Measure theory and Perron-Frobenius operators for continued fractions

Jordan Bell

April 18, 2016

1 The continued fraction transformation

For $\xi \in \mathbb{R}$ let $[x]$ be the greatest integer $\leq \xi$, let $R(\xi)=\xi-[\xi]$, and let $\|\xi\|=\min (R(\xi), 1-R(\xi))$, the distance from ξ to a nearest integer. Let $I=[0,1]$ and define the continued fraction transformation $\tau: I \rightarrow I$ by

$$
\tau(x)= \begin{cases}x^{-1}-\left[x^{-1}\right] & x \neq 0 \\ 0 & x=0\end{cases}
$$

It is immediate that for $x \in I, x \in I \backslash \mathbb{Q}$ if and only if $\tau(x) \in I \backslash \mathbb{Q}$. For $x \in \mathbb{R}$, define $a_{0}(x)=[x]$, and for $n \geq 1$ define $a_{n}(x) \in \mathbb{Z}_{\geq 1} \cup\{\infty\}$ by

$$
a_{n}(x)=\left[\frac{1}{\tau^{n-1}\left(x-a_{0}(x)\right)}\right] .
$$

For example, let $x=\frac{13}{71}$.

$$
\begin{gathered}
\tau(x)=\frac{71}{13}-\left[\frac{71}{13}\right]=\frac{71}{13}-5=\frac{6}{13} . \\
\tau^{2}(x)=\frac{13}{6}-\left[\frac{13}{6}\right]=\frac{13}{6}-2=\frac{1}{6} . \\
\tau^{3}(x)=\frac{6}{1}-\left[\frac{6}{1}\right]=0
\end{gathered}
$$

Then $\tau^{n}(x)=0$ for $n \geq 3$. Thus, with $x=\frac{13}{71}$,

$$
\begin{gathered}
a_{0}(x)=0, \quad a_{1}(x)=\left[\frac{71}{13}\right]=5 . \\
a_{2}(x)=\left[\frac{1}{\tau(x)}\right]=\left[\frac{13}{6}\right]=2, \quad a_{3}(x)=\left[\frac{1}{\tau^{2}(x)}\right]=\left[\frac{6}{1}\right]=6 . \\
a_{4}(x)=\left[\frac{1}{\tau^{3}(x)}\right]=\infty, \quad a_{5}(x)=\infty, \quad \ldots
\end{gathered}
$$

2 Convergents

For $x \in \Omega=I \backslash \mathbb{Q}$ write $a_{n}=a_{n}(x)$, and define

$$
q_{-1}=0, \quad p_{-1}=1, \quad q_{0}=1, \quad p_{0}=0
$$

and for $n \geq 1$,

$$
q_{n}=a_{n} q_{n-1}+q_{n-2}, \quad p_{n}=a_{n} p_{n-1}+p_{n-2} .
$$

Thus

$$
q_{1}=a_{1} q_{0}+q_{-1}=a_{1}, \quad p_{1}=a_{1} p_{0}+p_{-1}=1
$$

One proves

$$
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n+1}, \quad n \geq 0
$$

Also, ${ }^{1}$

$$
x=\frac{p_{n}+\tau^{n}(x) p_{n-1}}{q_{n}+\tau^{n}(x) q_{n-1}}, \quad x \in \Omega, \quad n \geq 0 .
$$

From this,

$$
x-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n} \tau^{n}(x)}{q_{n}\left(q_{n}+\tau^{n}(x) q_{n-1}\right)} .
$$

Now,

$$
a_{n+1}+\tau^{n+1}(x)=\left[\frac{1}{\tau^{n}(x)}\right]+\frac{1}{\tau^{n}(x)}-\left[\frac{1}{\tau^{n}(x)}\right]=\frac{1}{\tau^{n}(x)},
$$

and using this,

$$
\begin{aligned}
\frac{\tau^{n}(x)}{q_{n}\left(q_{n}+\tau^{n}(x) q_{n-1}\right)} & =\frac{1}{q_{n}\left(q_{n} \cdot\left(a_{n+1}+\tau^{n+1}(x)\right)+q_{n-1}\right)} \\
& =\frac{1}{q_{n}\left(q_{n+1}+\tau^{n+1}(x) q_{n}\right)} .
\end{aligned}
$$

Thus

$$
\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}<\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}} .
$$

For $n \geq 1$ let

$$
r_{n}(x)=\frac{1}{\tau^{n-1}(x)}=a_{n}+\tau^{n}(x)
$$

and

$$
s_{n}=\frac{q_{n-1}}{q_{n}}, \quad y_{n}=\frac{1}{s_{n}}
$$

[^0]and
\[

$$
\begin{aligned}
u_{n} & =q_{n-1}^{-2}\left|x-\frac{p_{n-1}}{q_{n-1}}\right|^{-1} \\
& =\frac{1}{q_{n-1}^{2}} \cdot \frac{q_{n-1}\left(q_{n-1}+\tau^{n-1}(x) q_{n-2}\right)}{\tau^{n-1}(x)} \\
& =\frac{q_{n-1}+\tau^{n-1}(x) q_{n-2}}{\tau^{n-1}(x) q_{n-1}} \\
& =\frac{q_{n-1} \cdot\left(a_{n}+\tau^{n}(x)\right)+q_{n-2}}{q_{n-1}} \\
& =a_{n}+\tau^{n}(x)+\frac{q_{n-2}}{q_{n-1}} .
\end{aligned}
$$
\]

Let $s_{0}=0$. It is worth noting that

$$
\begin{gathered}
y_{1} \cdots y_{n}=\frac{q_{1}}{q_{0}} \cdots \frac{q_{n}}{q_{n-1}}=\frac{q_{n}}{q_{0}}=q_{n} . \\
\frac{1}{s_{n}}=\frac{q_{n}}{q_{n-1}}=a_{n}+\frac{q_{n-2}}{q_{n-1}}=a_{n}+s_{n-1} . \\
u_{n}=a_{n}+\tau^{n}(x)+\frac{q_{n-2}}{q_{n-1}}=r_{n}+s_{n-1} .
\end{gathered}
$$

