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1 Introduction

In this note we present proofs of the Poincaré normal form theorem and the
Poincaré-Dulac normal form theorem for formal vector fields. Other accounts
in the literature do not explicitly work out the proofs by induction of these
theorems. Our presentation is a more precise and detailed version of the pre-
sentation in [5, §§3–5]. These topics are also covered in [1, §I.3], [2, Chapter
5], and [3, §A.5]. The history of the problem of normalization of vector fields
is presented by Yakovenko in review 96a:34021 in Mathematical Reviews. The
computation of normal forms is discussed in [6] and [7, Chapter 19].

The Poincaré-Dulac normal form has recently been used in [4], which proves
the unconditional uniqueness of solutions of the periodic one-dimensional cubic
nonlinear Schrödinger equation.

In §6 we give detailed examples where we explicitly compute the leading
terms of the formal maps which conjugate formal vector fields to their Poincaré
normal form and Poincaré-Dulac normal form.

2 Formal vector fields

Let C[[x]] = C[[x1, . . . , xn]] be the algebra of formal power series in the variables
x1, . . . , xn:

C[[x]] =
{ ∑

|α|≥0

cαx
α : cα ∈ C

}
,

where α = (α1, . . . , αn) ∈ Zn
≥0, |α| = α1 + . . .+ αn, and xα = xα1

1 · · ·xαn
n .

A formal vector field is an element of g = C[[x]]n, that is, an n-tuple of
formal power series. g is a Lie algebra with the vector field commutator as its
Lie bracket, defined for F,G ∈ g by

[F,G](x) =
∂G

∂x
(x)F (x)− ∂F

∂x
(x)G(x).

For F ∈ g, we define adF : g → g by adF (G) = [F,G] for G ∈ g.
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Let m ⊂ C[[x]] be the set of formal power series with constant term 0. An
element of mn (an n-tuple of elements of m) is said to be a formal map. If
H = (h1, . . . , hn) is a formal map and f(x) =

∑
|α|≥0 cαx

α is a formal power
series, then

f(H(x)) =
∑
|α|≥0

cαh1(x)
α1 · · ·hn(x)

αn

is a formal power series. We call elements of mn formal maps because we can
compose formal power series with them. On the other hand, f(x) =

∑∞
k=0 x

k

is a formal power series, but for H(x) = 1 + x (which has nonzero constant
coefficient),

f(H(x)) =

∞∑
k=0

(1 + x)k =

∞∑
k=0

k∑
j=0

(
k

j

)
xj

is not a formal power series because, for instance, the constant coefficient is
infinite (indeed, each coefficient is infinite).

Two formal vector fields F, F ′ are said to be equivalent if there is a formal
map H such that

∂H

∂x
(x)F (x) = F ′(H(x)).

It is clear that if F (0) = 0 and F is equivalent to F ′, then F ′(0) = 0.
Let Hm ⊂ C[[x]] be the vector space whose elements are homogeneous poly-

nomials of degree m in the variables x1, . . . , xn, and 0, and let Dm = H n
m ⊂ g.

For a formal vector field F , the linearization of F is the n×nmatrix A defined
by Ai,j = ∂Fi

∂xj
(0), i.e., A = ∂F

∂x (0). A formal vector field F with F (0) = 0 and

with linearization A can be written as

F (x) = Ax+

∞∑
j=2

V j(x)

for some V j ∈ Dj .
The following theorem is the inverse function theorem for formal maps [5,

pp. 32–33].

Theorem 1. If H is a formal map and ∂H
∂x (0) is invertible, then there is a

formal map H−1 such that H(H−1(x)) = x and H−1(H(x)) = x.

The following theorem shows that any formal vector field is equivalent to a
formal vector field whose linearization is in Jordan normal form.

Theorem 2. If a formal vector field F has linearization A and A = QBQ−1,
then F is equivalent to a formal vector field with linearization B.

