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1 Introduction

In this note we present proofs of the Poincaré normal form theorem and the
Poincaré-Dulac normal form theorem for formal vector fields. Other accounts
in the literature do not explicitly work out the proofs by induction of these
theorems. Our presentation is a more precise and detailed version of the pre-
sentation in [5, §§3-5]. These topics are also covered in [1, §1.3], [2, Chapter
5], and [3, §A.5]. The history of the problem of normalization of vector fields
is presented by Yakovenko in review 96a:34021 in Mathematical Reviews. The
computation of normal forms is discussed in [6] and [7, Chapter 19].

The Poincaré-Dulac normal form has recently been used in [4], which proves
the unconditional uniqueness of solutions of the periodic one-dimensional cubic
nonlinear Schrodinger equation.

In §6 we give detailed examples where we explicitly compute the leading
terms of the formal maps which conjugate formal vector fields to their Poincaré
normal form and Poincaré-Dulac normal form.

2 Formal vector fields

Let Cl[z]] = C[[x1, . .., zx]] be the algebra of formal power series in the variables
Llyeoey Iyt
Cllz]] = { Z Ca” 1 Cy € C},
|| 20
where a = (u1,...,an) € Z%, la| = a1 + ... + ay, and 2% = 27" - zpm.

A formal vector field is an element of g = C|[z]]", that is, an n-tuple of
formal power series. g is a Lie algebra with the vector field commutator as its
Lie bracket, defined for F,G € g by

oG oF
= %(x)F(Jf) T 9z

For F € g, we define adp : g — g by adr(G) = [F, G| for G € g.

[F, G](x) ()G ().



Let m C CJ[z]] be the set of formal power series with constant term 0. An
element of m™ (an n-tuple of elements of m) is said to be a formal map. If
H = (hy,...,hy) is a formal map and f(z) = 3_, 50 Cat® is a formal power

series, then
2) =Y cahi(x)™ - h ()"

|| =0

is a formal power series. We call elements of m” formal maps because we can
compose formal power series with them. On the other hand, f(z) = > p 2"
is a formal power series, but for H(z) = 1 + = (which has nonzero constant

coefficient),
F(H(@) => (1+a) ZZ( )
k=0

k=05=0

is not a formal power series because, for instance, the constant coefficient is
infinite (indeed, each coefficient is infinite).
Two formal vector fields F, F’ are said to be equivalent if there is a formal

map H such that 5
(0 Pa) = F (H ()

It is clear that if F(0) =0 and F' is equivalent to F”, then F’(0) = 0.
Let .77, C C[[z]] be the vector space whose elements are homogeneous poly-
nomials of degree m in the variables x1,...,z,, and 0, and let 2,, = ' C g.
For a formal vector field F', the linearization of F'is the nxn matrix A defined
by A;; = 85]_ (0), ie., A = 2E(0). A formal vector field F' with F'(0) = 0 and
with linearization A can be written as

= Az + Z VI (z)
j=2

for some V7 € 9.
The following theorem is the inverse function theorem for formal maps [5,
pp. 32-33].

Theorem 1. If H is a formal map and %H (0) is invertible, then there is a
formal map H~! such that H(H (x)) = x and H *(H(z)) = x.

The following theorem shows that any formal vector field is equivalent to a
formal vector field whose linearization is in Jordan normal form.

Theorem 2. If a formal vector field F has linearization A and A = QBQ ™',
then F' is equivalent to a formal vector field with linearization B.

Proof. Let H(r) = Q 'z, and define F’ by F'(z) = Q7 'F(Qx). F’ has lin-
earization

OF"
5 () =

Ql ()Q Q™ 'AQ = B,



and
o )P (@) = @™ Pla) = P(H(@)),

so F' is equivalent to F”. O

A vector A € C” is said to be resonant if there is some a € Z%, with |a| > 2
and some 1 < k < n such that A\, = (a, ). We define (a,A) = 3>7_, a;A;. An
n X n matrix A is said to be resonant if the vector of its eigenvalues is resonant,
and a formal vector field is said to be resonant if its linearization is resonant.
|| is the order of the resonance.

3 Poincaré normal form theorem for formal vec-
tor fields

The following theorem is the Poincaré normal form theorem, which states that
a nonresonant formal vector field with constant term 0 whose linearization is
in Jordan normal form is equivalent to its linearization. By Theorem 2 any
formal vector field is equivalent to a formal vector field whose linearization is in
Jordan normal form, so it follows that any nonresonant formal vector field with
constant term 0 can be linearized.