3 Measure theory

Suppose that (X, \mathscr{A}) is a measurable space and μ, ν are probability measures on \mathscr{A}. Let $\mathscr{D}=\{A \in \mathscr{A}: \mu(A)=\nu(A)\}$. First, $X \in \mathscr{D}$. Second, if $A, B \in \mathscr{D}$ and $A \subset B$ then

$$
\mu(B \backslash A)=\mu(B)-\mu(A)=\nu(B)-\nu(A)=\nu(B \backslash A),
$$

so $B \backslash A \in \mathscr{D}$. Third, suppose that $A_{n} \in \mathscr{D}, n \geq 1$, and $A_{n} \uparrow A$. Because \mathscr{A} is a σ-algebra, $A \in \mathscr{A}$, and then, setting $A_{0}=\emptyset$,

$$
\mu(A)=\mu\left(\bigcup_{n \geq 1}\left(A_{n} \backslash A_{n-1}\right)\right)=\sum_{n \geq 1}\left(\mu\left(A_{n}\right)-\mu\left(A_{n-1}\right)\right),
$$

whence $\mu(A)=\nu(A)$. Therefore \mathscr{D} is a Dynkin system. Dynkin's theorem says that if \mathscr{D} is a Dynkin system and $\mathscr{C} \subset \mathscr{D}$ where \mathscr{C} is a π-system (nonempty and closed under finite intersections), then $\sigma(\mathscr{C}) \subset \mathscr{D}^{2}{ }^{2}$

Suppose now that $\sigma(\mathscr{C})=\mathscr{A}$, that \mathscr{C} is closed under finite intersections, and that $\mu(A)=\nu(A)$ for all $A \in \mathscr{C}$. Then $\mathscr{C} \subset \mathscr{D}$, so by Dynkin's theorem,

[^1]$\mathscr{A}=\sigma(\mathscr{C}) \subset \mathscr{D}$, hence $\mathscr{D}=\mathscr{A}$. That is, for any $A \in \mathscr{A}, \mu(A)=\nu(A)$, meaning $\mu=\nu$.

We shall apply the above with $\left(I, \mathscr{B}_{I}\right), I=[0,1]$. For

$$
\mathscr{C}=\{(0, u]: 0<u \leq 1\},
$$

it is a fact that $\sigma(\mathscr{C})=\mathscr{B}_{I}$. Therefore if μ and ν are probability measures on \mathscr{B}_{I} such that $\mu((0, u])=\nu((0, u])$ for every $0<u \leq 1$, then $\mu=\nu$.

Let λ be Lebesgue measure on $I=[0,1]$. Define

$$
d \gamma(x)=\frac{1}{(1+x) \log 2} d \lambda(x)
$$

called the Gauss measure. If μ is a Borel probability measure on I, for measurable $T: I \rightarrow I$ and for $A \in \mathscr{B}_{I}$ let

$$
T_{*} \mu(A)=\mu\left(T^{-1}(A)\right) .
$$

$T_{*} \mu$, called the pushforward of μ by T, is itself a Borel probability measure on I. We prove that γ is an invariant measure for τ. ${ }^{3}$

Theorem 1. $\tau_{*} \gamma=\gamma$.
Proof. Let $0<u \leq 1$. For $x \in I, 0<\tau(x) \leq u$ if and only if $0<\frac{1}{x}-\left[\frac{1}{x}\right] \leq u$ if and only if $\left[\frac{1}{x}\right]<\frac{1}{x} \leq u+\left[\frac{1}{x}\right]$ if and only if $\frac{1}{u+\left[\frac{1}{x}\right]} \leq x<\frac{1}{\left[\frac{1}{x}\right]}$. Then, as $0 \notin \tau^{-1}((0, u])$,

$$
\tau^{-1}((0, u])=\bigcup_{i \geq 1}\left[\frac{1}{u+i}, \frac{1}{i}\right)
$$

We calculate

$$
\begin{aligned}
\gamma\left(\tau^{-1}((0, u])\right) & =\sum_{i \geq 1} \gamma\left(\left[\frac{1}{u+i}, \frac{1}{i}\right)\right) \\
& =\sum_{i \geq 1} \int_{\left[\frac{1}{u+i}, \frac{1}{i}\right)} \frac{1}{(1+x) \log 2} d \lambda(x) \\
& =\frac{1}{\log 2} \sum_{i \geq 1}\left(\log \left(1+\frac{1}{i}\right)-\log \left(1+\frac{1}{u+i}\right)\right)
\end{aligned}
$$

Using

$$
\frac{1+\frac{1}{i}}{1+\frac{1}{u+i}}=\frac{1+\frac{u}{i}}{1+\frac{u}{i+1}},
$$

[^2]this is
\[

$$
\begin{aligned}
\gamma\left(\tau^{-1}((0, u])\right) & =\frac{1}{\log 2} \sum_{i \geq 1}\left(\log \left(1+\frac{u}{i}\right)-\log \left(1+\frac{u}{i+1}\right)\right) \\
& =\frac{1}{\log 2} \sum_{i \geq 1} \int_{\frac{u}{i+1}}^{\frac{u}{i}} \frac{1}{1+x} d \lambda(x) \\
& =\gamma((0, u])
\end{aligned}
$$
\]

Because $\gamma\left(\tau^{-1}((0, u])\right)=\gamma((0, u])$ for every $0<u \leq 1$, it follows that $\tau_{*} \gamma=$ γ.

We remark that for a set X, X^{0} is a singleton. For $i \in \mathbb{Z}_{\geq 1}^{0}$ let $I_{0}(i)=\Omega$. For $n \geq 1$ and $i \in \mathbb{Z}_{\geq 1}^{n}$, let

$$
I_{n}(i)=\left\{\omega \in \Omega: a_{k}(x)=i_{k}, 1 \leq k \leq n\right\} .
$$

For $n \geq 1$ and for $i \in \mathbb{Z}_{\geq 1}^{n}$, define

$$
\left[i_{1}, \ldots, i_{n}\right]=\frac{1}{i_{1}+\frac{1}{\cdots+\frac{1}{i_{n-1}+\frac{1}{i_{n}}}}}
$$

For $x \in I_{n}(i)$,

$$
\frac{p_{n}(x)}{q_{n}(x)}=\left[i_{1}, \ldots, i_{n}\right], \quad \frac{p_{n-1}(x)}{q_{n-1}(x)}=\left[i_{1}, \ldots, i_{n-1}\right] .
$$

The following is an expression for the sets $I_{n}(i) .{ }^{4}$
Theorem 2. Let $n \geq 1, i \in \mathbb{Z}_{\geq 1}^{n}$, and define

$$
u_{n}(i)= \begin{cases}\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}} & n \text { odd } \\ \frac{p_{n}}{q_{n}} & n \text { even }\end{cases}
$$

and

$$
v_{n}(i)= \begin{cases}\frac{p_{n}}{q_{n}} & n \text { odd } \\ \frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}} & n \text { even } .\end{cases}
$$