Proof. Let H(x) = Q−1x, and define F ′ by F ′(x) = Q−1F (Qx). F ′ has lin-
earization

∂F ′

∂x
(0) = Q−1 ∂F

∂x
(0)Q = Q−1AQ = B,
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and
∂H

∂x
(x)F (x) = Q−1F (x) = F ′(H(x)),

so F is equivalent to F ′.

A vector λ ∈ Cn is said to be resonant if there is some α ∈ Zn
≥0 with |α| ≥ 2

and some 1 ≤ k ≤ n such that λk = ⟨α, λ⟩. We define ⟨α, λ⟩ =
∑n

j=1 αjλj . An
n×n matrix A is said to be resonant if the vector of its eigenvalues is resonant,
and a formal vector field is said to be resonant if its linearization is resonant.
|α| is the order of the resonance.

3 Poincaré normal form theorem for formal vec-
tor fields

The following theorem is the Poincaré normal form theorem, which states that
a nonresonant formal vector field with constant term 0 whose linearization is
in Jordan normal form is equivalent to its linearization. By Theorem 2 any
formal vector field is equivalent to a formal vector field whose linearization is in
Jordan normal form, so it follows that any nonresonant formal vector field with
constant term 0 can be linearized.

Theorem 3. If F is a nonresonant formal vector field with constant term 0
and the linearization A of F is in Jordan normal form, then F is equivalent to
the formal vector field F ′ defined by F ′x = Ax.

Proof. We prove the claim by induction. Let F2 = F . We can write

F2(x) = Ax+

∞∑
j=2

V j
2 (x)

where V j
2 ∈ Dj . Let H1(x) = x. Then ∂H1

∂x F (x) = F2(H1(x)), and thus F
is equivalent to the formal vector field F2. Assume that for some m there are
V j
m ∈ Dj , j = m, . . ., such that F is equivalent to

Fm(x) = Ax+

∞∑
j=m

V j
m(x).

We want to show that there are V j
m+1 ∈ Dj , j = m + 1, . . ., such that Fm is

equivalent to

Fm+1(x) = Ax+

∞∑
j=m+1

V j
m+1(x). (1)

That is, we want to show that there exists a formal map Hm and V j
m+1 ∈ Dj so

that if Fm+1 is defined by (1) then

∂Hm

∂x
(x)Fm(x) = Fm+1(Hm(x)). (2)
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If there exists a formal map Hm and V j
m+1 ∈ Dj that satisfy (2) and Hm is

of the form Hm(x) = x+ Pm(x) for some Pm ∈ Dm, then

(I +
∂Pm

∂x
(x))(Ax+

∞∑
j=m

V j
m(x)) = Ax+APm(x) +

∞∑
j=m+1

V j
m+1(Hm(x)). (3)

Comparing terms of degree m we get

V m
m (x) +

∂Pm

∂x
(x)Ax = APm(x)

or
−V m

m = adA(Pm).

This equation is called the homological equation.
By Corollary 5, adA |Dm

: Dm → Dm is a linear isomorphism, and hence we
can define Pm by Pm = (adA)

−1(−V m
m ). Then the terms V j

m+1, j = m + 1, . . .
are determined by setting

∞∑
j=m+1

V j
m(x) +

∂Pm

∂x
(x)

∞∑
j=m

V j
m(x) =

∞∑
j=m+1

V j
m+1(Hm(x)).

Therefore if we define Fm+1 by (1), the formal vector fields Fm, Fm+1 are equiv-
alent.

Then H(m)(x) = Hm◦· · ·◦H1(x) is a formal map such that ∂H(m)

∂x (x)F (x) =

Fm+1(H
(m)(x)). Since H(m+1) = Hm+1 ◦H(m) and H(m) have the same terms

of degree ≤ m, limm→∞ H(m)(x) exists in mn; let H be this limit. Then we can
check that H is a formal map such that ∂H

∂x (x)F (x) = F ′(H(x)), and so F is
equivalent to F ′.

For any n×n matrix A (resonant or nonresonant) and for P ∈ Dm, we have
adA(P )(x) = ∂P

∂x (x)Ax − AP (x) ∈ Dm, hence Dm is an invariant subspace of
adA.

