
Polish spaces and Baire spaces

Jordan Bell

June 27, 2014

1 Introduction

These notes consist of me working through those parts of the first chapter of
Alexander S. Kechris, Classical Descriptive Set Theory, that I think are impor-
tant in analysis. Denote by N the set of positive integers. I do not talk about
universal spaces like the Cantor space 2N, the Baire space NN, and the Hilbert
cube [0, 1]N, or “localization”, or about Polish groups.

If (X, τ) is a topological space, the Borel σ-algebra of X, denoted by BX ,
is the smallest σ-algebra of subsets of X that contains τ . BX contains τ , and is
closed under complements and countable unions, and rather than talking merely
about Borel sets (elements of the Borel σ-algebra), we can be more specific
by talking about open sets, closed sets, and sets that are obtained by taking
countable unions and complements.

Definition 1. An Fσ set is a countable union of closed sets.
A Gδ set is a complement of an Fσ set. Equivalently, it is a countable

intersection of open sets.

If (X, d) is a metric space, the topology induced by the metric d is the
topology generated by the collection of open balls. If (X, τ) is a topological
space, a metric d on the set X is said to be compatible with τ if τ is the
topology induced by d. A metrizable space is a topological space whose
topology is induced by some metric, and a completely metrizable space is
a topological space whose topology is induced by some complete metric. One
proves that being metrizable and being completely metrizable are topological
properties, i.e., are preserved by homeomorphisms.

If X is a topological space, a subspace of X is a subset of X which is
a topogical space with the subspace topology inherited from X. Because any
topological space is a closed subset of itself, when we say that a subspace is
closed we mean that it is a closed subset of its parent space, and similarly for
open, Fσ, Gδ. A subspace of a compact Hausdorff space is compact if and only
if it is closed; a subspace of a metrizable space is metrizable; and a subspace of
a completely metrizable space is completely metrizable if and only if it is closed.

A topological space is said to be separable if it has a countable dense
subset, and second-countable if it has a countable basis for its topology. It is
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straightforward to check that being second-countable implies being separable,
but a separable topological space need not be second-countable. However, one
checks that a separable metrizable space is second-countable. A subspace of a
second-countable topological space is second-countable, and because a subspace
of a metrizable space is metrizable, it follows that a subspace of a separable
metrizable space is separable.

A Polish space is a separable completely metrizable space. My own interest
in Polish spaces is because one can prove many things about Borel probability
measures on a Polish space that one cannot prove for other types of topological
spaces. Using the fact (the Heine-Borel theorem) that a compact metric
space is complete and totally bounded, one proves that a compact metrizable
space is Polish, but for many purposes we do not need a metrizable space to
be compact, only Polish, and using compact spaces rather than Polish spaces
excludes, for example, R.

2 Separable Banach spaces

Let K denote either R or C. If X and Y are Banach spaces over K, we denote
by B(X,Y ) the set of bounded linear operators X → Y . With the operator
norm, this is a Banach space. We shall be interested in the strong operator
topology, which is the initial topology on B(X,Y ) induced by the family
{T 7→ Tx : x ∈ X}. One proves that the strong operator topology on B(X,Y )
is induced by the family of seminorms {T 7→ ∥Tx∥ : x ∈ X}, and because this is
a separating family of seminorms, B(X,Y ) with the strong operator topology
is a locally convex space. A basis of convex sets for the strong operator
topology consists of those sets of the form

{S ∈ B(X,Y ) : ∥Sx1 − T1x1∥ < ϵ, . . . , ∥Sxn − Tnxn∥ < ϵ},

for x1, . . . , xn ∈ X, ϵ > 0, T1, . . . , Tn ∈ B(X,Y ).
We prove conditions under which the closed unit ball in B(X,Y ) with the

strong operator topology is Polish.1

Theorem 2. Suppose that X and Y are separable Banach spaces. Then the
closed unit ball

B1 = {T ∈ B(X,Y ) : ∥T∥ ≤ 1}

with the subspace topology inherited from B(X,Y ) with the strong operator
topology is Polish.

