m)>1$ then $\chi(n)=0 . \chi$ being primitive means that the conductor of χ is m. The conductor of χ is the smallest defining modulus of χ. If m^{\prime} is a divisor of m, m^{\prime} is said to be a defining modulus of χ if $\operatorname{gcd}(n, m)=1$ and $n \equiv 1\left(\bmod m^{\prime}\right)$ together imply that $\chi(n)=1$. If $n \equiv 1(\bmod m)$ then $\chi(n)=1$ (sends multiplicative identity to multiplicative identity), so m is a defining modulus, so the conductor of a Dirichlet character modulo m is less than or equal to m.

We shall prove the Polya-Vinogradov inequality for primitive Dirchlet characters. The same inequality holds (using an O term rather than a particular constant) for non-primitive Dirichlet characters. The proof of that involves the fact [1, p. 152, Proposition 8] that a divisor m^{\prime} of m is a defining modulus for a Dirichlet character χ modulo m if and only if there exists a Dirichlet character χ^{\prime} modulo m^{\prime} such that

$$
\chi(n)=\chi_{0}(n) \cdot \chi^{\prime}(n) \quad n \in \mathbb{Z}
$$

where χ_{0} is the principal Dirichlet character modulo m. (The principal Dirichlet character modulo m is that character such that $\chi(n)=0$ if $\operatorname{gcd}(n, m)>1$ and $\chi(n)=1$ otherwise.)

If χ is a Dirichlet character modulo m, define the Gauss sum $G(\cdot, \chi): \mathbb{Z} \rightarrow \mathbb{C}$ corresponding to this character by

$$
G(n, \chi)=\sum_{k=0}^{m-1} \chi(k) e^{2 \pi i k n / m}, \quad n \in \mathbb{Z}
$$

The Polya-Vinogradov inequality states that if χ is a primitive Dirichlet character modulo m, then

$$
\left|\sum_{n \leq N} \chi(n)\right|<\sqrt{m} \log m
$$

We can write $\chi(n)$ using a Fourier series (the Fourier coefficients are defined on the following line, and one proves that any function $\mathbb{Z} / m \rightarrow \mathbb{C}$ is equal to its

Fourier series)

$$
\chi(n)=\sum_{k=0}^{m-1} \hat{\chi}(k) e^{2 \pi i k n / m}
$$

The coefficients are defined by

$$
\begin{aligned}
\hat{\chi}(k) & =\frac{1}{m} \sum_{n=0}^{m-1} \chi(n) e^{-2 \pi i k n / m} \\
& =\frac{1}{m} G(-k, \chi)
\end{aligned}
$$

We use the fact [1, p. 152, Proposition 9] that for any n we have $G(n, \chi)=$ $\bar{\chi}(n) \cdot G(1, \chi)$. This is straightforward to show if $\operatorname{gcd}(n, m)=1$, but takes some more work if $\operatorname{gcd}(n, m)>1$ (to show that $G(n, \chi)=0$ in that case). Using $G(n, \chi)=\bar{\chi}(n) \cdot G(1, \chi)$, we get

$$
\chi(n)=\sum_{k=0}^{m-1} \frac{1}{m} \overline{\chi(-k)} \cdot G(1, \chi) e^{2 \pi i k n / m}=\frac{G(1, \chi)}{m} \sum_{k=0}^{m-1} \overline{\chi(-k)} e^{2 \pi i k n / m}
$$

Therefore

$$
\begin{aligned}
\sum_{n=1}^{N} \chi(n) & =\sum_{n=1}^{N} \frac{G(1, \chi)}{m} \sum_{k=0}^{m-1} \overline{\chi(-k)} e^{2 \pi i k n / m} \\
& =\frac{G(1, \chi)}{m} \sum_{k=0}^{m-1} \overline{\chi(-k)} \sum_{n=1}^{N} e^{2 \pi i k n / m} \\
& =\frac{G(1, \chi)}{m} \sum_{k=1}^{m-1} \overline{\chi(-k)} \sum_{n=1}^{N} e^{2 \pi i k n / m}
\end{aligned}
$$

Let $f(k)=\sum_{n=1}^{N} e^{2 \pi i k n / m}$. Thus

$$
\sum_{n=1}^{N} \chi(n)=\frac{G(1, \chi)}{m} \sum_{k=1}^{m-1} \overline{\chi(-k)} f(k)
$$

and so (because $|\overline{\chi(-k)}|$ is either 1 or 0 and hence is ≤ 1)

$$
\left|\sum_{n=1}^{N} \chi(n)\right|=\frac{|G(1, \chi)|}{m} \sum_{k=1}^{m-1}|f(k)| .
$$

We have $f(m-k)=\overline{f(k)}$, so $|f(m-k)|=|f(k)|$. Hence

$$
\sum_{k=1}^{m-1}|f(k)| \leq 2 \sum_{1 \leq k \leq m / 2}|f(k)|
$$

Moreover, for $1 \leq k \leq m / 2$ we have, setting $r=e^{2 \pi i k / m}$,

$$
|f(k)|=\left|\frac{1-r^{N+1}}{1-r}\right| \leq \frac{2}{|1-r|}=\frac{1}{\sin \frac{\pi k}{m}} \leq \frac{1}{\frac{2}{\pi} \cdot \frac{\pi k}{m}}=\frac{m}{2 k}
$$

Therefore,

$$
\begin{aligned}
\left|\sum_{n=1}^{N} \chi(n)\right| & \leq \frac{|G(1, \chi)|}{m} \cdot 2 \sum_{1 \leq k \leq m / 2}|f(k)| \\
& \leq \frac{|G(1, \chi)|}{m} \cdot 2 \sum_{1 \leq k \leq m / 2} \frac{m}{2 k} \\
& =|G(1, \chi)| \sum_{1 \leq k \leq m / 2} \frac{1}{k} \\
& <|G(1, \chi)| \log m .
\end{aligned}
$$

(If m is large enough. It's not true that $\sum_{1 \leq k \leq m / 2} \frac{1}{k} \leq \log (m / 2)$, but it is true for large enough m that $\sum_{1 \leq k \leq m / 2} \frac{1}{k}<\log m$.)

It is a fact [1, p. 154, Proposition 10] that if χ is a primitive Dirichlet character modulo m and $\operatorname{gcd}(n, m)=1$ then $|G(n, \chi)|=\sqrt{m}$. Thus

$$
\left|\sum_{n=1}^{N} \chi(n)\right|<\sqrt{m} \log m
$$

References

[1] Edmund Hlawka, Johannes Schoißengeier, and Rudolf Taschner. Geometric and analytic number theory. Universitext. Springer, 1991. Translated from the German by Charles Thomas.

