The Poincaré-Dulac normal form theorem for formal vector fields

Jordan Bell

April 3, 2014

1 Introduction

In this note we present proofs of the Poincaré normal form theorem and the Poincaré-Dulac normal form theorem for formal vector fields. Other accounts in the literature do not explicitly work out the proofs by induction of these theorems. Our presentation is a more precise and detailed version of the presentation in $[5, \S \S 3-5]$. These topics are also covered in [1, §I.3], [2, Chapter $5]$, and [3, §A.5]. The history of the problem of normalization of vector fields is presented by Yakovenko in review 96a:34021 in Mathematical Reviews. The computation of normal forms is discussed in [6] and [7, Chapter 19].

The Poincaré-Dulac normal form has recently been used in [4], which proves the unconditional uniqueness of solutions of the periodic one-dimensional cubic nonlinear Schrödinger equation.

In $\S 6$ we give detailed examples where we explicitly compute the leading terms of the formal maps which conjugate formal vector fields to their Poincaré normal form and Poincaré-Dulac normal form.

2 Formal vector fields

Let $\mathbb{C}[[x]]=\mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be the algebra of formal power series in the variables x_{1}, \ldots, x_{n} :

$$
\mathbb{C}[[x]]=\left\{\sum_{|\alpha| \geq 0} c_{\alpha} x^{\alpha}: c_{\alpha} \in \mathbb{C}\right\}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n},|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$, and $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$.
A formal vector field is an element of $\mathfrak{g}=\mathbb{C}[[x]]^{n}$, that is, an n-tuple of formal power series. \mathfrak{g} is a Lie algebra with the vector field commutator as its Lie bracket, defined for $F, G \in \mathfrak{g}$ by

$$
[F, G](x)=\frac{\partial G}{\partial x}(x) F(x)-\frac{\partial F}{\partial x}(x) G(x) .
$$

For $F \in \mathfrak{g}$, we define $\operatorname{ad}_{F}: \mathfrak{g} \rightarrow \mathfrak{g}$ by $\operatorname{ad}_{F}(G)=[F, G]$ for $G \in \mathfrak{g}$.

Let $\mathfrak{m} \subset \mathbb{C}[[x]]$ be the set of formal power series with constant term 0 . An element of \mathfrak{m}^{n} (an n-tuple of elements of \mathfrak{m}) is said to be a formal map. If $H=\left(h_{1}, \ldots, h_{n}\right)$ is a formal map and $f(x)=\sum_{|\alpha| \geq 0} c_{\alpha} x^{\alpha}$ is a formal power series, then

$$
f(H(x))=\sum_{|\alpha| \geq 0} c_{\alpha} h_{1}(x)^{\alpha_{1}} \cdots h_{n}(x)^{\alpha_{n}}
$$

is a formal power series. We call elements of \mathfrak{m}^{n} formal maps because we can compose formal power series with them. On the other hand, $f(x)=\sum_{k=0}^{\infty} x^{k}$ is a formal power series, but for $H(x)=1+x$ (which has nonzero constant coefficient),

$$
f(H(x))=\sum_{k=0}^{\infty}(1+x)^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{k}\binom{k}{j} x^{j}
$$

is not a formal power series because, for instance, the constant coefficient is infinite (indeed, each coefficient is infinite).

Two formal vector fields F, F^{\prime} are said to be equivalent if there is a formal map H such that

$$
\frac{\partial H}{\partial x}(x) F(x)=F^{\prime}(H(x)) .
$$

It is clear that if $F(0)=0$ and F is equivalent to F^{\prime}, then $F^{\prime}(0)=0$.
Let $\mathscr{H}_{m} \subset \mathbb{C}[[x]]$ be the vector space whose elements are homogeneous polynomials of degree m in the variables x_{1}, \ldots, x_{n}, and 0 , and let $\mathscr{D}_{m}=\mathscr{H}_{m}^{n} \subset \mathfrak{g}$.

For a formal vector field F, the linearization of F is the $n \times n$ matrix A defined by $A_{i, j}=\frac{\partial F_{i}}{\partial x_{j}}(0)$, i.e., $A=\frac{\partial F}{\partial x}(0)$. A formal vector field F with $F(0)=0$ and with linearization A can be written as

$$
F(x)=A x+\sum_{j=2}^{\infty} V^{j}(x)
$$

for some $V^{j} \in \mathscr{D}_{j}$.
The following theorem is the inverse function theorem for formal maps [5, pp. 32-33].

Theorem 1. If H is a formal map and $\frac{\partial H}{\partial x}(0)$ is invertible, then there is a formal map H^{-1} such that $H\left(H^{-1}(x)\right)=x$ and $H^{-1}(H(x))=x$.

The following theorem shows that any formal vector field is equivalent to a formal vector field whose linearization is in Jordan normal form.

Theorem 2. If a formal vector field F has linearization A and $A=Q B Q^{-1}$, then F is equivalent to a formal vector field with linearization B.

Proof. Let $H(x)=Q^{-1} x$, and define F^{\prime} by $F^{\prime}(x)=Q^{-1} F(Q x) . F^{\prime}$ has linearization

$$
\frac{\partial F^{\prime}}{\partial x}(0)=Q^{-1} \frac{\partial F}{\partial x}(0) Q=Q^{-1} A Q=B
$$

and

$$
\frac{\partial H}{\partial x}(x) F(x)=Q^{-1} F(x)=F^{\prime}(H(x)),
$$

so F is equivalent to F^{\prime}.
A vector $\lambda \in \mathbb{C}^{n}$ is said to be resonant if there is some $\alpha \in \mathbb{Z}_{\geq 0}^{n}$ with $|\alpha| \geq 2$ and some $1 \leq k \leq n$ such that $\lambda_{k}=\langle\alpha, \lambda\rangle$. We define $\langle\alpha, \lambda\rangle=\sum_{j=1}^{n} \alpha_{j} \lambda_{j}$. An $n \times n$ matrix A is said to be resonant if the vector of its eigenvalues is resonant, and a formal vector field is said to be resonant if its linearization is resonant. $|\alpha|$ is the order of the resonance.