Proof. Let E be Q or {a+ ib : a, b ∈ Q}, depending on whether K is R or C, let
D0 be a countable dense subset of X, and let D be the span of D0 over K. D
is countable and Y is Polish, so the product Y D is Polish. Define Φ : B1 → Y D

by Φ(T ) = T ◦ ι, where ι : D → X is the inclusion map. If Φ(S) = Φ(T ),
then because D is dense in X and S, T : X → Y are continuous, X = Y ,

1Alexander S. Kechris, Classical Descriptive Set Theory, p. 14.
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showing that Φ is one-to-one. We check that Φ(B1) consists of those f ∈ Y D

such that both (i) if x, y ∈ D and a, b ∈ E then f(ax + by) = af(x) + bf(y),
and (ii) if x ∈ D then ∥f(x)∥ ≤ ∥x∥. One proves that Φ(B1) is a closed subset
of Y D, and because Y D is Polish this implies that Φ(B1) with the subspace
topology inherited from Y D is Polish. Then one proves that Φ : B1 → Φ(B1) is
a homeomorphism, where B1 has the subspace topology inherited from B(X,Y )
with the strong operator topology, which tells us that B1 is Polish.

If X is a Banach space over K, where K is R or C, we write X∗ = B(X,K).
The strong operator topology on B(X,K) is called the weak-* topology on X∗.
Keller’s theorem2 states that if X is a separable infinite-dimensional Banach
space, then the closed unit ball in X∗ with the subspace topology inherited from
X∗ with the weak-* topology is homeomorphic to the Hilbert cube [0, 1]N.

3 G-delta sets

If (X, d) is a metric space and A is a subset of X, we define

diam(A) = sup{d(x, y) : x, y ∈ A},

with diam(∅) = 0, and if x ∈ X we define

d(x,A) = inf{d(x, y) : y ∈ A},

with d(x, ∅) = ∞. We also define

Bd(A, ϵ) = {x ∈ X : d(x,A) < ϵ}.

If X and Y are topological spaces and f : X → Y is a function, the set of
continuity of f is the set of all points in X at which f is continuous. To say
that f is continuous is equivalent to saying that its set of continuity is X.

If X is a topological space, (Y, d) is a metric space, A ⊂ X, and f : A → Y
is a function, for x ∈ X we define the oscillation of f at x as

oscf (x) = inf{diam(f(U ∩A)) : U is an open neighborhood of x}.

To say that f : A→ Y is continuous at x ∈ A means that for every ϵ > 0 there is
some open neighborhood U of x such that y ∈ U∩A implies that d(f(y), f(x)) <
ϵ, and this implies that diam(f(U ∩ A)) ≤ 2ϵ. Hence if f is continuous at x
then oscf (x) = 0. On the other hand, suppose that oscf (x) = 0 and let ϵ > 0.
There is then some open neighborhood U of x such that diam(f(U ∩ A)) < ϵ,
and this implies that d(f(y), f(x)) < ϵ for every y ∈ U ∩ A, showing that f is
continuous at x. Therefore, the set of continuity of f : A→ Y is

{x ∈ A : oscf (x) = 0}.
2Alexander S. Kechris, Classical Descriptive Set Theory, p. 64, Theorem 9.19.
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As well, if x ∈ X\A = A
c
, then A

c
is an open neighborhood of x and f(A

c∩A) =
f(∅) = ∅ and diam(∅) = 0, so in this case oscf (x) = 0.

The following theorem shows that the set of points where a function taking
values in a metrizable space has zero oscillation is a Gδ set.3

Theorem 3. Suppose that X is a topological space, Y is a metrizable space,
A ⊂ X, and f : A→ Y is a function. Then {x ∈ X : oscf (x) = 0} is a Gδ set.

Proof. Let d be a metric on Y that induces its topology and let Aϵ = {x ∈
X : oscf (x) < ϵ}. For x ∈ Aϵ, there is an open neighborhood U of x such that
oscf (x) ≤ diam(f(U ∩ A)) < ϵ. But if y ∈ U then U is an open neighborhood
of y and diam(f(U ∩ A)) < ϵ, so oscf (y) < ϵ and hence y ∈ Aϵ, showing that
Aϵ is open. Finally,

{x ∈ X : oscf (x) = 0} =
⋂
n∈N

A1/n,

which is a Gδ set, completing the proof.

In a metrizable space, the only closed sets that are open are ∅ and the space
itself, but we can show that any closed set is a countable intersection of open
sets.4

Theorem 4. If X is a metrizable space, then any closed subset of X is a Gδ

set.

Proof. Let d be a metric on X that induces its topology. Suppose that A is a
nonempty subset of X and that x, y ∈ X. We have d(x,A) ≤ d(x, y) + d(y,A)
and d(y,A) ≤ d(y, x) + d(x,A), so

|d(x,A)− d(y,A)| ≤ d(x, y).

It follows that Bd(A, ϵ) is open. But if F is a closed subset of X then check that

F =
⋂
n∈N

Bd(F, 1/n),

which is an Fσ set, completing the proof. (If we did not know that F was closed
then F would be contained in this intersection, but need not be equal to it.)