Then

$$
I_{n}(i)=\Omega \cap\left(u_{n}(i), v_{n}(i)\right) .
$$

[^3]From the above, if n is odd and $i \in \mathbb{Z}_{\geq 1}$ then

$$
\begin{aligned}
\lambda\left(I_{n}(i)\right) & =v_{n}(i)-u_{n}(i) \\
& =\frac{p_{n}}{q_{n}}-\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}} \\
& =\frac{p_{n} q_{n-1}-p_{n-1} q_{n}}{q_{n}\left(q_{n}+q_{n-1}\right)} \\
& =\frac{(-1)^{n+1}}{q_{n}\left(q_{n}+q_{n-1}\right)} \\
& =\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)},
\end{aligned}
$$

and if n is even then likewise

$$
\lambda\left(I_{n}(i)\right)=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}
$$

Kraaikamp and Iosifescu attribute the following to Torsten Brodén, in a 1900 paper. ${ }^{5}$

Theorem 3. For $n \geq 1, i \in \mathbb{N}^{n}, x \in I$,

$$
\lambda\left(\tau^{n}<x \mid i\right)=\frac{x\left(s_{n}+1\right)}{s_{n} x+1}
$$

Proof. We have

$$
\lambda\left(\tau^{n}<x \mid i\right)=\frac{\lambda\left(\left(\tau^{n}<x\right) \cap I_{n}(i)\right)}{\lambda\left(I_{n}(i)\right)}
$$

Using

$$
\omega=\frac{p_{n}+\tau^{n}(\omega) p_{n-1}}{q_{n}+\tau^{n}(\omega) q_{n-1}}, \quad \omega \in \Omega, \quad n \geq 0
$$

if n is odd then

$$
\begin{aligned}
\left(\tau^{n}<x\right) \cap I_{n}(i) & =\left\{\omega \in \Omega: \frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}<\omega<\frac{p_{n}}{q_{n}}, \tau^{n}(\omega)<x\right\} \\
& =\left\{\omega \in \Omega: \frac{p_{n}+x p_{n-1}}{q_{n}+x q_{n-1}}<\omega<\frac{p_{n}}{q_{n}}\right\}
\end{aligned}
$$

and if n is even then

$$
\left(\tau^{n}<x\right) \cap I_{n}(i)=\left\{\omega \in \Omega: \frac{p_{n}}{q_{n}}<\omega<\frac{p_{n}+x p_{n-1}}{q_{n}+x q_{n-1}}\right\}
$$

[^4]Therefore if n is odd,

$$
\begin{aligned}
\lambda\left(\left(\tau^{n}<x\right) \cap I_{n}(i)\right) & =\frac{p_{n}}{q_{n}}-\frac{p_{n}+x p_{n-1}}{q_{n}+x q_{n-1}} \\
& =\frac{x p_{n} q_{n-1}-x p_{n-1} q_{n}}{q_{n}\left(q_{n}+x q_{n-1}\right)} \\
& =\frac{x}{q_{n}\left(q_{n}+x q_{n-1}\right)}
\end{aligned}
$$

and likewise if n is even then

$$
\lambda\left(\left(\tau^{n}<x\right) \cap I_{n}(i)\right)=\frac{x}{q_{n}\left(q_{n}+x q_{n-1}\right)}
$$

Therefore for $n \geq 1$,

$$
\begin{aligned}
\lambda\left(\tau^{n}<x \mid i\right) & =\frac{x}{q_{n}\left(q_{n}+x q_{n-1}\right)} \cdot q_{n}\left(q_{n}+q_{n-1}\right) \\
& =\frac{x\left(q_{n}+q_{n-1}\right)}{q_{n}+x q_{n-1}}
\end{aligned}
$$

Using $s_{n}+1=\frac{q_{n}+q_{n-1}}{q_{n}}$ and $s_{n} x+1=\frac{x q_{n-1}+q_{n}}{q_{n}}$,

$$
\begin{aligned}
\lambda\left(\tau^{n}<x \mid i\right) & =\frac{x q_{n}\left(s_{n}+1\right)}{q_{n}\left(s_{n} x+1\right)} \\
& =\frac{x\left(s_{n}+1\right)}{s_{n} x+1}
\end{aligned}
$$

For $j \geq 1$ and $s \in I$ define

$$
P_{j}(s)=\frac{s+1}{(s+j)(s+j+1)}
$$

We now apply Theorem 3 to prove the following. ${ }^{6}$
Theorem 4. For $j \geq 1$,

$$
\lambda\left(a_{1}=j\right)=\frac{1}{j(j+1)}
$$

For $n \geq 1$ and $i \in \mathbb{N}^{n}$,

$$
\lambda\left(a_{n+1}=j \mid i\right)=P_{j}\left(s_{n}\right)
$$

Proof. By Theorem 2,

$$
\left\{\omega \in \Omega: a_{1}(\omega)=j\right\}=I_{1}(j)=\Omega \cap\left(u_{1}(j), v_{1}(j)\right)
$$

[^5]In this case, $q_{1}=j$, so $u_{1}(j)=\frac{p_{1}+p_{0}}{q_{1}+q_{0}}=\frac{1+0}{j+1}=\frac{1}{j+1}$ and $v_{1}(j)=\frac{p_{1}}{q_{1}}=\frac{1}{j}$, so

$$
\left\{\omega \in \Omega: a_{1}(\omega)=j\right\}=\Omega \cap\left(\frac{1}{j+1}, \frac{1}{j}\right)
$$

Now,

$$
a_{n+1}(\omega)=\left[\frac{1}{\tau^{n}(\omega)}\right]=a_{1}\left(\tau^{n}(\omega)\right)
$$

Thus

$$
\left\{\omega \in \Omega: a_{n+1}(\omega)=j\right\}=\left\{\omega \in \Omega: \tau^{n}(\omega) \in\left(\frac{1}{j+1}, \frac{1}{j}\right)\right\} .
$$

Then using Theorem 3,

$$
\begin{aligned}
\lambda\left(a_{n+1}=j \mid i\right) & =\lambda\left(\left.\tau^{n}<\frac{1}{j} \right\rvert\, i\right)-\lambda\left(\left.\tau^{n}<\frac{1}{j+1} \right\rvert\, i\right) \\
& =\frac{\frac{1}{j}\left(s_{n}+1\right)}{s_{n} \frac{1}{j}+1}-\frac{\frac{1}{j+1}\left(s_{n}+1\right)}{s_{n} \frac{1}{j+1}+1} \\
& =\frac{s_{n}+1}{\left(s_{n}+1\right)\left(s_{n}+j+1\right)} .
\end{aligned}
$$