3 Poincaré normal form theorem for formal vector fields

The following theorem is the Poincaré normal form theorem, which states that a nonresonant formal vector field with constant term 0 whose linearization is in Jordan normal form is equivalent to its linearization. By Theorem 2 any formal vector field is equivalent to a formal vector field whose linearization is in Jordan normal form, so it follows that any nonresonant formal vector field with constant term 0 can be linearized.

Theorem 3. If F is a nonresonant formal vector field with constant term 0 and the linearization A of F is in Jordan normal form, then F is equivalent to the formal vector field F^{\prime} defined by $F^{\prime} x=A x$.

Proof. We prove the claim by induction. Let $F_{2}=F$. We can write

$$
F_{2}(x)=A x+\sum_{j=2}^{\infty} V_{2}^{j}(x)
$$

where $V_{2}^{j} \in \mathscr{D}_{j}$. Let $H_{1}(x)=x$. Then $\frac{\partial H_{1}}{\partial x} F(x)=F_{2}\left(H_{1}(x)\right)$, and thus F is equivalent to the formal vector field F_{2}. Assume that for some m there are $V_{m}^{j} \in \mathscr{D}_{j}, j=m, \ldots$, such that F is equivalent to

$$
F_{m}(x)=A x+\sum_{j=m}^{\infty} V_{m}^{j}(x)
$$

We want to show that there are $V_{m+1}^{j} \in \mathscr{D}_{j}, j=m+1, \ldots$, such that F_{m} is equivalent to

$$
\begin{equation*}
F_{m+1}(x)=A x+\sum_{j=m+1}^{\infty} V_{m+1}^{j}(x) \tag{1}
\end{equation*}
$$

That is, we want to show that there exists a formal map H_{m} and $V_{m+1}^{j} \in \mathscr{D}_{j}$ so that if F_{m+1} is defined by (1) then

$$
\begin{equation*}
\frac{\partial H_{m}}{\partial x}(x) F_{m}(x)=F_{m+1}\left(H_{m}(x)\right) \tag{2}
\end{equation*}
$$

If there exists a formal map H_{m} and $V_{m+1}^{j} \in \mathscr{D}_{j}$ that satisfy (2) and H_{m} is of the form $H_{m}(x)=x+P_{m}(x)$ for some $P_{m} \in \mathscr{D}_{m}$, then

$$
\begin{equation*}
\left(I+\frac{\partial P_{m}}{\partial x}(x)\right)\left(A x+\sum_{j=m}^{\infty} V_{m}^{j}(x)\right)=A x+A P_{m}(x)+\sum_{j=m+1}^{\infty} V_{m+1}^{j}\left(H_{m}(x)\right) \tag{3}
\end{equation*}
$$

Comparing terms of degree m we get

$$
V_{m}^{m}(x)+\frac{\partial P_{m}}{\partial x}(x) A x=A P_{m}(x)
$$

or

$$
-V_{m}^{m}=\operatorname{ad}_{A}\left(P_{m}\right)
$$

This equation is called the homological equation.
By Corollary $5,\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}: \mathscr{D}_{m} \rightarrow \mathscr{D}_{m}$ is a linear isomorphism, and hence we can define P_{m} by $P_{m}=\left(\operatorname{ad}_{A}\right)^{-1}\left(-V_{m}^{m}\right)$. Then the terms $V_{m+1}^{j}, j=m+1, \ldots$ are determined by setting

$$
\sum_{j=m+1}^{\infty} V_{m}^{j}(x)+\frac{\partial P_{m}}{\partial x}(x) \sum_{j=m}^{\infty} V_{m}^{j}(x)=\sum_{j=m+1}^{\infty} V_{m+1}^{j}\left(H_{m}(x)\right) .
$$

Therefore if we define F_{m+1} by (1), the formal vector fields F_{m}, F_{m+1} are equivalent.

Then $H^{(m)}(x)=H_{m} \circ \cdots \circ H_{1}(x)$ is a formal map such that $\frac{\partial H^{(m)}}{\partial x}(x) F(x)=$ $F_{m+1}\left(H^{(m)}(x)\right)$. Since $H^{(m+1)}=H_{m+1} \circ H^{(m)}$ and $H^{(m)}$ have the same terms of degree $\leq m, \lim _{m \rightarrow \infty} H^{(m)}(x)$ exists in \mathfrak{m}^{n}; let H be this limit. Then we can check that H is a formal map such that $\frac{\partial H}{\partial x}(x) F(x)=F^{\prime}(H(x))$, and so F is equivalent to F^{\prime}.

For any $n \times n$ matrix A (resonant or nonresonant) and for $P \in \mathscr{D}_{m}$, we have $\operatorname{ad}_{A}(P)(x)=\frac{\partial P}{\partial x}(x) A x-A P(x) \in \mathscr{D}_{m}$, hence \mathscr{D}_{m} is an invariant subspace of ad_{A}.