Theorem 3. If F' is a nonresonant formal vector field with constant term 0
and the linearization A of F' is in Jordan normal form, then F' is equivalent to
the formal vector field F’ defined by F'z = Ax.

Proof. We prove the claim by induction. Let F, = F. We can write

= Az + Z Vi (z)
j=2

where V§ € 2;. Let Hy(z) = . Then %F(w) = F»(Hi(z)), and thus F
is equivalent to the formal vector field F5. Assume that for some m there are
Vi€ Pj, j =m,..., such that F' is equivalent to

= Ax + Z Vi (x)
j=m

We want to show that there are V7 i1 € Y5, 5 = m+1,..., such that F, is
equivalent to

m+1 = Az + Z m+1 (1)
j=m-+1

That is, we want to show that there exists a formal map H,, and V a1 € D s0
that if Fj,, 1 is defined by (1) then

O0H,,
or

(@) Fon () = Finp1 (Hm (2))- (2)



If there exists a formal map H,, and V +1 € Z; that satisfy (2) and Hy, is
of the form H,,(x) =z + Pp,(z) for some P € .@,m then

0P,

(”T )(Az + Z = Az + AP, ( Z VI (Hu(2)). (3)
j=m+1
Comparing terms of degree m we get
Vot (x) + aaix(x)Ax = AP, (x)

or

—V™ = ada(Pp).

This equation is called the homological equation.

By Corollary 5, ad |2, : Zm — Pm is a linear isomorphism, and hence we
can define P, by Py, = (ad4)~'(—=V;2"). Then the terms V) ,,, j =m+1,...
are determined by setting

> i@+ ) Y Vi = Y Vi (Ha),

j=m+1 j=m Jj=m+1

Therefore if we define Fy;,+1 by (1), the formal vector fields F,,, F,+1 are equiv-
alent.

Then H"™) (z) = H,,0---0H,(x) is a formal map such that 8%;1") (z)F(x) =
Frp1 (H™)(z)). Since H™+Y) = H,, 1 o H™) and H™) have the same terms
of degree < m, lim,,_,oc H™ (z) exists in m™; let H be this limit. Then we can
check that H is a formal map such that 22 (z)F(z) = F'(H(z)), and so F is
equivalent to F”. O

For any n x n matrix A (resonant or nonresonant) and for P € %,,, we have
ada(P)(z) = 28(z)Az — AP(z) € Dy, hence 2, is an invariant subspace of
adA.

A basis for 9, consists of Fy o(x) = 2%, k=1,...,n, || =m. Let w; =
\/Pn—j+1, where p; is the jth prime; these are real numbers wy > -+ > wy, >0
that are independent over Q. Assign the weight wj to zp and the weight —wy
to ex. Each element in the basis thus has a weight, and we can check that
the only distinct elements with the same weights are z*x;e; and x%zre; for
Jj # k. If we order the basis decreasing in weight and decree that z“z;e; is
before “x;41€;541, then the basis is well-ordered. In the second example in §6,
we write out the ordered bases for %, and 5.

Lemma 4. If A is in Jordan normal form, then in the ordered basis Fj, o of
D, ad 4 | g, 1s a lower triangular matrix with diagonal entries (A, a) — A, and
if A if diagonal then ad 4 |4, is diagonal.

m



Proof. Let A have eigenvalues A1, ..., A, (not necessarily distinct), and let A =
diag(A1,...,An). Let J; be the n x n matrix whose (4,7 + 1) entry is 1 and all

whose other entries are 0. For some index set J C {1,...,n — 1},
A=A+
jedJ

The ith row of F () is 6; xz*, hence AFy o = A\t Fg . The entry in row ¢

. . OF, . ,
and column j of the matrix =52« (z) is d; pz® 25 hence
ox ’ ;)

0 0 0

OF. : . : :
(@A = M A g = a® (X a) | = (X 0) Fia(2).

o - 0 0

Then adp Fj q(x) = 81;’;”‘ (x)Az — AF) o(z) = ((A\, @) — A\g)Fio(x). Thus the
basis vectors Fy, o are eigenvectors of ads with eigenvalues (X, a) — A.
We shall now show that ad4 |, is a lower-triangular matrix whose diagonal

is ada |@,,. Note that

0L}, o 0J; T
ady, (Fra)(@) = s Firal (@) = =5 % (@) Jjo= 5 Fiy = 0 222
J

e
ek—5j+17kx €j41-

If aj41 # 0 then the first term has weight Z?zl 0W; + Wi — w;j — Wy, which
is greater than the weight of F}, o. If j = k41, then the second term has weight
Yoi, aw; — wjy1, which is also greater than the weight of Fj .. Therefore
written in the ordered basis F}, o, the matrix ad; |, is strictly lower triangular.