A basis for Dm consists of Fk,α(x) = xαek, k = 1, . . . , n, |α| = m. Let wj =√
pn−j+1, where pj is the jth prime; these are real numbers w1 > · · · > wn > 0

that are independent over Q. Assign the weight wk to xk and the weight −wk

to ek. Each element in the basis thus has a weight, and we can check that
the only distinct elements with the same weights are xαxjej and xαxkek for
j ̸= k. If we order the basis decreasing in weight and decree that xαxjej is
before xαxj+1ej+1, then the basis is well-ordered. In the second example in §6,
we write out the ordered bases for D2 and D3.

Lemma 4. If A is in Jordan normal form, then in the ordered basis Fk,α of
Dm, adA |Dm is a lower triangular matrix with diagonal entries ⟨λ, α⟩ − λk, and
if A if diagonal then adA |Dm is diagonal.
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Proof. Let A have eigenvalues λ1, . . . , λn (not necessarily distinct), and let Λ =
diag(λ1, . . . , λn). Let Jj be the n× n matrix whose (j, j + 1) entry is 1 and all
whose other entries are 0. For some index set J ⊆ {1, . . . , n− 1},

A = Λ+
∑
j∈J

Jj .

The ith row of Fk,α(x) is δi,kx
α, hence ΛFk,α = λkFk,α. The entry in row i

and column j of the matrix
∂Fk,α

∂x (x) is δi,kx
α αj

xj
, hence

∂Fk,α

∂x
(x)Λx = xα



0 · · · 0
...

. . .
...

λ1α1

x1
· · · λnαn

xn

...
. . .

...
0 · · · 0

x = xα



0
...

⟨λ, α⟩
...
0

 = ⟨λ, α⟩Fk,α(x).

Then adΛ Fk,α(x) =
∂Fk,α

∂x (x)Ax − AFk,α(x) = (⟨λ, α⟩ − λk)Fk,α(x). Thus the
basis vectors Fk,α are eigenvectors of adΛ with eigenvalues ⟨λ, α⟩ − λk.

We shall now show that adA |Dm
is a lower-triangular matrix whose diagonal

is adΛ |Dm
. Note that

adJj
(Fk,α)(x) = [Jj , Fk,α](x) =

∂Fk,α

∂x
(x)Jjx−

∂Jj
∂x

Fk,α = xααjxj

xj+1
ek−δj+1,kx

αej+1.

If αj+1 ̸= 0 then the first term has weight
∑n

i=1 αiwi + wj+1 − wj − wk, which
is greater than the weight of Fk,α. If j = k+1, then the second term has weight∑n

i=1 αiwi − wj+1, which is also greater than the weight of Fk,α. Therefore
written in the ordered basis Fk,α, the matrix adJj

|Dm
is strictly lower triangular.

But adA = adΛ +
∑

j∈J adJj , completing the proof.

Corollary 5. If A is in Jordan normal form and A is nonresonant, then
adA |Dm

: Dm → Dm is a linear isomorphism.

4 Poincaré-Dulac normal form theorem for for-
mal vector fields

Say that A is in Jordan normal form and that A has a resonance of order m.
Then in the basis Fk,α for Dm, the matrix adA |Dm will be lower triangular with
a zero on the diagonal, and hence will not be invertible. For each m, let Nm be
a subspace of Dm such that

Dm = Nm + adA(Dm);

we do not suppose here that Nm ∩ adA(Dm) = {0}.
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Lemma 6. Let F be a formal vector field with constant term 0 whose lineariza-
tion A is in Jordan normal form and let Nm satisfy Dm = Nm+adA(Dm). Then
F is equivalent to a formal vector field with constant term 0 and linearization
A whose nonlinear terms of degree m belong to Nm.

Proof. Let F2 = F , and write

F2(x) = Ax+

∞∑
j=2

V j
2 (x)

for V j
2 ∈ Dj . For H1(x) = x, we have ∂H1

∂x F (x) = F2(H1(x)), and hence F
is equivalent to the formal vector field F2. Assume that for some m there are
V j
m ∈ Nj , j = 2, . . . ,m− 1 and V j

m ∈ Dj , j = m, . . ., such that F is equivalent
to

Fm(x) = Ax+

∞∑
j=2

V j
m(x).