A basis for \mathscr{D}_{m} consists of $F_{k, \alpha}(x)=x^{\alpha} e_{k}, k=1, \ldots, n,|\alpha|=m$. Let $w_{j}=$ $\sqrt{p_{n-j+1}}$, where p_{j} is the j th prime; these are real numbers $w_{1}>\cdots>w_{n}>0$ that are independent over \mathbb{Q}. Assign the weight w_{k} to x_{k} and the weight $-w_{k}$ to e_{k}. Each element in the basis thus has a weight, and we can check that the only distinct elements with the same weights are $x^{\alpha} x_{j} e_{j}$ and $x^{\alpha} x_{k} e_{k}$ for $j \neq k$. If we order the basis decreasing in weight and decree that $x^{\alpha} x_{j} e_{j}$ is before $x^{\alpha} x_{j+1} e_{j+1}$, then the basis is well-ordered. In the second example in $\S 6$, we write out the ordered bases for \mathscr{D}_{2} and \mathscr{D}_{3}.

Lemma 4. If A is in Jordan normal form, then in the ordered basis $F_{k, \alpha}$ of $\mathscr{D}_{m},\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}$ is a lower triangular matrix with diagonal entries $\langle\lambda, \alpha\rangle-\lambda_{k}$, and if A if diagonal then $\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}$ is diagonal.

Proof. Let A have eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (not necessarily distinct), and let $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Let J_{j} be the $n \times n$ matrix whose $(j, j+1)$ entry is 1 and all whose other entries are 0 . For some index set $J \subseteq\{1, \ldots, n-1\}$,

$$
A=\Lambda+\sum_{j \in J} J_{j} .
$$

The i th row of $F_{k, \alpha}(x)$ is $\delta_{i, k} x^{\alpha}$, hence $\Lambda F_{k, \alpha}=\lambda_{k} F_{k, \alpha}$. The entry in row i and column j of the matrix $\frac{\partial F_{k, \alpha}}{\partial x}(x)$ is $\delta_{i, k} x^{\alpha} \frac{\alpha_{j}}{x_{j}}$, hence

$$
\frac{\partial F_{k, \alpha}}{\partial x}(x) \Lambda x=x^{\alpha}\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
\frac{\lambda_{1} \alpha_{1}}{x_{1}} & \cdots & \frac{\lambda_{n} \alpha_{n}}{x_{n}} \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right] x=x^{\alpha}\left[\begin{array}{c}
0 \\
\vdots \\
\langle\lambda, \alpha\rangle \\
\vdots \\
0
\end{array}\right]=\langle\lambda, \alpha\rangle F_{k, \alpha}(x) .
$$

Then $\operatorname{ad}_{\Lambda} F_{k, \alpha}(x)=\frac{\partial F_{k, \alpha}}{\partial x}(x) A x-A F_{k, \alpha}(x)=\left(\langle\lambda, \alpha\rangle-\lambda_{k}\right) F_{k, \alpha}(x)$. Thus the basis vectors $F_{k, \alpha}$ are eigenvectors of $\operatorname{ad}_{\Lambda}$ with eigenvalues $\langle\lambda, \alpha\rangle-\lambda_{k}$.

We shall now show that $\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}$ is a lower-triangular matrix whose diagonal is $\left.\operatorname{ad}_{\Lambda}\right|_{\mathscr{D}_{m}}$. Note that
$\operatorname{ad}_{J_{j}}\left(F_{k, \alpha}\right)(x)=\left[J_{j}, F_{k, \alpha}\right](x)=\frac{\partial F_{k, \alpha}}{\partial x}(x) J_{j} x-\frac{\partial J_{j}}{\partial x} F_{k, \alpha}=x^{\alpha} \frac{\alpha_{j} x_{j}}{x_{j+1}} e_{k}-\delta_{j+1, k} x^{\alpha} e_{j+1}$.
If $\alpha_{j+1} \neq 0$ then the first term has weight $\sum_{i=1}^{n} \alpha_{i} w_{i}+w_{j+1}-w_{j}-w_{k}$, which is greater than the weight of $F_{k, \alpha}$. If $j=k+1$, then the second term has weight $\sum_{i=1}^{n} \alpha_{i} w_{i}-w_{j+1}$, which is also greater than the weight of $F_{k, \alpha}$. Therefore written in the ordered basis $F_{k, \alpha}$, the matrix ad ${J_{j}}_{\left.\right|_{\mathscr{D}_{m}}}$ is strictly lower triangular.

But $\operatorname{ad}_{A}=\operatorname{ad}_{\Lambda}+\sum_{j \in J} \operatorname{ad}_{J_{j}}$, completing the proof.
Corollary 5. If A is in Jordan normal form and A is nonresonant, then $\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}: \mathscr{D}_{m} \rightarrow \mathscr{D}_{m}$ is a linear isomorphism.

4 Poincaré-Dulac normal form theorem for formal vector fields

Say that A is in Jordan normal form and that A has a resonance of order m. Then in the basis $F_{k, \alpha}$ for \mathscr{D}_{m}, the matrix $\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}$ will be lower triangular with a zero on the diagonal, and hence will not be invertible. For each m, let \mathscr{N}_{m} be a subspace of \mathscr{D}_{m} such that

$$
\mathscr{D}_{m}=\mathscr{N}_{m}+\operatorname{ad}_{A}\left(\mathscr{D}_{m}\right) ;
$$

we do not suppose here that $\mathscr{N}_{m} \cap \operatorname{ad}_{A}\left(\mathscr{D}_{m}\right)=\{0\}$.