Kechris attributes the following theorem5 to Kuratowski. It and the follow-
ing theorem are about extending continuous functions from a set to a Gδ set
that contains it, and we will use the following theorem in the proof of Theorem
7.

3Alexander S. Kechris, Classical Descriptive Set Theory, p. 15, Proposition 3.6.
4Alexander S. Kechris, Classical Descriptive Set Theory, p. 15, Proposition 3.7.
5Alexander S. Kechris, Classical Descriptive Set Theory, p. 16, Theorem 3.8.
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Theorem 5. Suppose that X is metrizable, Y is completely metrizable, A is a
subspace of X, and f : A → Y is continuous. Then there is a Gδ set G in X
such that A ⊂ G ⊂ A and a continuous function g : G → Y whose restriction
to A is equal to f .

Proof. Let G = A ∩ {x ∈ X : oscf (x) = 0}. Theorem 4 tells us that the first
set is Gδ and Theorem 3 tells us that the second set is Gδ, so G is Gδ. Because
f : A→ Y is continuous, A ⊂ {x ∈ X : oscf (x) = 0}, and hence A ⊂ G.

Let x ∈ G ⊂ A, and let xn, tn ∈ A with xn → x and tn → x. Be-
cause oscf (x) = 0, for every ϵ > 0 there is some open neighborhood U of x
such that diam(f(U ∩ A)) < ϵ. But then there is some n such that k ≥ n
implies that xk, tk ∈ U , and thus diam(f({xk, tk : k ≥ n})) < ϵ. Hence
diam(f({xk, tk : k ≥ n})) → 0 as n→ ∞, and this is equivalent to the sequence
f(x1), f(t1), f(x2), f(t2), . . . being Cauchy. Because Y is completely metrizable
this sequence converges to some y ∈ Y and therefore the subsequence f(xn)
and the subsequence f(tn) both converge to y. Thus it makes sense to define
g : G→ Y by

g(x) = lim
n→∞

f(xn),

and the restriction of g to A is equal to f . It remains to prove that g is
continuous.

If U is an open subset of X, then g(U ∩G) ⊂ f(U ∩A), hence

diam(g(U ∩G)) ≤ diam(f(U ∩A)) = diam(f(U ∩A)).

For any x ∈ G this and oscf (x) = 0 yield

oscg(x) ≤ oscf (x) = 0,

showing that the set of continuity of g is G, i.e. that g is continuous.

The following shows that a homeomorphism between subsets of metrizable
spaces can be extended to a homeomorphism of Gδ sets.6

Theorem 6 (Lavrentiev’s theorem). Suppose that X and Y are completely
metrizable spaces, that A is a subspace of X, and that B is a subspace of Y . If
f : A→ B is a homeomorphism, then there are Gδ sets G ⊃ A and H ⊃ B and
a homeomorphism G→ H whose restriction to A is equal to f .

Proof. Theorem 5 tells us that there is a Gδ set G1 ⊃ A and a continuous
function g1 : G1 → Y whose restriction to A is equal to f , and there is a Gδ set
H1 ⊃ B and a continuous function h1 : H1 → X whose restriction to B is equal
to f−1. Let

R = {(x, y) ∈ G1 × Y : y = g1(x)}, S = {(x, y) ∈ X ×H1 : x = h1(y)}.
6Alexander S. Kechris, Classical Descriptive Set Theory, p. 16, Theorem 3.9.
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Because g1 : G1 → Y is continuous, R is a closed subset of X × Y , and because
h1 : H1 → X is continuous, S is a closed subset of X × Y . Let

G = πX(R ∩ S), H = πY (R ∩ S),

where πX : X × Y → X and πY : X × Y → Y are the projection maps. If
x ∈ A then h1(g1(x)) = f−1(f(x)) = x, and hence x ∈ G, and if y ∈ B then
g1(h1(y)) = f(f−1(y)) = y, and hence y ∈ H, so we have

A ⊂ G ⊂ G1, B ⊂ H ⊂ H1.

The map E1 : G1 → X × Y defined by E1(x) = (x, g1(x)) is continuous
because g1 : G1 → Y is continuous, and hence

E−1
1 (S) = {x ∈ G1 : x = h1(g1(x))} = G

is a closed subset of G1, and thus by Theorem 4 is a Gδ set in G1. But G1 is
a Gδ subset of X, so G is a Gδ set in X also. Define E2 : H1 → X × Y by
E2(y) = (h1(y), y), which is continuous because h1 is continuous. Then

E−1
2 (R) = {y ∈ H1 : y = g1(h1(y))} = H

is a closed subset of H1, and hence is Gδ in H1. But H1 is a Gδ subset of Y , so
H1 is a Gδ set in Y also.