Since V m
m ∈ Dm, there are Pm ∈ Dm and V m

m+1 ∈ Nm such that adA(Pm) =

V m
m+1 −V m

m . Let Hm(x) = x+Pm(x), and let V j
m+1 = V m

j for j = 2, . . . ,m− 1.

Let U j
m+1 ∈ Dj , j = m+ 1, . . . be determined by

∞∑
j=m+1

V j
m(x) +

∂Pm

∂x
(x)

∞∑
j=2

V j
m(x) =

∞∑
j=m+1

U j
m+1(x),

and then let V j
m+1 ∈ Dj , j = m+ 1, . . . be determined by

∞∑
j=2

V j
m+1(x+ Pm(x)) =

m∑
j=2

V j
m+1(x) +

∞∑
j=m+1

U j
m+1(x);

we can check that indeed this determines V j
m+1.

Let Fm+1(x) = Ax+
∑∞

j=2 V
j
m+1(x). Then

∂Hm

∂x (x)Fm(x) = Fm+1(Hm(x)),

and hence Fm is equivalent to the formal vector field Fm+1, where V j
m+1 ∈ Nj

for j = 2, . . . ,m, and V j
m+1 ∈ Dj for j = m+ 1, . . ..

Then H(m)(x) = Hm◦· · ·◦H1(x) is a formal map such that ∂H(m)

∂x (x)F (x) =

Fm+1(H
(m)(x)). Since H(m+1) = Hm+1 ◦H(m) and H(m) have the same terms

of degree ≤ m, limm→∞ H(m)(x) exists in mn; let H be this limit. Then we can
check that H is a formal map such that ∂H

∂x (x)F (x) = F ′(H(x)), and so F is
equivalent to F ′.

If λk = ⟨λ, α⟩, where λ = (λ1, . . . , λn) and λ1, . . . , λn are the eigenvalues of
A, then Fk,α = xαek is said to be a resonant monomial vector (with respect to
A). For m = |α| and Λ = diag(λ1, . . . , λn), the resonant monomial vectors are
a basis for ker adΛ |Dm .
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The following theorem is the Poincaré-Dulac normal form theorem, which
states that a resonant formal vector field with constant term 0 whose lineariza-
tion is in Jordan normal form is equivalent to a formal vector field with con-
stant term 0 and the same linear term whose nonlinear terms are the resonant
monomial vectors. We say that a formal vector field with constant term 0
and linearization A is in Poincaré-Dulac normal form if its nonlinear terms are
resonant monomial vectors with respect to A.

Theorem 7. A formal vector field with constant term 0 whose linearization is
in Jordan normal form is equivalent to a formal vector field with constant term
0 and the same linearization whose nonlinear terms are resonant monomial
vectors.

Proof. Let F be a formal vector field with constant term 0 and linearization A
in Jordan normal form. Say that A has eigenvalues λ1, . . . , λn (not necessarily
distinct) and let Λ = diag(λ1, . . . , λn).

For m = 2, . . ., let

Nm =
⊕

|α|=m

λk=⟨λ,α⟩

Fk,αC.

Then Nm = ker adΛ |Dm
. It follows from Lemma 4 that ker adA |Dm

⊆ ker adΛ |Dm
.

But Dm = ker adA |Dm
+adA(Dm), hence Dm = ker adΛ |Dm

+adA(Dm). There-
fore Dm = Nm + adA(Dm), and so by Lemma 6, F is equivalent to a formal
vector field with constant term 0 and linearization A whose nonlinear terms of
degree m belong to Nm, which is the set of resonant monomial vectors of degree
m, completing the proof.

5 Polynomial vector fields

The Poincaré domain is the set P ⊂ Cn of all n-tuples λ = (λ1, . . . , λn) ∈ Cn

such that the convex hull of the points λ1, . . . , λn in C does not include the
origin. (The complement of the Poincaré domain in Cn is called the Siegel
domain S.)