Lemma 6. Let F be a formal vector field with constant term 0 whose linearization A is in Jordan normal form and let \mathscr{N}_{m} satisfy $\mathscr{D}_{m}=\mathscr{N}_{m}+\operatorname{ad}_{A}\left(\mathscr{D}_{m}\right)$. Then F is equivalent to a formal vector field with constant term 0 and linearization A whose nonlinear terms of degree m belong to \mathscr{N}_{m}.

Proof. Let $F_{2}=F$, and write

$$
F_{2}(x)=A x+\sum_{j=2}^{\infty} V_{2}^{j}(x)
$$

for $V_{2}^{j} \in \mathscr{D}_{j}$. For $H_{1}(x)=x$, we have $\frac{\partial H_{1}}{\partial x} F(x)=F_{2}\left(H_{1}(x)\right)$, and hence F is equivalent to the formal vector field F_{2}. Assume that for some m there are $V_{m}^{j} \in \mathscr{N}_{j}, j=2, \ldots, m-1$ and $V_{m}^{j} \in \mathscr{D}_{j}, j=m, \ldots$, such that F is equivalent to

$$
F_{m}(x)=A x+\sum_{j=2}^{\infty} V_{m}^{j}(x)
$$

Since $V_{m}^{m} \in \mathscr{D}_{m}$, there are $P_{m} \in \mathscr{D}_{m}$ and $V_{m+1}^{m} \in \mathscr{N}_{m}$ such that $\operatorname{ad}_{A}\left(P_{m}\right)=$ $V_{m+1}^{m}-V_{m}^{m}$. Let $H_{m}(x)=x+P_{m}(x)$, and let $V_{m+1}^{j}=V_{j}^{m}$ for $j=2, \ldots, m-1$.

Let $U_{m+1}^{j} \in \mathscr{D}_{j}, j=m+1, \ldots$ be determined by

$$
\sum_{j=m+1}^{\infty} V_{m}^{j}(x)+\frac{\partial P_{m}}{\partial x}(x) \sum_{j=2}^{\infty} V_{m}^{j}(x)=\sum_{j=m+1}^{\infty} U_{m+1}^{j}(x),
$$

and then let $V_{m+1}^{j} \in \mathscr{D}_{j}, j=m+1, \ldots$ be determined by

$$
\sum_{j=2}^{\infty} V_{m+1}^{j}\left(x+P_{m}(x)\right)=\sum_{j=2}^{m} V_{m+1}^{j}(x)+\sum_{j=m+1}^{\infty} U_{m+1}^{j}(x) ;
$$

we can check that indeed this determines V_{m+1}^{j}.
Let $F_{m+1}(x)=A x+\sum_{j=2}^{\infty} V_{m+1}^{j}(x)$. Then $\frac{\partial H_{m}}{\partial x}(x) F_{m}(x)=F_{m+1}\left(H_{m}(x)\right)$, and hence F_{m} is equivalent to the formal vector field F_{m+1}, where $V_{m+1}^{j} \in \mathscr{N}_{j}$ for $j=2, \ldots, m$, and $V_{m+1}^{j} \in \mathscr{D}_{j}$ for $j=m+1, \ldots$.

Then $H^{(m)}(x)=H_{m} \circ \cdots \circ H_{1}(x)$ is a formal map such that $\frac{\partial H^{(m)}}{\partial x}(x) F(x)=$ $F_{m+1}\left(H^{(m)}(x)\right)$. Since $H^{(m+1)}=H_{m+1} \circ H^{(m)}$ and $H^{(m)}$ have the same terms of degree $\leq m, \lim _{m \rightarrow \infty} H^{(m)}(x)$ exists in \mathfrak{m}^{n}; let H be this limit. Then we can check that H is a formal map such that $\frac{\partial H}{\partial x}(x) F(x)=F^{\prime}(H(x))$, and so F is equivalent to F^{\prime}.

If $\lambda_{k}=\langle\lambda, \alpha\rangle$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A, then $F_{k, \alpha}=x^{\alpha} e_{k}$ is said to be a resonant monomial vector (with respect to $A)$. For $m=|\alpha|$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the resonant monomial vectors are a basis for $\operatorname{ker~ad}_{\Lambda}{\mid \mathscr{D}_{m}}$.

The following theorem is the Poincaré-Dulac normal form theorem, which states that a resonant formal vector field with constant term 0 whose linearization is in Jordan normal form is equivalent to a formal vector field with constant term 0 and the same linear term whose nonlinear terms are the resonant monomial vectors. We say that a formal vector field with constant term 0 and linearization A is in Poincaré-Dulac normal form if its nonlinear terms are resonant monomial vectors with respect to A.
Theorem 7. A formal vector field with constant term 0 whose linearization is in Jordan normal form is equivalent to a formal vector field with constant term 0 and the same linearization whose nonlinear terms are resonant monomial vectors.
Proof. Let F be a formal vector field with constant term 0 and linearization A in Jordan normal form. Say that A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (not necessarily distinct) and let $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

For $m=2, \ldots$, let

$$
\mathscr{N}_{m}=\bigoplus_{\substack{\mid,=m \\ \lambda_{k}=\langle\lambda, \alpha\rangle}} F_{k, \alpha} \mathbb{C} .
$$

Then $\mathscr{N}_{m}=\left.\operatorname{ker} \operatorname{ad}_{\Lambda}\right|_{\mathscr{D}_{m}}$. It follows from Lemma 4 that ker ad ${ }_{A}\left|\mathscr{D}_{m} \subseteq \operatorname{ker} \operatorname{ad}_{\Lambda}\right| \mathscr{D}_{m}$. But $\mathscr{D}_{m}=\left.\operatorname{ker} \operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}+\operatorname{ad}_{A}\left(\mathscr{D}_{m}\right)$, hence $\mathscr{D}_{m}=\left.\operatorname{kerad}\right|_{\mathscr{D}_{m}}+\operatorname{ad}_{A}\left(\mathscr{D}_{m}\right)$. Therefore $\mathscr{D}_{m}=\mathscr{N}_{m}+\operatorname{ad}_{A}\left(\mathscr{D}_{m}\right)$, and so by Lemma $6, F$ is equivalent to a formal vector field with constant term 0 and linearization A whose nonlinear terms of degree m belong to \mathscr{N}_{m}, which is the set of resonant monomial vectors of degree m, completing the proof.