Check that the restriction of g1 to G1 is a homeomorphism G1 → H1 whose
restriction to A is equal to f , completing the proof.

If a topological space has some property and Y is a subset of X, one wants
to know conditions under which Y with the subspace topology inherited from X
has the same property. For example, a subspace of a compact Hausdorff space
is compact if and only if it is closed, and a subspace of a completely metrizable
space is completely metrizable if and only if it is closed. The following theorem
shows in particular that a subspace of a Polish space is Polish if and only if it
is Gδ.

7 (The statement of the theorem is about completely metrizable spaces
and we obtain the conclusion about Polish spaces because any subspace of a
separable metrizable space is itself separable.)

Theorem 7. Suppose that X is a metrizable space and Y is a subset of X
with the subspace topology. If Y is completely metrizable then Y is a Gδ set in
X. If X is completely metrizable and Y is a Gδ set in X then Y is completely
metrizable.

Proof. Suppose that Y is completely metrizable. The map idY : Y → Y is
continuous, so Theorem 5 tells us that there is a Gδ set Y ⊂ G ⊂ Y and a
continuous function g : G → Y whose restriction to Y is equal to idY . For
x ∈ G ⊂ Y , there are yn ∈ Y with yn → x, and because g is continuous we get
idY (yn) = g(yn) → g(x), i.e. yn → g(x), hence g(x) = x. But g : G → Y so
x ∈ Y , showing that G = Y and hence that Y is a Gδ set.

7Alexander S. Kechris, Classical Descriptive Set Theory, p. 17, Theorem 3.11.
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Suppose that X is completely metrizable and that Y is a Gδ subset of X,
and let d be a complete metric on X that is compatible with the topology of X;
if we restrict this metric to Y then it is a metric on Y that is compatible with
the subspace topology on Y inherited from X, but it need not be a complete
metric. Let Un be open sets in X with Y =

⋂
n∈N Un, let Fn = X \ Un, and for

x, y ∈ Y define

d1(x, y) = d(x, y) +
∑
n∈N

min

{
2−n,

∣∣∣∣ 1

d(x, Fn)
− 1

d(y, Fn)

∣∣∣∣} .
One proves that d1 is a metric on Y and that it is compatible with the subspace
topology on Y . Suppose that yn ∈ Y is Cauchy in (Y, d1). Because d ≤ d1,
this is also a Cauchy sequence in (X, d), and because (X, d) is complete, there
is some y ∈ X such that yn → y in (X, d). Then one proves that yn → y in
(Y, d1), from which we have that (Y, d1) is a complete metric space.

4 Continuous functions on a compact space

If X and Y are topological spaces, we denote by C(X,Y ) the set of continuous
functions X → Y . If X is a compact topological space and (Y, ρ) is a metric
space, we define

dρ(f, g) = sup
x∈X

ρ(f(x), g(x)), f, g ∈ C(X,Y ),

which is a metric on C(X,Y ), which we call the ρ-supremum metric. One
proves that dρ is a complete metric on C(X,Y ) if and only if ρ is a complete
metric on Y .8 It follows that if Y is a Banach space then so is C(X,Y ) with
the supremum norm ∥f∥∞ = supx∈X ∥f(x)∥Y .

Suppose that X is a compact topological space and that Y is a metrizable
space. If ρ1, ρ2 are metrics on Y that induce its topology, then dρ1 , dρ2 are
metrics on C(X,Y ), and it can be proved that they induce the same topology,9

which we call the topology of uniform convergence.
Finally, if X is a compact metrizable space and Y is a separable metrizable

space, it can be proved that C(X,Y ) is separable.10

Thus, using what we have stated above, suppose that X is a compact metriz-
able space and that Y is a Polish space. Because X is a compact metrizable
space and Y is a separable metrizable space, C(X,Y ) is separable. Because X
is a compact topological space and Y is a completely metrizable space, C(X,Y )
is completely metrizable, and hence Polish.

8Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 124, Lemma 3.97.

9Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 124, Lemma 3.98.

10Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 125, Lemma 3.99.
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5 C([0,1])

C1(R) consists of those functions F : R → R such that for each x0 ∈ R, there is
some F ′(x0) ∈ R such that

F ′(x0) = lim
x→x0

F (x)− F (x0)

x− x0
,

and such that this function F ′ belongs to C(R). We define C1([0, 1]) to be those
functions [0, 1] → R that are the restriction to [0, 1] of some element of C1(R).
We shall prove that C1([0, 1]) is an Fσδ set in C([0, 1]).11

Suppose that f ∈ C1([0, 1]). For each x ∈ [0, 1],

6 Meager sets and Baire spaces

Let X be a topological space. A subet A of X is called nowhere dense if
the interior of A is ∅. A subset A of X is called meager if it is a countable
union of nowhere dense sets. A meager set is also said to be of first category,
and a nonmeager is said to be of second category. Meager is a good name
for at least two reasons: it is descriptive and the word is not already used to
name anything else. First category and second category are bad names for at
least four reasons: the words describe nothing, they are phrases rather than
single words, they suggests an ordering, and they conflict with reserving the
word “category” for category theory. A complement of a meager is said to be
comeager.

If X is a set, an ideal on X is a collection of subsets of X that includes ∅
and is closed under subsets and finite unions. A σ-ideal on X is an ideal that
is closed under countable unions.

Lemma 8. The collection of meager subsets of a topological space is a σ-ideal.

If X is a topological space and x ∈ X, we say that x is isolated if {x}
is open. We say X is perfect if it has no isolated points, and a T1 space if
{x} is closed for each x ∈ X. Suppose that X is a perfect T1 space and let A
be a countable subset of X. For each x ∈ A, because X is T1, the closure of
{x} is {x}, and because X is perfect, the interior of {x} is ∅, and hence {x}
is nowhere dense. A =

⋃
x∈A{x} is a countable union of nowhere dense sets,

hence is meager. Thus we have proved that any countable subset of a perfect
T1 space is meager.

Suppose that X is a topological space. If every comeager set in X is dense,
we say that X is a Baire space.

Lemma 9. A topological space is a Baire space if and only if the intersection
of any countable family of dense open sets is dense.

We prove that open subsets of Baire spaces are Baire spaces.12

11Alexander S. Kechris, Classical Descriptive Set Theory, p. 70.
12Alexander S. Kechris, Classical Descriptive Set Theory, p. 41, Proposition 8.3.
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Theorem 10. If X is a Baire space and U is an open subspace of X, then U
is a Baire space.

Proof. Because U is open, an open subset of U is an open subset of X that is
contained in U . Suppose that Un, n ∈ N, are dense open subsets of U . So they
are each open subsets of X, and Un ∪ (X \ U) is a dense open subset of X for
each n ∈ N. Then because X is a Baire space,

⋂
n∈N

(Un ∪ (X \ U)) =

(⋂
n∈N

Un

)
∪ (X \ U)

is dense in X. It follows that
⋂

n∈N Un is dense in U , showing that U is a Baire
space.

The following is the Baire category theorem.13

Theorem 11 (Baire category theorem). Every completely metrizable space is
a Baire space. Every locally compact Hausdorff space is a Baire space.

Proof. Let X be a completely metrizable space and let d be a complete metric
on X compatible with the topology. Suppose that Un are dense open subsets
of X. To show that

⋂
n∈N Un is dense it suffices to show that for any nonempty

open subset U of X, ⋂
n∈N

(Un ∩ U) = U ∩
⋂
n∈N

Un ̸= ∅.

Because U is a nonempty open set it contains an open ball B1 of radius < 1 with
B1 ⊂ U . Since U1 is dense and B1 is open, B1 ∩ U1 ̸= ∅ and is open because
both B1 and U1 are open. As B1 ∩ U1 is a nonempty open set it contains an
open ball B2 of radius < 1

2 with B2 ⊂ B1 ∩ U1. Suppose that n > 1 and that

Bn is an open ball of radius < 1
n with Bn ⊂ Bn−1 ∩ Un−1. Since Un is dense

and Bn is open, Bn∩Un ̸= ∅ and is open because both Bn and Un are open. As
Bn ∩Un is a nonempty open set it contains an open ball Bn+1 of radius < 1

n+1

with Bn+1 ⊂ Bn ∩ Un. Then, we have Bn+1 ⊂ Bn for each n ∈ N. Letting xi
be the center of Bi, we have d(xj , xi) <

1
i for j > i, and hence xi is a Cauchy

sequence. Since (X, d) is a complete metric space, there is some x ∈ X such that
xi → x. For any m there is some i0 such that i ≥ i0 implies that d(xi, x) <