4 Perron-Frobenius operators

For a probability measure μ on \mathscr{B}_{I} and for $f \in L^{1}(\mu)$ let $d \mu_{f}=f d \mu$. If $\tau_{*} \mu$ is absolutely continuous with respect to μ, check that $\tau_{*} \mu_{f}$ is itself absolutely continuous with respect to μ. Then applying the Radon-Nikodym theorem, let

$$
P_{\mu} f=\frac{d\left(\tau_{*} \mu_{f}\right)}{d \mu} .
$$

For $g \in L^{\infty}(\mu)$,

$$
\int_{I} g \cdot P_{\mu} f d \mu=\int_{I} g d\left(\tau_{*} \mu_{f}\right)=\int_{I} g \circ \tau d \mu_{f}=\int_{I}(g \circ \tau) \cdot f d \mu .
$$

In particular, for $g=1_{A}, A \in \mathscr{B}_{I}$,

$$
\int_{I} 1_{A} \cdot P_{\mu} f d \mu=\int_{I} 1_{\tau^{-1}(A)} \cdot f d \mu
$$

For $g \in L^{\infty}(\mu)$,

$$
\int_{I} g \cdot P_{\gamma} 1 d \gamma=\int_{I} g \circ \tau d \gamma=\int_{I} g d\left(\tau_{*} \gamma\right),
$$

hence $P_{\gamma} 1=1$ if and only if $\tau_{*} \gamma$.

We shall be especially interested in

$$
U=P_{\gamma}
$$

where γ is the Gauss measure on I. We establish almost everywhere an expression for $U f(x) .^{7}$
Theorem 5. For $f \in L^{1}(\gamma)$, for γ-almost all $x \in I$,

$$
U f(x)=\sum_{i \geq 1} P_{i}(x) f\left(\frac{1}{x+i}\right)
$$

Proof. Let $I_{i}=\left(\frac{1}{i+1}, \frac{1}{i}\right]$ and let τ_{i} be the restriction of $\tau: I \rightarrow I$ to I_{i}. For $u \in I_{i}, i \leq \frac{1}{u}<i+1$, hence $\tau_{i}(u)=\tau(u)=\frac{1}{u}-i$, i.e. $u=\frac{1}{\tau_{i}(u)+i}$, i.e. $\tau_{i}^{-1}(x)=\frac{1}{x+i}$.

For $A \underset{\mathscr{B}_{I}}{I}$, if $0 \notin A$ then

$$
\tau^{-1}(A)=\tau^{-1}\left(\bigcup_{i \geq 1}\left(A \cap I_{i}\right)\right)=\bigcup_{i \geq 1} \tau^{-1}\left(A \cap I_{i}\right)
$$

and the sets $\tau^{-1}\left(A \cap I_{i}\right)$ are pairwise disjoint, hence

$$
\int_{\tau^{-1}(A)} f d \gamma=\sum_{i \geq 1} \int_{\tau^{-1}\left(A \cap I_{i}\right)} f d \gamma=\sum_{i \geq 1} \int_{\tau_{i}^{-1}(A)} f d \gamma
$$

Applying the change of variables formula, as $\frac{d}{d x} \tau_{i}^{-1}(x)=-(x+i)^{-2}$,

$$
\begin{aligned}
\int_{\tau_{i}^{-1}(A)} f d \gamma & =\frac{1}{\log 2} \int_{\tau_{i}^{-1}(A)} \frac{f(u)}{u+1} d \lambda(u) \\
& =\frac{1}{\log 2} \int_{A} \frac{f \circ \tau_{i}^{-1}(x)}{\tau_{i}^{-1}(x)+1} \cdot(x+i)^{-2} d \lambda(x) \\
& =\frac{1}{\log 2} \int_{A} f\left(\frac{1}{x+i}\right) \cdot \frac{1}{(x+i+1)(x+i)} d \lambda(x) \\
& =\frac{1}{\log 2} \int_{A} f\left(\frac{1}{x+i}\right) \cdot P_{i}(x) \cdot \frac{1}{x+1} d \lambda(x) \\
& =\int_{A} f\left(\frac{1}{x+i}\right) \cdot P_{i}(x) d \gamma(x)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{\tau^{-1}(A)} f d \gamma & =\sum_{i \geq 1} \int_{A} f\left(\frac{1}{x+i}\right) \cdot P_{i}(x) d \gamma(x) \\
& =\int_{A} \sum_{i \geq 1} f\left(\frac{1}{x+i}\right) \cdot P_{i}(x) d \gamma(x)
\end{aligned}
$$

[^6]Then

$$
\int_{A} P_{\gamma} f d \gamma=\int_{A} \sum_{i \geq 1} f\left(\frac{1}{x+i}\right) \cdot P_{i}(x) d \gamma(x) .
$$

Because this is true for any $A \in \mathscr{B}_{I}$ with $0 \notin A$, it follows that for γ-almost all $x \in I$,

$$
P_{\gamma} f(x)=\sum_{i \geq 1} f\left(\frac{1}{x+i}\right) \cdot P_{i}(x) .
$$

The following gives an expression for $P_{\mu} f(x)$ under some hypotheses. ${ }^{8}$
Theorem 6. Let μ be a probability measure on \mathscr{B}_{I} that is absolutely continuous with respect to λ and suppose that $d \mu=h d \lambda$ with $h(x)>0$ for μ-almost all $x \in I$. Let $f \in L^{1}(\mu)$ and define $g(x)=(x+1) h(x) f(x)$. For μ-almost all $x \in I$,

$$
P_{\mu} f(x)=\frac{1}{h(x)} \sum_{i \geq 1} \frac{h\left((x+i)^{-1}\right)}{(x+i)^{2}} f\left(\frac{1}{x+i}\right)=\frac{U g(x)}{(x+1) h(x)} .
$$

For $n \geq 1$, for μ-almost all $x \in I$,

$$
P_{\mu}^{n} f(x)=\frac{U^{n} g(x)}{(x+1) h(x)}
$$

We prove an expression for $\mu\left(\tau^{-n}(A)\right) .{ }^{9}$
Theorem 7. Let μ be a probability measure on \mathscr{B}_{I} that is absolutely continuous with respect to λ. Let $h=\frac{d \mu}{d \lambda}$ and let $f(x)=(x+1) h(x)$. For $A \in \mathscr{B}_{I}$ and $n \geq 1$,

$$
\mu\left(\tau^{-n}(A)\right)=\int_{A} \frac{U^{n} f(x)}{x+1} d \lambda(x)
$$

Proof. For $n=0$,

$$
\mu(A)=\int_{A} d \mu=\int_{A} h d \lambda=\int_{A} \frac{f(x)}{x+1} d \lambda(x)=\int_{A} \frac{U^{0} f(x)}{x+1} d \lambda(x) .
$$