5 Polynomial vector fields

The Poincaré domain is the set $\mathfrak{P} \subset \mathbb{C}^{n}$ of all n-tuples $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$ such that the convex hull of the points $\lambda_{1}, \ldots, \lambda_{n}$ in \mathbb{C} does not include the origin. (The complement of the Poincaré domain in \mathbb{C}^{n} is called the Siegel domain \mathfrak{S}.)
Theorem 8. If $\lambda \in \mathfrak{P}$, then for all $M>0$ there are only finitely many $\alpha \in \mathbb{Z}_{\geq 0}^{n}$ and $1 \leq k \leq n$ such that $\left|\lambda_{k}-\langle\alpha, \lambda\rangle\right| \leq M$.

Proof. Since the convex hull of the points $\lambda_{1}, \ldots, \lambda_{n}$ does not include the origin, there is a line through the origin that does not intersect the convex hull. It follows that there is an \mathbb{R}-linear map $\ell: \mathbb{C} \rightarrow \mathbb{R}$ and some $r>0$ such that $\ell\left(\lambda_{k}\right) \leq-r$ for all k.

Then

$$
\ell(\langle\alpha, \lambda\rangle)=\sum_{k=1}^{n} \alpha_{k} \ell\left(\lambda_{k}\right) \leq \sum_{k=1}^{n} \alpha_{k}(-r)=-r|\alpha| .
$$

Let $-R=\min _{1 \leq k \leq n} \ell\left(\lambda_{k}\right)$, and let $\|\ell\|=\max _{|z|=1}|\ell(z)|$. For all $\alpha \in \mathbb{Z}_{\geq 0}^{n}$ and all k,
$\| \ell| | \lambda_{k}-\langle\alpha, \lambda\rangle\left|\geq\left|\ell\left(\lambda_{k}-\langle\alpha, \lambda\rangle\right)\right| \geq \ell\left(\lambda_{k}-\langle\alpha, \lambda\rangle\right) \geq \ell\left(\lambda_{k}\right)+r\right| \alpha|\geq-R+r| \alpha \mid$.

There are only finitely many $\alpha \in \mathbb{Z}_{\geq 0}^{n}$ such that $\frac{-R+r|\alpha|}{\|\ell\|} \leq M$. Therefore there are only finitely many $\alpha \in \mathbb{Z}_{\geq 0}^{n}$ and $1 \leq k \leq n$ such that $\left.\mid \lambda_{k}-\langle\alpha, \lambda\rangle\right) \mid \leq$ M.

In particular, if $\lambda \in \mathfrak{P}$ then there are only finitely many $\alpha \in \mathbb{Z}_{\geq 0}^{n}$ and $1 \leq k \leq n$ such that $\lambda_{k}=\langle\alpha, \lambda\rangle$. Thus we have the following corollary to the above theorem.
Corollary 9. Let F be a formal vector field with constant term 0 whose linearization A is in Jordan normal form, let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A, and let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. If $\lambda \in \mathfrak{P}$, then there are only finitely many nonlinear terms in the Poincaré-Dulac normal form of F.

6 Examples

First example. Let

$$
F(x)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right]
$$

This formal vector field has linearization $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, which is nonresonant. For all $m \geq 2,\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{m}}=\mathrm{id}_{\mathscr{D}_{m}}$, and hence for all $m \geq 2, P_{m}(x)=-V_{m}^{m}(x)$. $H_{1}(x)=x$. We shall find $H_{m}(x)$ for $m=2, \ldots, 5$. This will determine the terms in $H(x)$ of degree ≤ 5.

$$
\begin{gather*}
\sum_{j=m+1}^{\infty} V_{m}^{j}(x)+\frac{\partial P_{m}}{\partial x}(x) \sum_{j=m}^{\infty} V_{m}^{j}(x)=\sum_{j=m+1}^{\infty} V_{m+1}^{j}\left(H_{m}(x)\right) \tag{4}\\
m=2: V_{2}^{2}(x)=\left[\begin{array}{l}
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right], \text { so } P_{2}(x)=-V_{2}^{2}(x)=\left[\begin{array}{l}
-x_{1}^{2} \\
-x_{2}^{2}
\end{array}\right] \text { and } H_{2}(x)=\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right] .
\end{gather*}
$$

For $j \geq 3, V_{2}^{j}(x)=0$. Then (4) is

$$
\frac{\partial P_{2}}{\partial x}(x) V_{2}^{2}(x)=V_{3}^{3}\left(H_{2}(x)\right)+V_{3}^{4}\left(H_{2}(x)\right)+V_{3}^{5}\left(H_{2}(x)\right)+V_{3}^{6}\left(H_{2}(x)\right)+\cdots
$$

which is

$$
\begin{aligned}
{\left[\begin{array}{cc}
-2 x_{1} & 0 \\
0 & -2 x_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right]=} & V_{3}^{3}\left(\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right]\right)+V_{3}^{4}\left(\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right]\right)+V_{3}^{5}\left(\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right]\right) \\
& +V_{3}^{6}\left(\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right]\right)+\cdots
\end{aligned}
$$