1
m ,

and hence x ∈ Bm =
⋂m

n=1Bn. Therefore

x ∈
⋂
n∈N

Bn ⊂
⋂
n∈N

(Un ∩ U),

which shows that
⋂

n∈N Un is dense and hence that X is a Baire space.
Let X be a locally compact Hausdorff space. Suppose that Un are dense

open subsets of X and that U is a nonempty open set. Let x1 ∈ U , and because

13Alexander S. Kechris, Classical Descriptive Set Theory, p. 41, Theorem 8.4.
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X is a locally compact Hausdorff space there is an open neighborhood V1 of x1
with V1 compact and V1 ⊂ U . Since U1 is dense and V1 is open, there is some
x2 ∈ V1 ∩ U1. As V1 ∩ U1 is open, there is an open neighborhood V2 of x2 with
V2 compact and V2 ⊂ V1 ∩U1. Thus, Vn are compact and satisfy Vn+1 ⊂ Vn for
each n, and hence ⋂

n∈N
Vn ̸= ∅.

This intersection is contained in
⋂

n∈N(Un ∩ U) which is therefore nonempty,
showing that

⋂
n∈N Un is dense and hence that X is a Baire space.

7 Nowhere differentiable functions

From what we said in §4, because [0, 1] is a compact metrizable space and R is
a Polish space, C([0, 1]) = C([0, 1],R) with the topology of uniform convergence
is Polish. This topology is induced by the norm ∥f∥∞ = supx∈[0,1] |f(x)|, with
which C([0, 1]) is thus a separable Banach space.

For a function F : R → R to be differentiable at a point x0 means that there
is some F ′(x0) ∈ R such that

lim
x→x0

F (x)− F (x0)

x− x0
= F ′(x0).

If f : [0, 1] → R is a function and x0 ∈ [0, 1], we say that f is differentiable
at x0 if there is some function F : R → R that is differentiable at x0 and
whose restriction to [0, 1] is equal to f , and we write f ′(x0) = F ′(x0). The
purpose of speaking in this way is to be precise about what we mean by f being
differentiable at the endpoints of the interval [0, 1].

If f : [0, 1] → R is differentiable at x0 ∈ [0, 1], then there is some δ > 0 such
that if 0 < |x− x0| < δ and x ∈ [0, 1], then∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < 1,

and hence
|f(x)− f(x0)| < (1 + |f ′(x0)|)|x− x0|.

On the other hand, if f ∈ C([0, 1]) then {x ∈ [0, 1] : |x− x0| ≥ δ} is a compact

set on which x 7→ f(x)−f(x0)
x−x0

is continuous, and hence the absolute value of this
function is bounded by some M . Thus, if |x− x0| ≥ δ and x ∈ [0, 1], then∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤M,

hence
|f(x)− f(x0)| ≤M |x− x0|.
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Therefore, if f ∈ C([0, 1]) is differentiable at x0 ∈ [0, 1] then there is some
positive integer N such that

|f(x)− f(x0)| ≤ N |x− x0|, x ∈ [0, 1].

For N ∈ N, let EN be those f ∈ C([0, 1]) for which there is some x0 ∈ [0, 1]
such that

|f(x)− f(x0)| ≤ N |x− x0|, x ∈ [0, 1].

We have established that if f ∈ C([0, 1]) and there is some x0 ∈ [0, 1] such
that f is differentiable at x0, then there is some N ∈ N such that f ∈ EN .
Therefore, the set of those f ∈ C([0, 1]) that are differentiable at some point in
[0, 1] is contained in ⋃

N∈N
EN ,

and hence to prove that the set of f ∈ C([0, 1]) that are nowhere differentiable
is comeager in C([0, 1]), it suffices to prove that each EN is nowhere dense. To
show this we shall follow the proof in Stein and Shakarchi.14

Lemma 12. For each N ∈ N, EN is a closed subset of the Banach space
C([0, 1]).

Proof. C([0, 1]) is a metric space, so to show that EN is closed it suffices to
prove that if fn ∈ EN is a sequence tending to f ∈ C([0, 1]), then f ∈ EN . For
each n, let xn ∈ [0, 1] be such that

|fn(x)− fn(xn)| ≤ N |x− xn|, x ∈ [0, 1].

Because xn is a sequence in the compact set [0, 1], it has subsequence xa(n) that
converges to some x0 ∈ [0, 1]. For all x ∈ [0, 1] we have

|f(x)− f(x0)| ≤ |f(x)− fa(n)(x)|+ |fa(n)(x)− fa(n)(x0)|
+|fa(n)(x0)− f(x0)|.

Let ϵ > 0. Because ∥fn − f∥∞ → 0, there is some n0 such that when n ≥ n0,
the first and third terms on the right-hand side are each < ϵ. For the second
term on the right-hand side, we use

|fa(n)(x)− fa(n)(x0)| ≤ |fa(n)(x)− fa(n)(xa(n))|+ |fa(n)(xa(n))− fa(n)(x0)|.