[^7]Suppose by hypothesis that the claim is true for some $n \geq 0$. Then

$$
\begin{aligned}
\mu\left(\tau^{-n-1}(A)\right) & =\mu\left(\tau^{-n}\left(\tau^{-1}(A)\right)\right) \\
& =\int_{\tau^{-1}(A)} \frac{U^{n} f(x)}{x+1} d \lambda(x) \\
& =\log 2 \cdot \int_{\tau^{-1}(A)} U^{n} f(x) d \gamma(x) \\
& =\log 2 \cdot \int_{A} U^{n+1} f(x) d \gamma(x) \\
& =\log 2 \cdot \int_{A} \frac{U^{n+1} f(x)}{x+1} d \lambda(x)
\end{aligned}
$$

For $f(x)=\frac{1}{x+1}$ and $A \in \mathscr{B}_{I}$,

$$
\begin{aligned}
\int_{A} P_{\lambda} f d \lambda & =\int_{\tau^{-1}(A)} \frac{1}{x+1} d \lambda(x) \\
& =\log 2 \cdot \int_{\tau^{-1}(A)} d \gamma \\
& =\log 2 \cdot \int_{A} d \gamma \\
& =\int_{A} f d \lambda
\end{aligned}
$$

Because this is true for all Borel sets A,

$$
P_{\lambda} \frac{1}{x+1}=\frac{1}{x+1}
$$

For $f \in L^{1}(\lambda)$ and $x \in I$, let

$$
\Pi_{1} f(x)=\frac{1}{(x+1) \log 2} \int_{I} f d \lambda
$$

Define

$$
T_{0}=P_{\lambda}-\Pi_{1}
$$

For $n \geq 1, \Pi_{1}^{n}=\Pi_{1}$. For $f \in L^{1}(\lambda)$,

$$
P_{\lambda} \Pi_{1} f=\frac{1}{\log 2} \int_{I} f d \lambda \cdot P_{\lambda} \frac{1}{x+1}=\frac{1}{\log 2} \int_{I} f d \lambda \cdot \frac{1}{x+1}=\Pi_{1} f(x)
$$

and

$$
\Pi_{1} P_{\lambda} f=\frac{1}{(x+1) \log 2} \int_{I} P_{\lambda} f d \lambda=\frac{1}{(x+1) \log 2} \int_{I} f d \lambda=\Pi_{1} f(x)
$$

hence

$$
P_{\lambda} \Pi_{1}=\Pi_{1}=\Pi_{1} P_{\lambda} .
$$

Moreover,

$$
T_{0} \Pi_{1}=\left(P_{\lambda}-\Pi_{1}\right) \Pi_{1}=P_{\lambda} \Pi_{1}-\Pi_{1}^{2}=0
$$

and

$$
\Pi_{1} T_{0}=\Pi_{1}\left(P_{\lambda}-\Pi_{1}\right)=\Pi_{1} P_{\lambda}-\Pi_{1}^{2}=0
$$

Because $P_{\lambda}=\Pi_{1}+T_{0}$, using $\Pi_{1}^{2}=\Pi_{1}, T_{0} \Pi_{1}=0$, and $\Pi_{1} T_{0}=0$, we have

$$
P_{\lambda}^{n}=\Pi_{1}+T_{0}^{n}, \quad n \geq 1
$$

Theorem 6 tells us that for $f \in L^{1}(\lambda)$, for λ-almost all $x \in I$,

$$
P_{\lambda} f(x)=\sum_{i \geq 1} \frac{1}{(x+i)^{2}} f\left(\frac{1}{x+i}\right)
$$

With $h(x)=x+1$ and $g=h f$, for $n \geq 1$, for λ-almost all $x \in I$,

$$
P_{\lambda}^{n} f(x)=\frac{U^{n} g(x)}{x+1}
$$

Thus

$$
\begin{aligned}
U^{n} g & =h P_{\lambda}^{n} f \\
& =h \Pi_{1} f+h T_{0}^{n} f \\
& =\frac{1}{\log 2} \int_{I} f d \lambda+h T_{0}^{n} f \\
& =\int_{I} g d \gamma+h T_{0}^{n}(g / h)
\end{aligned}
$$

Define $I_{\gamma}: L^{1}(\gamma) \rightarrow L^{1}(\gamma)$ by

$$
I_{\gamma} f=1 \cdot \int_{I} f d \gamma
$$

We have

$$
I_{\gamma} U f=\int_{I} P_{\gamma} f d \gamma=\int_{I} f d \gamma=I_{\gamma} f
$$

meaning $I_{\gamma} U=I_{\gamma}$. Furthermore, because $\tau_{*} \gamma=\gamma$ we have $P_{\gamma} 1=1$, so

$$
U I_{\gamma} f=\int_{I} f d \gamma \cdot U 1=\int_{I} f d \gamma \cdot 1=I_{\gamma} f
$$

meaning $U I_{\gamma}=I_{\gamma}$.
Let $h(x)=x+1 . h, \frac{1}{h} \in L^{\infty}(\gamma)$. Now define $T: L^{1}(\gamma) \rightarrow L^{1}(\gamma)$ by

$$
T g=h \cdot T_{0}(g / h),
$$

which makes sense because $\frac{1}{h} \in L^{\infty}(\gamma)$. Then

$$
\begin{aligned}
T^{2} g & =T\left(h \cdot T_{0}(g / h)\right) \\
& =h \cdot T_{0}\left(\frac{h \cdot T_{0}(g / h)}{h}\right) \\
& =h \cdot T_{0}^{2}(g / h) .
\end{aligned}
$$

For $n \geq 1$,

$$
T^{n} g=h \cdot T_{0}^{n}(g / h)
$$

Recapitulating the above, for $n \geq 1$ and $g \in L^{1}(\gamma)$,

$$
U^{n} g=I_{\gamma} g+h T_{0}^{n}(g / h)=I_{\gamma} g+T^{n} g,
$$

meaning

$$
U^{n}=I_{\gamma}+T^{n}, \quad n \geq 1
$$

It is a fact that T^{n} converges to 0 in the strong operator topology on $\mathscr{L}\left(L^{1}(\gamma)\right)$, the bounded linear operators $L^{1}(\gamma) \rightarrow L^{1}(\gamma)$, that is, for each $f \in L^{1}(\gamma), T^{n} f \rightarrow 0$ in $L^{1}(\gamma)$, i.e. $\left\|T^{n} f\right\|_{L^{1}} \rightarrow 0 .{ }^{10}$ Then $U^{n} \rightarrow I_{\gamma}$ in the strong operator topology: for $f \in L^{1}(\gamma)$,

$$
\int_{I}\left|U^{n} f(x)-\int_{I} f d \gamma\right| d \lambda \rightarrow 0 .
$$

Iosifescu and Kraaikamp state that has not been determined whether for γ almost all $x \in I, U_{n} f(x) \rightarrow I_{\gamma} f$.