It follows that $V_{3}^{3}(x)=\left[\begin{array}{l}-2 x_{1}^{3} \\ -2 x_{2}^{3}\end{array}\right]$. So

$$
V_{3}^{3}\left(\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right]\right)=\left[\begin{array}{l}
-2 x_{1}^{3}+6 x_{1}^{4}-6 x_{1}^{5}+2 x_{1}^{6} \\
-2 x_{2}^{3}+6 x_{2}^{4}-6 x_{2}^{5}+2 x_{2}^{6}
\end{array}\right] .
$$

It follows that $V_{3}^{4}(x)=\left[\begin{array}{c}-6 x_{1}^{4} \\ -6 x_{2}^{4}\end{array}\right]$. So

$$
V_{3}^{4}\left(\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right]\right)=\left[\begin{array}{l}
-6 x_{1}^{4}+24 x_{1}^{5}-36 x_{1}^{6}+24 x_{1}^{7}-6 x_{1}^{8} \\
-6 x_{2}^{4}+24 x_{2}^{5}-36 x_{2}^{6}+24 x_{2}^{7}-6 x_{2}^{8}
\end{array}\right]
$$

It follows that $V_{3}^{5}(x)=\left[\begin{array}{l}-18 x_{1}^{5} \\ -18 x_{2}^{5}\end{array}\right]$. So

$$
V_{3}^{5}\left(\left[\begin{array}{l}
x_{1}-x_{1}^{2} \\
x_{2}-x_{2}^{2}
\end{array}\right]\right)=\left[\begin{array}{l}
-18 x_{1}^{5}+90 x_{1}^{6}-180 x_{1}^{7}+180 x_{1}^{8}-90 x_{1}^{9}+18 x_{1}^{10} \\
-18 x_{2}^{5}+90 x_{2}^{6}-180 x_{2}^{7}+180 x_{2}^{8}-90 x_{2}^{9}+18 x_{2}^{10}
\end{array}\right]
$$

It follows that $V_{3}^{6}(x)=\left[\begin{array}{l}-56 x_{1}^{6} \\ -56 x_{2}^{6}\end{array}\right]$.

$$
m=3: V_{3}^{3}(x)=\left[\begin{array}{c}
-2 x_{1}^{3} \\
-2 x_{2}^{3}
\end{array}\right] \text {, so } P_{3}(x)=\left[\begin{array}{l}
2 x_{1}^{3} \\
2 x_{2}^{3}
\end{array}\right] \text { and } H_{3}(x)=\left[\begin{array}{l}
x_{1}+2 x_{1}^{3} \\
x_{2}+2 x_{2}^{3}
\end{array}\right] \text {. Then }
$$

(4) is

$$
\begin{aligned}
& V_{3}^{4}(x)+V_{3}^{5}(x)+V_{3}^{6}(x)+\cdots+\left[\begin{array}{cc}
6 x_{1}^{2} & 0 \\
0 & 6 x_{2}^{2}
\end{array}\right]\left(V_{3}^{3}(x)+V_{3}^{4}(x)+\cdots\right) \\
= & V_{4}^{4}\left(x+P_{3}(x)\right)+V_{4}^{5}\left(x+P_{3}(x)\right)+V_{4}^{6}\left(x+P_{3}(x)\right)+\cdots
\end{aligned}
$$

which is

$$
\begin{aligned}
& {\left[\begin{array}{l}
-6 x_{1}^{4} \\
-6 x_{2}^{4}
\end{array}\right]+\left[\begin{array}{l}
-18 x_{1}^{5} \\
-18 x_{2}^{5}
\end{array}\right]+\left[\begin{array}{l}
-56 x_{1}^{6} \\
-56 x_{2}^{6}
\end{array}\right]+\cdots+\left[\begin{array}{l}
-12 x_{1}^{5} \\
-12 x_{2}^{5}
\end{array}\right]+\left[\begin{array}{l}
-36 x_{1}^{6} \\
-36 x_{2}^{6}
\end{array}\right]+\cdots } \\
= & V_{4}^{4}\left(x+P_{3}(x)\right)+V_{4}^{5}\left(x+P_{3}(x)\right)+V_{4}^{6}\left(x+P_{3}(x)\right)+\cdots
\end{aligned}
$$

It follows that $V_{4}^{4}(x)=\left[\begin{array}{c}-6 x_{1}^{4} \\ -6 x_{2}^{4}\end{array}\right]$. So

$$
V_{4}^{4}\left(\left[\begin{array}{l}
x_{1}+2 x_{1}^{3} \\
x_{2}+2 x_{2}^{3}
\end{array}\right]\right)=\left[\begin{array}{l}
-6 x_{1}^{4}-48 x_{1}^{6}-144 x_{1}^{8}-192 x_{1}^{10}-96 x_{1}^{12} \\
-6 x_{2}^{4}-48 x_{2}^{6}-144 x_{2}^{8}-192 x_{2}^{10}-96 x_{1}^{12}
\end{array}\right]
$$

It follows that $V_{4}^{5}(x)=\left[\begin{array}{l}-30 x_{1}^{5} \\ -30 x_{2}^{5}\end{array}\right]$. In $V_{4}^{5}\left(\left[\begin{array}{l}x_{1}+2 x_{1}^{3} \\ x_{2}+2 x_{2}^{3}\end{array}\right]\right)$ there are no terms of degree 6 , so it follows that $V_{4}^{6}(x)=\left[\begin{array}{c}-44 x_{1}^{6} \\ -44 x_{2}^{6}\end{array}\right]$.