But fa(n) ∈ EN , so this is ≤

N |x− xa(n)|+N |xa(n) − x0|.

Putting everything together, for n ≥ n0 we have

|f(x)− f(x0)| < 2ϵ+N |x− xa(n)|+N |xa(n) − x0|.
14Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 163, Theorem 1.5.
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Because xa(n) → x0, we get

|f(x)− f(x0)| ≤ 2ϵ+N |x− x0|.

But this is true for any ϵ > 0, so

|f(x)− f(x0)| ≤ N |x− x0|,

showing that f ∈ EN .

For M ∈ N let PM be the set of those f ∈ C([0, 1]) that are piecewise linear
and whose line segments have slopes with absolute value ≥ M . If M,N ∈ N,
M > N , and f ∈ PM , then for any x0 ∈ [0, 1], this x0 is the abscissa of a point
on at least one line segment whose slope has absolute value ≥M (the point will
be on two line segments when it is their common endpoint), and then there is
another point on this line segment, with abscissa x, such that |f(x)− f(x0)| ≥
M |x − x0| > N |x − x0|, and the fact that for every x0 ∈ [0, 1] there is such
x ∈ [0, 1] means that f ̸∈ EN . Therefore, if M > N then PM ∩ EN = ∅.

Lemma 13. For each M ∈ N, PM is dense in C([0, 1]).

Proof. Let f ∈ C([0, 1]) and ϵ > 0. Because f is continuous on the compact set
[0, 1] it is uniformly continuous, so there is some positive integer n such that
|x− y| ≤ 1

n implies that |f(x)− f(y)| ≤ ϵ. We define g : [0, 1] → R to be linear

on the intervals [ kn ,
k+1
n ], k = 0, . . . , n− 1 and to satisfy

g

(
k

n

)
= f

(
k

n

)
, k = 0, . . . , n.

This nails down g, and for any x ∈ [0, 1] there is some k = 0, . . . , n − 1 such
that x lies in the interval [ kn ,

k+1
n ]. But since g is linear on this interval and we

know its values at the endpoints, for any y in this interval we have

g(y) =
f
(
k+1
n

)
− f

(
k
n

)
k+1
n − k

n

y + f

(
k

n

)
−
f
(
k+1
n

)
− f

(
k
n

)
k+1
n − k

n

· k
n

= n

(
f

(
k + 1

n

)
− f

(
k

n

))
y + f

(
k

n

)
− k

(
f

(
k + 1

n

)
− f

(
k

n

))
,

so

|g(x)− f(x)| ≤ |g(x)− g(k/n)|+ |g(k/n)− f(k/n)|+ |f(k/n)− f(x)|
= |g(x)− f(k/n)|+ |f(k/n)− f(x)|

= n

∣∣∣∣(f (k + 1

n

)
− f

(
k

n

))(
x− k

n

)∣∣∣∣+ |f(k/n)− f(x)|

≤
∣∣∣∣f (k + 1

n

)
− f

(
k

n

)∣∣∣∣+ |f(k/n)− f(x)|

≤ 2ϵ.
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This is true for all x ∈ [0, 1], so

∥g − f∥∞ ≤ 2ϵ.

Now that we know that we can approximate any f ∈ C([0, 1]) with con-
tinuous piecewise linear functions, we shall show that we can approximate any
continuous piecewise linear function with elements of PM , from which it will
follow that PM is dense in C([0, 1]). Let g be a continuous piecewise linear
function. We can write g in the following way: there is some positive integer n
and a0, . . . , an−1, b0, . . . , bn−1 ∈ R such that g is linear on the intervals [ kn ,

k+1
n ],

k = 0, . . . , n − 1, and satisfies g(x) = akx + bk for x ∈ [ kn ,
k+1
n ]; this can be

satisfied precisely when ak
k+1
n + bk = ak+1

k+1
n + bk+1 for each k = 0, . . . , n− 1.

For ϵ > 0, let

ϕϵ(x) = g(x) + ϵ, ψϵ(x) = g(x)− ϵ, x ∈ [0, 1].