Let $B(I)$ be the set of bounded Borel measurable functions $f: I \rightarrow \mathbb{C}$ and write $\|f\|_{\infty}=\sup _{x \in I}|f(x)|$. For $f \in B(I)$, define for $x \in I$,

$$
U f(x)=\sum_{i \geq 1} P_{i}(x) f\left(\frac{1}{x+i}\right)=\sum_{i \geq 1} \frac{x+1}{(x+i)(x+i+1)} f\left(\frac{1}{x+i}\right) .
$$

$1 \in B(I)$, and for $x \in I$,

$$
\sum_{1 \leq i \leq m} \frac{x+1}{(x+i)(x+i+1)}=\frac{m}{m+x+1}
$$

hence

$$
U 1(x)=\sum_{i \geq 1} \frac{x+1}{(x+i)(x+i+1)}=1 .
$$

For $f \in B(I)$ and $x \in I$,

$$
|U f(x)| \leq\|f\|_{\infty} \cdot U 1(x)
$$

[^8]hence
$$
\|U\|_{B(I) \rightarrow B(I)}=1
$$

Say that $f: I \rightarrow \mathbb{R}$ is increasing if $x \leq y$ implies $f(x) \leq f(y)$. An increasing function $f: I \rightarrow \mathbb{R}$ belongs to $B(I)$. We prove that if f is increasing then $U f$ is decreasing. ${ }^{11}$

Theorem 8. If $f: I \rightarrow \mathbb{R}$ is increasing then $U f$ is decreasing.
Proof. Take $x<y$ and let

$$
S_{1}=\sum_{i \geq 1} P_{i}(y)\left(f\left(\frac{1}{y+i}\right)-f\left(\frac{1}{x+i}\right)\right)
$$

and

$$
S_{2}=\sum_{i \geq 1}\left(P_{i}(y)-P_{i}(x)\right) f\left(\frac{1}{x+i}\right)
$$

Then

$$
\begin{aligned}
U f(y)-U f(x) & =\sum_{i \geq 1}\left(P_{i}(y) f\left(\frac{1}{y+i}\right)-P_{i}(x) f\left(\frac{1}{x+i}\right)\right) \\
& =S_{1}+S_{2}
\end{aligned}
$$

Because f is increasing, $S_{1} \leq 0$. Using $\sum_{i \geq 1} P_{i}(u)=1$ for any $u \in I$,

$$
\sum_{i \geq 1}\left(P_{i}(y)-P_{i}(x)\right) f\left(\frac{1}{x+1}\right)=0
$$

and therefore

$$
\begin{aligned}
S_{2} & =\sum_{i \geq 1}\left(f\left(\frac{1}{x+i}\right)-f\left(\frac{1}{x+1}\right)\right)\left(P_{i}(y)-P_{i}(x)\right) \\
& =\left(f\left(\frac{1}{x+2}\right)-f\left(\frac{1}{x+1}\right)\right)\left(P_{2}(y)-P_{2}(x)\right) \\
& +\sum_{i \geq 3}\left(f\left(\frac{1}{x+i}\right)-f\left(\frac{1}{x+1}\right)\right)\left(P_{i}(y)-P_{i}(x)\right) .
\end{aligned}
$$

For $i \geq 2$, using that f is increasing,

$$
f\left(\frac{1}{x+i}\right)-f\left(\frac{1}{x+1}\right) \leq f\left(\frac{1}{x+2}\right)-f\left(\frac{1}{x+1}\right) \leq 0
$$

We calculate

$$
P_{i}^{\prime}(u)=-\frac{-i^{2}+i+(u+1)^{2}}{(u+i)^{2}(u+i+1)^{2}}
$$

[^9]The roots of the above rational function are $u=-\sqrt{(i-1) i}-1, \sqrt{(i-1) i}-1$. Thus, $P_{i}^{\prime}(u)=0$ if and only if $u=\sqrt{(i-1) i}-1$. But $\sqrt{(i-1) i}-1 \in I$ if and only if $i^{2}-i-1 \geq 0$ and $i^{2}-i-4 \leq 0$. This is possible if and only if $i=2$. And

$$
P_{i}^{\prime}(0)=\frac{i^{2}-i-1}{i^{2}(i+1)^{2}},
$$

so $P_{1}^{\prime}(u) \leq 0$ for all $u \in I$ and for $i \geq 3, P_{i}^{\prime}(u) \geq 0$ for all $u \in I$. For $i=2$, check that if $0 \leq u \leq \sqrt{2}-1$ then $P_{2}^{\prime}(u) \geq 0$ and if $\sqrt{2}-1 \leq u \leq 1$ then $P_{2}^{\prime}(u) \leq 0$. Then

$$
\begin{aligned}
S_{2} & \leq\left(f\left(\frac{1}{x+2}\right)-f\left(\frac{1}{x+1}\right)\right)\left(P_{2}(y)-P_{2}(x)\right) \\
& +\sum_{i \geq 3}\left(f\left(\frac{1}{x+2}\right)-f\left(\frac{1}{x+1}\right)\right)\left(P_{i}(y)-P_{i}(x)\right) \\
& =\left(f\left(\frac{1}{x+2}\right)-f\left(\frac{1}{x+1}\right)\right)\left(P_{2}(y)-P_{2}(x)\right) \\
& +\left(f\left(\frac{1}{x+2}\right)-f\left(\frac{1}{x+1}\right)\right)\left(-P_{1}(y)-P_{2}(y)-\left(-P_{1}(x)-P_{2}(x)\right)\right) \\
& =\left(f\left(\frac{1}{x+2}\right)-f\left(\frac{1}{x+1}\right)\right)\left(P_{1}(x)-P_{1}(y)\right) \\
& \leq 0
\end{aligned}
$$

We have shown that $S_{1} \leq 0$ and $S_{2} \leq 0$, so

$$
U f(y)-U f(x)=S_{1}+S_{2} \leq 0
$$

which means that $U f: I \rightarrow \mathbb{R}$ is decreasing.
For $J=[a, b] \subset I$, a partition of J is a sequence $P=\left(t_{0}, \ldots, t_{n}\right)$ such that $a=t_{0}<\cdots<t_{n}=b$. For $f: I \rightarrow \mathbb{R}$ define

$$
V(f, P)=\sum_{1 \leq i \leq n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right| .
$$