But ads = ady + )¢y ady;, completing the proof. O

Corollary 5. If A is in Jordan normal form and A is nonresonant, then
ada |, : Dm — D is a linear isomorphism.

4 Poincaré-Dulac normal form theorem for for-
mal vector fields

Say that A is in Jordan normal form and that A has a resonance of order m.
Then in the basis Fy, o for Z,,, the matrix ad 4 |g,, will be lower triangular with
a zero on the diagonal, and hence will not be invertible. For each m, let .4, be
a subspace of Z,, such that

-@m = e/Vm + adA(@m);

we do not suppose here that A4, Nada(%n) = {0}.



Lemma 6. Let F be a formal vector field with constant term 0 whose lineariza-
tion A is in Jordan normal form and let 44, satisfy 2, = A, +ada(Zy,). Then
F' is equivalent to a formal vector field with constant term 0 and linearization
A whose nonlinear terms of degree m belong to .4;,.

Proof. Let Fo, = F, and write
= Az + Z Vi (x)
j=2

for Vi € 2;. For H\(z) = z, we have 6gch(:z:) = F»(Hy(x)), and hence F
is equivalent to the formal vector field F5. Assume that for some m there are
Vi e Ny j=2,...,m—1and Vi e 9, j =m,..., such that F'is equivalent

to -
= Az + Z Vi (x)
j=2

Since V' € P, there are Py, € P, and V7L | € A7, such that ada(Pp) =
Virer = Vi LetH ()—a:+P(),andleth+1_V] forj=2,...,m—1.
Let U? i1 € Y5, 7 =m+1,... be determined by

D Vi) + @) Y Vi) Z
j=m+1 Jj=2 J=m+1

and then let VT‘ZL-‘,—l € 9;,j=m++1,... be determined by

nglﬂxﬂﬂ => Vi) + i Ul ()

Jj=2 j=2 j=m+1

we can check that indeed this determines V S
Let Finy1(2) = Az + Z] 2 m+l( ). Then ai(x)Fm(x) = Fm+1<H (@),

and hence F), is equivalent to the formal vector field F}, 1, where V? a1 € N
for j =2,...,m, and V%H € Yjforj=m+1,.

Then H"™) (z) = H,,0---0H,(z) is a formal map such that OH;’") (x)F(z) =
Fr1 (H™)(z)). Since H™+Y) = H,, 1 o H™) and H™) have the same terms
of degree < m, lim,, oo H"™)(z) exists in m”; let H be this limit. Then we can
check that H is a formal map such that %—f(w)F(x} = F'(H(z)), and so F is
equivalent to F”. O

If A, = (M, @), where A = (Aq,...,A,) and Aq,..., A, are the eigenvalues of
A, then Fy, o = x%ey, is said to be a resonant monomial vector (with respect to
A). For m = |a| and A = diag(A1,...,\,), the resonant monomial vectors are
a basis for kerady |9, .



The following theorem is the Poincaré-Dulac normal form theorem, which
states that a resonant formal vector field with constant term 0 whose lineariza-
tion is in Jordan normal form is equivalent to a formal vector field with con-
stant term 0 and the same linear term whose nonlinear terms are the resonant
monomial vectors. We say that a formal vector field with constant term 0
and linearization A is in Poincaré-Dulac normal form if its nonlinear terms are
resonant monomial vectors with respect to A.

Theorem 7. A formal vector field with constant term 0 whose linearization is
in Jordan normal form is equivalent to a formal vector field with constant term
0 and the same linearization whose nonlinear terms are resonant monomial
vectors.

Proof. Let F be a formal vector field with constant term 0 and linearization A
in Jordan normal form. Say that A has eigenvalues Ay, ..., A\, (not necessarily
distinct) and let A = diag(A1,..., Ap).
Form=2,..., let
A= P FraC.

|la|=m

A=(X, )
Then A, = kerady |g,,. It follows from Lemma 4 that kerad 4 |o,, C kerada |, -
But Z,,, = kerada |, +ada(%m), hence Z,,, = keradp |g,, +ada(Zy,). There-
fore Dy, = N + ada(Zi), and so by Lemma 6, F' is equivalent to a formal
vector field with constant term 0 and linearization A whose nonlinear terms of
degree m belong to .4;,, which is the set of resonant monomial vectors of degree
m, completing the proof. O

5 Polynomial vector fields

The Poincaré domain is the set 8 C C™ of all n-tuples A = (A\q,...,\,) € C*
such that the convex hull of the points A{,..., A, in C does not include the
origin. (The complement of the Poincaré domain in C™ is called the Siegel
domain &.)