We shall define a function h : [0, 1] → R by describing its graph. We start at
(0, g(0)), and then the graph of h is a line segment of slope M until it intersects
the graph of ϕϵ, at which point the graph of h is a line segment of slope −M until
it intersects the graph of ψϵ. We repeat this until we hit the point ( 1n , h(

1
n ));

we remark that it need not be the case that h( 1n ) = g( 1n ). If ( 1n , h(
1
n )) lies on

the graph of ϕϵ then we start a line segment of slope −M , and if it lies on the
graph of ψϵ then we start a line segment of slope M , and otherwise we continue
the existing line segment until it intersects ϕϵ or ψϵ and we repeat this until
the point ( 2n , h(

2
n )), and then repeat this procedure. This constructs a function

h ∈ PM such that ∥h− g∥∞ ≤ ϵ. But for any f ∈ C([0, 1]) and ϵ > 0, we have
shown that there is some continuous piecewise linear g such that ∥g − f∥∞ < ϵ,
and now we know that there is some h ∈ PM such that ∥h− g∥∞ < ϵ, so
∥h− f∥∞ < 2ϵ, showing that PM is dense in C([0, 1]).

Let N ∈ N, suppose that f ∈ EN , and let ϵ > 0. Let M > N , and because
PM is dense in C([0, 1]), there is some h ∈ PM such that ∥f − h∥∞ < ϵ. But
PM ∩ EN = ∅ because M > N , so h ̸∈ EN , showing that there is no open ball
with center f that is contained in EN , which shows that EN has empty interior.
But we have shown that EN is closed, so the interior of the closure of EN is
empty, namely, EN is nowhere dense, which completes the proof.

8 The Baire property

Suppose that X is a topological space and that I is the σ-ideal of meager sets
in X. For A,B ⊂ X, write

A△B = (A \B) ∪ (B \A).

We write A =∗ B if A△B ∈ I . One proves that if A =∗ B then X\A =∗ X\B,
and that if An =∗ Bn then

⋂
n∈NAn =∗ ⋂

n∈NBn and
⋃

n∈NAn =∗ ⋃
n∈NBn.

A subset A of X is said to have the Baire property if there is an open set U

13



such that A =∗ U . (It is a common practice to talk about things that are equal
to a thing that is somehow easy to work with modulo things that are considered
small.) The following theorem characterizes the collection of subsets with the
Baire property of a topological space.15

Theorem 14. Let X be a topological space and let B be the collection of
subsets of X with the Baire property. Then B is a σ-algebra on X, and is the
algebra generated by all open sets and all meager sets.

Proof. If F is closed, then F \ Int(F ) is closed and has empty interior, so is
nowhere dense and therefore meager. Thus, if F is closed then F =∗ Int(F ).

∅ =∗ ∅ and ∅ is open so ∅ has the Baire property, and so belongs to B.
Suppose that B ∈ B. This means that there is some open set U such that
B =∗ U , which implies that X \ B =∗ X \ U . But X \ U is closed, hence
X \U =∗ Int(X \U), so X \B =∗ Int(X \U). As Int(X \U) is open, this shows
that X \B has the Baire property, that is, X \B ∈ B.

Suppose that Bn ∈ B. So there are open sets Un such that Bn =∗ Un, and
it follows that

⋃
n∈NBn =∗ ⋃

n∈N Un. The union on the right-hand side is open,
so
⋃

n∈N has the Baire property and thus belongs to B. This shows that B is
a σ-algebra.

Suppose that A is an algebra containing all open sets and all meager sets,
and let B ∈ B. Because B has the Baire property there is some open set U such
that B =∗ U , which means that M = B△U = (B \U)∪ (U \B) is meager. But
B =M △U = (M \U)∪ (U \M), and because A is an algebra and U,M ∈ A
we get B ∈ A , showing that B ⊂ A .

If Xn is a sequence of sets, we call A ⊂
∏

n∈NXn a tail set if for all (xn) ∈ A
and (yn) ∈

∏
n∈NXn, {n ∈ N : yn ̸= xn} being finite implies that (yn) ∈ A. The

following theorem states is a topological zero-one law,16 whose proof uses the
Kutatowski-Ulam theorem,17 which is about meager sets in a product of two
second-countable topological spaces. Since, from the Baire category theorem,
any completely metrizable space is a Baire space and a separable metrizable
space is second-countable, we can in particular use the following theorem when
the Xn are Polish spaces.

Theorem 15. Suppose that Xn is a sequence of second-countable Baire spaces.
If A ⊂

∏
n∈NXn has the Baire property and is a tail set, then A is either meager

or comeager.

15Alexander S. Kechris, Classical Descriptive Set Theory, p. 47, Proposition 8.22.
16Alexander S. Kechris, Classical Descriptive Set Theory, p. 55, Theorem 8.47.
17Alexander S. Kechris, Classical Descriptive Set Theory, p. 53, Theorem 8.41.
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