Theorem 8. If λ ∈ P, then for all M > 0 there are only finitely many α ∈ Zn
≥0

and 1 ≤ k ≤ n such that |λk − ⟨α, λ⟩| ≤ M .

Proof. Since the convex hull of the points λ1, . . . , λn does not include the origin,
there is a line through the origin that does not intersect the convex hull. It
follows that there is an R-linear map ℓ : C → R and some r > 0 such that
ℓ(λk) ≤ −r for all k.

Then

ℓ(⟨α, λ⟩) =
n∑

k=1

αkℓ(λk) ≤
n∑

k=1

αk(−r) = −r|α|.

Let −R = min1≤k≤n ℓ(λk), and let ∥ℓ∥ = max|z|=1 |ℓ(z)|. For all α ∈ Zn
≥0 and

all k,

∥ℓ∥|λk − ⟨α, λ⟩| ≥ |ℓ(λk − ⟨α, λ⟩)| ≥ ℓ(λk − ⟨α, λ⟩) ≥ ℓ(λk) + r|α| ≥ −R+ r|α|.
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There are only finitely many α ∈ Zn
≥0 such that −R+r|α|

∥ℓ∥ ≤ M . Therefore

there are only finitely many α ∈ Zn
≥0 and 1 ≤ k ≤ n such that |λk − ⟨α, λ⟩)| ≤

M .

In particular, if λ ∈ P then there are only finitely many α ∈ Zn
≥0 and

1 ≤ k ≤ n such that λk = ⟨α, λ⟩. Thus we have the following corollary to the
above theorem.

Corollary 9. Let F be a formal vector field with constant term 0 whose lin-
earization A is in Jordan normal form, let λ1, . . . , λn be the eigenvalues of A,
and let λ = (λ1, . . . , λn). If λ ∈ P, then there are only finitely many nonlinear
terms in the Poincaré-Dulac normal form of F .

6 Examples

First example. Let

F (x) =

[
1 0
0 1

] [
x1

x2

]
+

[
x2
1

x2
2

]
.

This formal vector field has linearization A =

[
1 0
0 1

]
, which is nonresonant.

For all m ≥ 2, adA |Dm
= idDm

, and hence for all m ≥ 2, Pm(x) = −V m
m (x).

H1(x) = x. We shall find Hm(x) for m = 2, . . . , 5. This will determine the
terms in H(x) of degree ≤ 5.

∞∑
j=m+1

V j
m(x) +

∂Pm

∂x
(x)

∞∑
j=m

V j
m(x) =

∞∑
j=m+1

V j
m+1(Hm(x)). (4)

m = 2: V 2
2 (x) =

[
x2
1

x2
2

]
, so P2(x) = −V 2

2 (x) =

[
−x2

1

−x2
2

]
andH2(x) =

[
x1 − x2

1

x2 − x2
2

]
.

For j ≥ 3, V j
2 (x) = 0. Then (4) is

∂P2

∂x
(x)V 2

2 (x) = V 3
3 (H2(x)) + V 4

3 (H2(x)) + V 5
3 (H2(x)) + V 6

3 (H2(x)) + · · ·

which is[
−2x1 0
0 −2x2

] [
x2
1

x2
2

]
= V 3

3

([
x1 − x2

1

x2 − x2
2

])
+ V 4

3

([
x1 − x2

1

x2 − x2
2

])
+ V 5

3

([
x1 − x2

1

x2 − x2
2

])
+V 6

3

([
x1 − x2

1

x2 − x2
2

])
+ · · ·

It follows that V 3
3 (x) =

[
−2x3

1

−2x3
2

]
. So

V 3
3

([
x1 − x2

1

x2 − x2
2

])
=

[
−2x3

1 + 6x4
1 − 6x5

1 + 2x6
1

−2x3
2 + 6x4

2 − 6x5
2 + 2x6

2

]
.
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It follows that V 4
3 (x) =

[
−6x4

1

−6x4
2

]
. So

V 4
3

([
x1 − x2

1

x2 − x2
2

])
=

[
−6x4

1 + 24x5
1 − 36x6

1 + 24x7
1 − 6x8

1

−6x4
2 + 24x5

2 − 36x6
2 + 24x7

2 − 6x8
2

]
.