Theorem 8. If A € B, then for all M > 0 there are only finitely many o € ZZ,,
and 1 < k < n such that [\ — (o, \)| < M. -

Proof. Since the convex hull of the points A1, ..., A, does not include the origin,
there is a line through the origin that does not intersect the convex hull. It
follows that there is an R-linear map ¢ : C — R and some r > 0 such that
L(A) < —r for all k.

Then

L({a, A)) = Zakﬁ(/\k) < Zak(—r) = —r|al.
k=1 k=1
Let —R = minj<p<n £(Ax), and let [[£|| = max,j— |[((z)|. For all o € Z%; and
all k, -
1A = (@ M = [EA = (@, M) = LAk = (@, A)) = E(xk) +7la = =R+ rlal.



There are only finitely many a € Z%, such that %ﬁla‘ < M. Therefore
there are only finitely many o € Z%, and 1 < k < n such that [A\y — (a, \))[ <

M. O

In particular, if A € ‘P then there are only finitely many o € Z%, and
1 < k < n such that A\, = (a, \). Thus we have the following corollary to the
above theorem.

Corollary 9. Let F be a formal vector field with constant term 0 whose lin-
earization A is in Jordan normal form, let Ay,..., A\, be the eigenvalues of A,
and let A = (A1,...,A,). If A € P, then there are only finitely many nonlinear
terms in the Poincaré-Dulac normal form of F'.

6 Examples

First example. Let

ror=ly 3] [5)+[4)

This formal vector field has linearization A = (1) (ﬂ, which is nonresonant.
For all m > 2, ada |, = idg,,, and hence for all m > 2, P, (z) = =V, (x).

Hy(z) = x. We shall find H,,(z) for m = 2,...,5. This will determine the
terms in H (z) of degree < 5.

> VA@ I @ Y VA = Y Vi) @)
j=m+1 J j=m+1

=2 V7(0) = 7] 50 Pate) = ~v2(e) = | 4 ana i) = |72 7).

o
=m

2 2 T2 — X

For j >3, V3§ (x) = 0. Then (4) is

0 @)V2 ) = Vi () + Vil (H) + Vi (Ha ) + Vi (Hi() + -

which is

—2x1 0 x% . 3 ml—x% 4 xl—x% 5 ml—m%
[ 0 —2:1:2} Lr;%} - Vé(a:g—xg >+V3<x2—x§ )+V3(a:2—a:§ )
2

3 —2z}
It follows that V3'(z) = | L3 So

V?)g( [ml - a:ﬂ ) _ [—Zx? + 62} — 627 + 23:?}

Ty — X3 —273 + 623 — 625 + 225 |



4 —6a7
It follows that V3'(z) = | . 4|. So

V34( {xl - xﬂ ) B [—Gx‘f + 2425 — 3628 + 2427 — 6;#11 .

o — 3| /) | =623 + 2425 — 362§ + 2427 — 625
It follows that Vi (z) = __1833?] So
3 |—18z3 |
5( [71 — 22 [—182% + 9029 — 180z + 1802F — 902 + 18210
VS(z—2>:—185 902§ — 1807 § — 909 0]
9 — T35 | —1823 + 90z5 x5 + 18025 — 90x5 + 18x;
It follows that VI (x) = _—561"?]
s 5625
—2z3 223 ry + 223
— 2. V3(y) — 1| _ |#11 _ | 1
m—&%@%wﬁﬁyw%@%{%ﬂmﬂ%@%¢@+%?TMn

%w+@m+@w+m+F§6Q(@m+ww+m)

=V (z + Ps(x)) + VP (x + Ps(x)) + VP (x + P3(z)) + - --

which is

—621 " —18x3 " —562$ R —122% " —36a$ "
—623 —18x5 —56x5 —1225 —362$
=Vi'(z + P3(x)) + VP (x + P3(x)) + Vi (z + Ps(2)) + -+

4 —6a]
It follows that V;*(x) = 6t | So
—6x3

4( z1 + 223 ) ~[—62f — 4828 — 1442% — 19221° — 96212
A\ |zg +223| )~ |—625 — 4825 — 1442§ — 192210 — 96212 |

3027 z1 + 273
50,) 1 5( |71 1
It follows that Vy(z) = {_3()%;]. In V; ( LQ + 20@} ) there are no terms of
. 6 —44x$
degree 6, so it follows that VP (z) = 6l-
—44x3

—627 67 Ty + 627
4 V() — 1| _ |57 _ |7 1
m=4: Vji(z) = [ 6x‘21]’ so Py(x) = {Gx%} and Hy(z) = [CEQ 6o | Then

VB(x) -+ [240x§ 240333] <V44(x)+~") — VO (Hy(x)) + - -

— 3045
It follows that V2 (z) = VP (z) = { 30331}

—30z3



_ 5 5 5
Because VE(z) = { 307 303 T, + 30301} .