Define

$$
V_{J} f=\sup \{V(f, P): P \text { is a partition of } J\} .
$$

Let $v_{f}(x)=V_{[0, x]} f$, the variation of $f . v_{f}(1)=V_{[0,1]} f$. We say that f has bounded variation if $v_{f}(1)<\infty$, and denote by $B V(I)$ the set of functions $f: I \rightarrow \mathbb{R}$ with bounded variation. It is a fact that with the norm

$$
\|f\|_{B V}=|f(0)|+V_{I} f
$$

$B V(I)$ is a Banach algebra.
If f is increasing then $V_{I} f=f(1)-f(0)$. We will use the following to prove the theorem coming after it. ${ }^{12}$

[^10]Lemma 9. If $f: I \rightarrow \mathbb{R}$ is increasing then

$$
V_{I}(U f) \leq \frac{1}{2} V_{I} f
$$

Proof. Because $U f$ is decreasing,

$$
V_{I}(U f)=U f(0)-U f(1)=\sum_{i \geq 1}\left(P_{i}(0) f\left(\frac{1}{i}\right)-P_{i}(1) f\left(\frac{1}{1+i}\right)\right)
$$

As $P_{i}(u)=\frac{u+1}{(u+i)(u+i+1)}$,

$$
P_{i}(1)=\frac{2}{(i+1)(i+2)}=2 P_{i+1}(0)
$$

hence

$$
\begin{aligned}
V_{I}(U f) & =\sum_{i \geq 1}\left(P_{i}(0) f\left(\frac{1}{i}\right)-P_{i}(1) f\left(\frac{1}{1+i}\right)\right) \\
& =\sum_{i \geq 1}\left(P_{i}(0) f\left(\frac{1}{i}\right)-P_{i+1}(0) f\left(\frac{1}{1+i}\right)\right) \\
& -\sum_{i \geq 1} P_{i+1}(0) f\left(\frac{1}{1+i}\right) \\
& =P_{1}(0) f(1)-\sum_{i \geq 1} P_{i+1}(0) f\left(\frac{1}{1+i}\right) \\
& =\frac{1}{2} f(1)-\sum_{i \geq 1} P_{i+1}(0) f\left(\frac{1}{1+i}\right)
\end{aligned}
$$

Because $f\left(\frac{1}{1+i}\right) \geq f(0)$ we have $-f\left(\frac{1}{1+i}\right) \leq-f(0)$, hence

$$
V_{I}(U f) \leq \frac{1}{2} f(1)-f(0) \sum_{i \geq 1} P_{i+1}(0)=\frac{1}{2} f(1)-\frac{1}{2} f(0)
$$

using $\sum_{i \geq 1} P_{i}(0)=1$ and $P_{1}(0)=\frac{1}{2}$. As f is increasing this means

$$
V_{I}(U f) \leq \frac{1}{2}(f(1)-f(0))=\frac{1}{2} V_{I} f .
$$

Theorem 10. If $f \in B V(I)$ then

$$
V_{I}(U f) \leq \frac{1}{2} V_{I} f
$$

Proof. Let

$$
p_{f}(x)=\frac{v_{f}(x)+f(x)-f(0)}{2}, \quad n_{f}(x)=\frac{v_{f}(x)-f(x)+f(0)}{2}
$$

the positive variation of f and the negative variation of f. It is a fact that $0 \leq p_{f} \leq v_{f}, 0 \leq n_{f} \leq v_{f}$, and p_{f} and n_{f} are increasing. Using this,

$$
\begin{aligned}
V_{I}(U f) & =V_{I}\left(U p_{f}+U n_{f}\right) \\
& \leq \frac{1}{2} V_{I} p_{f}+\frac{1}{2} V_{I} n_{f} \\
& =\frac{1}{2}\left(p_{f}(1)-p_{f}(0)\right)+\frac{1}{2}\left(n_{f}(1)-n_{f}(0)\right) \\
& =\frac{1}{2}\left(v_{f}(1)-v_{f}(0)\right) \\
& =\frac{1}{2} V_{I} f .
\end{aligned}
$$

For $f: I \rightarrow \mathbb{C}$, let

$$
s(f)=\sup _{x, y \in I, x \neq y} \frac{|f(x)-f(y)|}{|x-y|}
$$

We denote by $\operatorname{Lip}(I)$ the set of $f: I \rightarrow \mathbb{C}$ such that $s(f)<\infty .{ }^{13}$
Theorem 11. For $f \in \operatorname{Lip}(I)$,

$$
s(U f) \leq(2 \zeta(3)-\zeta(2)) s(f)
$$

Proof. Suppose $x, y \in I, x>y$. We calculate

$$
\begin{aligned}
& \frac{U f(y)-U f(x)}{y-x} \\
= & \frac{1}{y-x} \sum_{i \geq 1}\left(P_{i}(y) f\left(\frac{1}{y+i}\right)-P_{i}(y) f\left(\frac{1}{x+i}\right)\right) \\
& +\frac{1}{y-x} \sum_{i \geq 1}\left(P_{i}(y) f\left(\frac{1}{x+i}\right)-P_{i}(x) f\left(\frac{1}{x+i}\right)\right) \\
= & \sum_{i \geq 1} P_{i}(y) \cdot \frac{f\left(\frac{1}{y+i}\right)-f\left(\frac{1}{x+i}\right)}{y-x} \\
& +\sum_{i \geq 1} \frac{P_{i}(y)-P_{i}(x)}{y-x} f\left(\frac{1}{x+i}\right) .
\end{aligned}
$$

[^11]Calculating further,

$$
\begin{aligned}
\frac{U f(y)-U f(x)}{y-x} & =-\sum_{i \geq 1} P_{i}(y) \cdot \frac{f\left(\frac{1}{y+i}\right)-f\left(\frac{1}{x+i}\right)}{\frac{1}{y+i}-\frac{1}{x+i}} \cdot \frac{1}{(x+i)(y+i)} \\
& +\sum_{i \geq 1} \frac{P_{i}(y)-P_{i}(x)}{y-x} f\left(\frac{1}{x+i}\right) .
\end{aligned}
$$