It follows that V 5
3 (x) =

[
−18x5

1

−18x5
2

]
. So

V 5
3

([
x1 − x2

1

x2 − x2
2

])
=

[
−18x5

1 + 90x6
1 − 180x7

1 + 180x8
1 − 90x9

1 + 18x10
1

−18x5
2 + 90x6

2 − 180x7
2 + 180x8

2 − 90x9
2 + 18x10

2

]
.

It follows that V 6
3 (x) =

[
−56x6

1

−56x6
2

]
.

m = 3: V 3
3 (x) =

[
−2x3

1

−2x3
2

]
, so P3(x) =

[
2x3

1

2x3
2

]
and H3(x) =

[
x1 + 2x3

1

x2 + 2x3
2

]
. Then

(4) is

V 4
3 (x) + V 5

3 (x) + V 6
3 (x) + · · ·+

[
6x2

1 0
0 6x2

2

](
V 3
3 (x) + V 4

3 (x) + · · ·
)

=V 4
4 (x+ P3(x)) + V 5

4 (x+ P3(x)) + V 6
4 (x+ P3(x)) + · · ·

which is[
−6x4

1

−6x4
2

]
+

[
−18x5

1

−18x5
2

]
+

[
−56x6

1

−56x6
2

]
+ · · ·+

[
−12x5

1

−12x5
2

]
+

[
−36x6

1

−36x6
2

]
+ · · ·

=V 4
4 (x+ P3(x)) + V 5

4 (x+ P3(x)) + V 6
4 (x+ P3(x)) + · · ·

It follows that V 4
4 (x) =

[
−6x4

1

−6x4
2

]
. So

V 4
4

([
x1 + 2x3

1

x2 + 2x3
2

])
=

[
−6x4

1 − 48x6
1 − 144x8

1 − 192x10
1 − 96x12

1

−6x4
2 − 48x6

2 − 144x8
2 − 192x10

2 − 96x12
1

]
.

It follows that V 5
4 (x) =

[
−30x5

1

−30x5
2

]
. In V 5

4

([
x1 + 2x3

1

x2 + 2x3
2

])
there are no terms of

degree 6, so it follows that V 6
4 (x) =

[
−44x6

1

−44x6
2

]
.

m = 4: V 4
4 (x) =

[
−6x4

1

−6x4
2

]
, so P4(x) =

[
6x4

1

6x4
2

]
and H4(x) =

[
x1 + 6x4

1

x2 + 6x4
2

]
. Then

(4) is

V 5
4 (x) + · · ·+

[
24x3

1 0
0 24x3

2

](
V 4
4 (x) + · · ·

)
= V 5

5 (H4(x)) + · · ·

It follows that V 5
5 (x) = V 5

4 (x) =

[
−30x5

1

−30x5
2

]
.
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Because V 5
5 (x) =

[
−30x5

1

−30x5
2

]
, we have P5(x) =

[
30x5

1

30x5
2

]
andH5(x) =

[
x1 + 30x5

1

x2 + 30x5
2

]
.

Let us figure out H(5)(x) = H5 ◦ H4 ◦ H3 ◦ H2 ◦ H1(x). H1(x) = x,

H2(x) =

[
x1 − x2

1

x2 − x2
2

]
, H3(x) =

[
x1 + 2x3

1

x2 + 2x3
2

]
, H4(x) =

[
x1 + 6x4

1

x2 + 6x4
2

]
, and H5(x) =[

x1 + 30x5
1

x2 + 30x5
2

]
. Then

H(3)(x) = H3◦H2◦H1(x) = H3

([
x1 − x2

1

x2 − x2
2

])
=

[
x1 − x2

1 + 2x3
1 − 6x4

1 + 6x5
1 − 2x6

1

x2 − x2
2 + 2x3

2 − 6x4
2 + 6x6

2 − 2x6
2

]
.