3023 , we have Ps(x) = [30‘%3} and H(z) = [252 + 3023
Let us figure out H®)(z) = Hys o Hy o Hy o Hy o Hy(z). Hi(z) = =,

2 3 4
| — 2t _|x + 2y |z + 627 _
) = |70, amte) = (2000 ) = 22T, and o) =
x1 + 3027
LCQ " 30x§ . Then

_ 2 2 3 _ ol 5 _ 9,.6
H®) (2) = HyoHy0H, () = Hs( |:-’131 xl} ) _ {an x7 + 227 — 627 + 623 2361] .

xg — X3 Ty — 22 + 203 — 625 + 62§ — 225

We can compute H*(z) and then H®)(z). Each component of H®)(z) is
polynomial of degree 120, and

HO () = |71~ 2% 4 223 + 1223 — 6825 + 28827 — 63028 — 166295‘{] N {O(m%oﬂ ,

Ty — x5 + 223 + 1225 — 6825 + 28827 — 63025 — 16629 O(xd?

and thus

H(z) = lim H™(z) = {

m—r o0

z — 23 + 223 + 1225 O(z9)
Ty — x5 + 223 + 1223 oS |-

Second example. We will determine the Poincaré-Dulac normal form for

the formal vector field
13 0 |z x?
ra= o 5[]+ [2]

and find H,,(z) for m = 2,3, 4, which will determine the terms in H (z) of degree
<A4.

The formal vector field F'(x) has linearization A = [3 0

0 1:| Let/\1:3,)\2:

1.
The monomial basis vectors for 2, are

.CL'Q 1T .'1/'2
Fi 2,00 = [01] s Fia) = { 10 2] 1 0,2) = [02] ;

0 0 0
F5 2.0) = LU%] s Fo ) = {561332] v Fo0,2) = [x%] .

The weights of these basis vectors are respectively

2w1—w1:w1:1.73...,w1+w2—w1:w2:1.41...,2w2—w1:1.09...,

2w1—w2=2.04...,w1—|—w2—w2:w1:1.73...,2w2—w2:w2:1.41....

The basis vectors are ordered such that F (o) is before F5 (1 1) and Fy 1,1y is
before Fy (g,2). Therefore the ordering of the basis vectors for % is

Fs 2,00 > F1,2,0) > Fo,1,1) > Fia,1) > F2,0,2) > F1,00,2)- (5)

10



The monomial basis vectors for &5 are

z3 23z T2 3
FLeo = [Ol] ) = [ 10 2} P2 = { 10 2} F103) = [02} )

0 0 0 0
Fy 30 = [x:f] v Fo 01y = [Jc%mz} Fo1,2) = L‘lm%} 5 (0,3) = Lg} .

The weights of these basis vectors are respectively

2w1 :3.46...,w1+w2:3.14...,21112:2.82...,3w2—w1 :251,
3wy —we =3.78...,2wy =3.46..., w1 +we =3.14..., 2wy = 2.82....

The basis vectors are ordered such that F (3¢) is before Fy (2 1y, Fy (2,1) is before
F5 (1,2), and Fi (1,9) is before Fy (o 3). Therefore the ordering of the basis vectors
for 95 is

Fy 3,00 > Fi,3,0) > Fo,2,1) > Fiy2,1) > Fo,1,2) > Fi,a,2) > F2,0,3) > Fi0,9)

(6

We calculate that ad 4 |, written in the ordered basis (5) is diag(3, 1, —1,5, 3

and we calculate that ad 4 | g, written in the ordered basis (6) is diag(8, 6, 6,4,4,2,2,0).
Thus kerad |2, = spanc{F} (0,3)}-

7 Conclusion

This paper is useful for people who want fully worked proofs of the Poincaré
normal form theorem and the Poincaré-Dulac normal form theorem for formal
vector fields, and examples that explicitly follow the constructions in the proofs.
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