$$
m=4: V_{4}^{4}(x)=\left[\begin{array}{c}
-6 x_{1}^{4} \\
-6 x_{2}^{4}
\end{array}\right] \text {, so } P_{4}(x)=\left[\begin{array}{c}
6 x_{1}^{4} \\
6 x_{2}^{4}
\end{array}\right] \text { and } H_{4}(x)=\left[\begin{array}{l}
x_{1}+6 x_{1}^{4} \\
x_{2}+6 x_{2}^{4}
\end{array}\right] \text {. Then }
$$

(4) is

$$
V_{4}^{5}(x)+\cdots+\left[\begin{array}{cc}
24 x_{1}^{3} & 0 \\
0 & 24 x_{2}^{3}
\end{array}\right]\left(V_{4}^{4}(x)+\cdots\right)=V_{5}^{5}\left(H_{4}(x)\right)+\cdots
$$

It follows that $V_{5}^{5}(x)=V_{4}^{5}(x)=\left[\begin{array}{c}-30 x_{1}^{5} \\ -30 x_{2}^{5}\end{array}\right]$.

Because $V_{5}^{5}(x)=\left[\begin{array}{l}-30 x_{1}^{5} \\ -30 x_{2}^{5}\end{array}\right]$, we have $P_{5}(x)=\left[\begin{array}{l}30 x_{1}^{5} \\ 30 x_{2}^{5}\end{array}\right]$ and $H_{5}(x)=\left[\begin{array}{l}x_{1}+30 x_{1}^{5} \\ x_{2}+30 x_{2}^{5}\end{array}\right]$.
Let us figure out $H^{(5)}(x)=H_{5} \circ H_{4} \circ H_{3} \circ H_{2} \circ H_{1}(x) . \quad H_{1}(x)=x$, $H_{2}(x)=\left[\begin{array}{l}x_{1}-x_{1}^{2} \\ x_{2}-x_{2}^{2}\end{array}\right], H_{3}(x)=\left[\begin{array}{l}x_{1}+2 x_{1}^{3} \\ x_{2}+2 x_{2}^{3}\end{array}\right], H_{4}(x)=\left[\begin{array}{l}x_{1}+6 x_{1}^{4} \\ x_{2}+6 x_{2}^{4}\end{array}\right]$, and $H_{5}(x)=$ $\left[\begin{array}{l}x_{1}+30 x_{1}^{5} \\ x_{2}+30 x_{2}^{5}\end{array}\right]$. Then
$H^{(3)}(x)=H_{3} \circ H_{2} \circ H_{1}(x)=H_{3}\left(\left[\begin{array}{l}x_{1}-x_{1}^{2} \\ x_{2}-x_{2}^{2}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}-x_{1}^{2}+2 x_{1}^{3}-6 x_{1}^{4}+6 x_{1}^{5}-2 x_{1}^{6} \\ x_{2}-x_{2}^{2}+2 x_{2}^{3}-6 x_{2}^{4}+6 x_{2}^{6}-2 x_{2}^{6}\end{array}\right]$.
We can compute $H^{(4)}(x)$ and then $H^{(5)}(x)$. Each component of $H^{(5)}(x)$ is polynomial of degree 120 , and
$H^{(5)}(x)=\left[\begin{array}{l}x_{1}-x_{1}^{2}+2 x_{1}^{3}+12 x_{1}^{5}-68 x_{1}^{6}+288 x_{1}^{7}-630 x_{1}^{8}-1662 x_{1}^{9} \\ x_{2}-x_{2}^{2}+2 x_{2}^{3}+12 x_{2}^{5}-68 x_{2}^{6}+288 x_{2}^{7}-630 x_{2}^{8}-1662 x_{2}^{9}\end{array}\right]+\left[\begin{array}{c}O\left(x_{1}^{10}\right) \\ O\left(x_{2}^{10}\right)\end{array}\right]$, and thus

$$
H(x)=\lim _{m \rightarrow \infty} H^{(m)}(x)=\left[\begin{array}{l}
x_{1}-x_{1}^{2}+2 x_{1}^{3}+12 x_{1}^{5} \\
x_{2}-x_{2}^{2}+2 x_{2}^{3}+12 x_{2}^{5}
\end{array}\right]+\left[\begin{array}{l}
O\left(x_{1}^{6}\right) \\
O\left(x_{2}^{6}\right)
\end{array}\right]
$$

Second example. We will determine the Poincaré-Dulac normal form for the formal vector field

$$
F(x)=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right],
$$

and find $H_{m}(x)$ for $m=2,3,4$, which will determine the terms in $H(x)$ of degree ≤ 4.

The formal vector field $F(x)$ has linearization $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]$. Let $\lambda_{1}=3, \lambda_{2}=$ 1.