We can compute H(4)(x) and then H(5)(x). Each component of H(5)(x) is
polynomial of degree 120, and

H(5)(x) =

[
x1 − x2

1 + 2x3
1 + 12x5

1 − 68x6
1 + 288x7

1 − 630x8
1 − 1662x9

1

x2 − x2
2 + 2x3

2 + 12x5
2 − 68x6

2 + 288x7
2 − 630x8

2 − 1662x9
2

]
+

[
O(x10

1 )
O(x10

2 )

]
,

and thus

H(x) = lim
m→∞

H(m)(x) =

[
x1 − x2

1 + 2x3
1 + 12x5

1

x2 − x2
2 + 2x3

2 + 12x5
2

]
+

[
O(x6

1)
O(x6

2)

]
.

Second example. We will determine the Poincaré-Dulac normal form for
the formal vector field

F (x) =

[
3 0
0 1

] [
x1

x2

]
+

[
x2
1

x2
2

]
,

and find Hm(x) form = 2, 3, 4, which will determine the terms in H(x) of degree
≤ 4.

The formal vector field F (x) has linearization A =

[
3 0
0 1

]
. Let λ1 = 3, λ2 =

1.
The monomial basis vectors for D2 are

F1,(2,0) =

[
x2
1

0

]
, F1,(1,1) =

[
x1x2

0

]
, F1,(0,2) =

[
x2
2

0

]
,

F2,(2,0) =

[
0
x2
1

]
, F2,(1,1) =

[
0

x1x2

]
, F2,(0,2) =

[
0
x2
2

]
.

The weights of these basis vectors are respectively

2w1 − w1 = w1 = 1.73 . . . , w1 + w2 − w1 = w2 = 1.41 . . . , 2w2 − w1 = 1.09 . . . ,

2w1 − w2 = 2.04 . . . , w1 + w2 − w2 = w1 = 1.73 . . . , 2w2 − w2 = w2 = 1.41 . . . .

The basis vectors are ordered such that F1,(2,0) is before F2,(1,1) and F1,(1,1) is
before F2,(0,2). Therefore the ordering of the basis vectors for D2 is

F2,(2,0) > F1,(2,0) > F2,(1,1) > F1,(1,1) > F2,(0,2) > F1,(0,2). (5)

10



The monomial basis vectors for D3 are

F1,(3,0) =

[
x3
1

0

]
, F1,(2,1) =

[
x2
1x2

0

]
, F1,(1,2) =

[
x1x

2
2

0

]
, F1,(0,3) =

[
x3
2

0

]
,

F2,(3,0) =

[
0
x3
1

]
, F2,(2,1) =

[
0

x2
1x2

]
, F2,(1,2) =

[
0

x1x
2
2

]
, F2,(0,3) =

[
0
x3
2

]
.

The weights of these basis vectors are respectively

2w1 = 3.46 . . . , w1 + w2 = 3.14 . . . , 2w2 = 2.82 . . . , 3w2 − w1 = 2.51 . . . ,

3w1 − w2 = 3.78 . . . , 2w1 = 3.46 . . . , w1 + w2 = 3.14 . . . , 2w2 = 2.82 . . . .

The basis vectors are ordered such that F1,(3,0) is before F2,(2,1), F1,(2,1) is before
F2,(1,2), and F1,(1,2) is before F2,(0,3). Therefore the ordering of the basis vectors
for D3 is

F2,(3,0) > F1,(3,0) > F2,(2,1) > F1,(2,1) > F2,(1,2) > F1,(1,2) > F2,(0,3) > F1,(0,3).
(6)

We calculate that adA |D2
written in the ordered basis (5) is diag(3, 1,−1, 5, 3, 1),

and we calculate that adA |D3
written in the ordered basis (6) is diag(8, 6, 6, 4, 4, 2, 2, 0).

Thus ker adA |D3 = spanC{F1,(0,3)}.

7 Conclusion

This paper is useful for people who want fully worked proofs of the Poincaré
normal form theorem and the Poincaré-Dulac normal form theorem for formal
vector fields, and examples that explicitly follow the constructions in the proofs.
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