The monomial basis vectors for \mathscr{D}_{2} are

$$
\begin{aligned}
& F_{1,(2,0)}=\left[\begin{array}{c}
x_{1}^{2} \\
0
\end{array}\right], F_{1,(1,1)}=\left[\begin{array}{c}
x_{1} x_{2} \\
0
\end{array}\right], F_{1,(0,2)}=\left[\begin{array}{c}
x_{2}^{2} \\
0
\end{array}\right], \\
& F_{2,(2,0)}=\left[\begin{array}{c}
0 \\
x_{1}^{2}
\end{array}\right], F_{2,(1,1)}=\left[\begin{array}{c}
0 \\
x_{1} x_{2}
\end{array}\right], F_{2,(0,2)}=\left[\begin{array}{c}
0 \\
x_{2}^{2}
\end{array}\right] .
\end{aligned}
$$

The weights of these basis vectors are respectively

$$
\begin{aligned}
& 2 w_{1}-w_{1}=w_{1}=1.73 \ldots, w_{1}+w_{2}-w_{1}=w_{2}=1.41 \ldots, 2 w_{2}-w_{1}=1.09 \ldots, \\
& 2 w_{1}-w_{2}=2.04 \ldots, w_{1}+w_{2}-w_{2}=w_{1}=1.73 \ldots, 2 w_{2}-w_{2}=w_{2}=1.41 \ldots
\end{aligned}
$$

The basis vectors are ordered such that $F_{1,(2,0)}$ is before $F_{2,(1,1)}$ and $F_{1,(1,1)}$ is before $F_{2,(0,2)}$. Therefore the ordering of the basis vectors for \mathscr{D}_{2} is

$$
\begin{equation*}
F_{2,(2,0)}>F_{1,(2,0)}>F_{2,(1,1)}>F_{1,(1,1)}>F_{2,(0,2)}>F_{1,(0,2)} \tag{5}
\end{equation*}
$$

The monomial basis vectors for \mathscr{D}_{3} are

$$
\begin{aligned}
& F_{1,(3,0)}=\left[\begin{array}{c}
x_{1}^{3} \\
0
\end{array}\right], F_{1,(2,1)}=\left[\begin{array}{c}
x_{1}^{2} x_{2} \\
0
\end{array}\right], F_{1,(1,2)}=\left[\begin{array}{c}
x_{1} x_{2}^{2} \\
0
\end{array}\right], F_{1,(0,3)}=\left[\begin{array}{c}
x_{2}^{3} \\
0
\end{array}\right], \\
& F_{2,(3,0)}=\left[\begin{array}{c}
0 \\
x_{1}^{3}
\end{array}\right], F_{2,(2,1)}=\left[\begin{array}{c}
0 \\
x_{1}^{2} x_{2}
\end{array}\right], F_{2,(1,2)}=\left[\begin{array}{c}
0 \\
x_{1} x_{2}^{2}
\end{array}\right], F_{2,(0,3)}=\left[\begin{array}{c}
0 \\
x_{2}^{3}
\end{array}\right] .
\end{aligned}
$$

The weights of these basis vectors are respectively

$$
\begin{aligned}
& 2 w_{1}=3.46 \ldots, w_{1}+w_{2}=3.14 \ldots, 2 w_{2}=2.82 \ldots, 3 w_{2}-w_{1}=2.51 \ldots, \\
& 3 w_{1}-w_{2}=3.78 \ldots, 2 w_{1}=3.46 \ldots, w_{1}+w_{2}=3.14 \ldots, 2 w_{2}=2.82 \ldots
\end{aligned}
$$

The basis vectors are ordered such that $F_{1,(3,0)}$ is before $F_{2,(2,1)}, F_{1,(2,1)}$ is before $F_{2,(1,2)}$, and $F_{1,(1,2)}$ is before $F_{2,(0,3)}$. Therefore the ordering of the basis vectors for \mathscr{D}_{3} is

$$
\begin{equation*}
F_{2,(3,0)}>F_{1,(3,0)}>F_{2,(2,1)}>F_{1,(2,1)}>F_{2,(1,2)}>F_{1,(1,2)}>F_{2,(0,3)}>F_{1,(0,3)} . \tag{6}
\end{equation*}
$$

We calculate that $\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{2}}$ written in the ordered basis (5) is $\operatorname{diag}(3,1,-1,5,3,1)$, and we calculate that $\left.\operatorname{ad}_{A}\right|_{\mathscr{D}_{3}}$ written in the ordered basis (6) is $\operatorname{diag}(8,6,6,4,4,2,2,0)$. Thus ker ad $\left.{ }_{A}\right|_{\mathscr{D}_{3}}=\operatorname{span}_{\mathbb{C}}\left\{F_{1,(0,3)}\right\}$.

7 Conclusion

This paper is useful for people who want fully worked proofs of the Poincaré normal form theorem and the Poincaré-Dulac normal form theorem for formal vector fields, and examples that explicitly follow the constructions in the proofs.

References

[1] D. V. Anosov, S. Kh. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines, and Yu. S. Ilyashenko. Ordinary differential equations and smooth dynamical systems. Springer, 1997. Translated from the Russian by E. R. Dawson and D. O'Shea.
[2] V. I. Arnold. Geometrical Methods in the Theory of Ordinary Differential Equations, volume 250 of Grundlehren der mathematischen Wissenschaften. Springer, second edition, 1988. Translated from the Russian by Joseph Szücs.
[3] Jean-Paul Dufour and Nguyen Tien Zung. Poisson structures and their normal forms, volume 242 of Progress in Mathematics. Birkhäuser, 2005.
[4] Zihua Guo, Soonsik Kwon, and Tadahiro Oh. Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. arXiv:1103.5271.
[5] Yulij Ilyashenko and Sergei Yakovenko. Lectures on analytic differential equations, volume 86 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2007.
[6] Jürgen Scheurle and Sebastian Walcher. On normal form computations. In Paul Newton, Philip Holmes, and Alan Weinstein, editors, Geometry, Mechanics, and Dynamics, pages 309-325. Springer, 2002.
[7] Stephen Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume 2 of Texts in Applied Mathematics. Springer, second edition, 2003.