Now,

$$
P_{i}(u)=\frac{u+1}{(u+i)(u+i+1)}=\frac{i}{u+i+1}-\frac{i-1}{u+i},
$$

whence

$$
P_{i}(y)-P_{i}(x)=\frac{(x-y) i}{(x+i+1)(y+i+1)}+\frac{(y-x)(i-1)}{(x+i)(y+i)},
$$

therefore

$$
\begin{aligned}
& \sum_{i \geq 1} \frac{P_{i}(y)-P_{i}(x)}{y-x} f\left(\frac{1}{x+i}\right) \\
= & \sum_{i \geq 1}\left(\frac{i-1}{(x+i)(y+i)}-\frac{i}{(x+i+1)(y+i+1)}\right) f\left(\frac{1}{x+i}\right) .
\end{aligned}
$$

Summation by parts tells us

$$
\sum_{i \geq 1} f_{i}\left(g_{i+1}-g_{i}\right)=-f_{1} g_{1}-\sum_{i \geq 1} g_{i+1}\left(f_{i+1}-f_{i}\right),
$$

and here this yields, for $g_{i}=\frac{i-1}{(x+i)(y+i)}$ and $f_{i}=f\left(\frac{1}{x+i}\right)$,

$$
\begin{aligned}
& \sum_{i \geq 1}\left(\frac{i-1}{(x+i)(y+i)}-\frac{i}{(x+i+1)(y+i+1)}\right) f\left(\frac{1}{x+i}\right) \\
= & \sum_{i \geq 1} g_{i+1}\left(f_{i+1}-f_{i}\right) \\
= & \sum_{i \geq 1} \frac{i}{(x+i+1)(y+i+1)}\left(f\left(\frac{1}{x+i+1}\right)-f\left(\frac{1}{x+i}\right)\right) \\
= & \sum_{i \geq 1} \frac{i}{(x+i+1)(y+i+1)} \cdot \frac{f\left(\frac{1}{x+i+1}\right)-f\left(\frac{1}{x+i}\right)}{\frac{1}{x+i+1}-\frac{1}{x+i}} \cdot \frac{-1}{(x+i)(x+i+1)} .
\end{aligned}
$$

Recapitulating the above,

$$
\begin{aligned}
& \frac{U f(y)-U f(x)}{y-x} \\
= & -\sum_{i \geq 1} P_{i}(y) \cdot \frac{f\left(\frac{1}{y+i}\right)-f\left(\frac{1}{x+i}\right)}{\frac{1}{y+i}-\frac{1}{x+i}} \cdot \frac{1}{(x+i)(y+i)} \\
& -\sum_{i \geq 1} \frac{i}{(x+i)(x+i+1)^{2}(y+i+1)} \cdot \frac{f\left(\frac{1}{x+i+1}\right)-f\left(\frac{1}{x+i}\right)}{\frac{1}{x+i+1}-\frac{1}{x+i}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|\frac{U f(y)-U f(x)}{y-x}\right| & \leq s(f) \sum_{i \geq 1} P_{i}(y) \frac{1}{(x+i)(y+i)} \\
& +s(f) \sum_{i \geq 1} \frac{i}{(x+i)(x+i+1)^{2}(y+i+1)}
\end{aligned}
$$

Then, using that $x>y$,

$$
\left|\frac{U f(y)-U f(x)}{y-x}\right| \leq s(f) \sum_{i \geq 1}\left(P_{i}(y) \frac{1}{(y+i)^{2}}+\frac{i}{(y+i)(y+i+1)^{3}}\right)
$$

Because $y \in I=[0,1], y \geq 0$ so

$$
\sum_{i \geq 1} \frac{i}{(y+i)(y+i+1)^{3}} \leq \sum_{i \geq 1} \frac{1}{(i+1)^{3}}=-1+\zeta(3)
$$

Let $h(u)=u^{2}$, with which

$$
\sum_{i \geq 1} P_{i}(y) \frac{1}{(y+i)^{2}}=U h(y)
$$

$h: I \rightarrow \mathbb{R}$ is increasing, so $U h$ is decreasing. Because $P_{i}(0)=\frac{1}{i(i+1)}$,

$$
\sum_{i \geq 1} P_{i}(y) \frac{1}{(y+i)^{2}}=U h(y) \leq U h(0)=\sum_{i \geq 1} P_{i}(0) \frac{1}{i^{2}}=\sum_{i \geq 1} \frac{1}{i^{3}(i+1)}
$$

Doing partial fractions,

$$
\frac{1}{i^{3}(i+1)}=\frac{1}{i^{3}}-\frac{1}{i^{2}}+\frac{1}{i}-\frac{1}{1+i},
$$

so

$$
\sum_{i \geq 1} \frac{1}{i^{3}(i+1)}=\zeta(3)-\zeta(2)+1
$$

Therefore

$$
\left|\frac{U f(y)-U f(x)}{y-x}\right| \leq s(f)(\zeta(3)-\zeta(2)+1-1+\zeta(3))=s(f)(2 \zeta(3)-\zeta(2))
$$

For example, let $f(x)=x$, for which $s(f)=1$. Now,

$$
U f(x)=\sum_{i \geq 1} P_{i}(x) \frac{1}{x+i}
$$

We remind ourselves that

$$
P_{i}(x)=\frac{x+1}{(x+i)(x+i+1)}, \quad P_{i}^{\prime}(x)=\frac{i^{2}-i-(x+1)^{2}}{(x+i)^{2}(x+i+1)^{2}} .
$$

Then

$$
\begin{aligned}
(U f)^{\prime}(x) & =\sum_{i \geq 1}\left(P_{i}^{\prime}(x) \frac{1}{x+i}-P_{i}(x) \frac{1}{(x+i)^{2}}\right) \\
& =\sum_{i \geq 1}\left(\frac{i^{2}-i-(x+1)^{2}}{(x+i)^{3}(x+i+1)^{2}}-\frac{x+1}{(x+i)^{3}(x+i+1)}\right) \\
& =\sum_{i \geq 1} \frac{i^{2}-i-(x+1)^{2}-(x+1)(x+i+1)}{(x+i)^{3}(x+i+1)^{2}} \\
& =\sum_{i \geq 1} \frac{-2 x^{2}-i x-4 x+i^{2}-2 i-2}{(x+i)^{3}(x+i+1)^{2}} .
\end{aligned}
$$

Check that $x \mapsto(U f)^{\prime}(x)$ is increasing and negative. Then $\left\|(U f)^{\prime}\right\| \leq\left|(U f)^{\prime}(0)\right|$, with

$$
(U f)^{\prime}(0)=\sum_{i \geq 1} \frac{i^{2}-2 i-2}{i^{3}(i+1)^{2}}=-2 \zeta(3)+\zeta(2)
$$

Therefore for $f(x)=x$,

$$
s(f)=\left\|(U f)^{\prime}\right\|_{\infty}=2 \zeta(3)-\zeta(2),
$$

which shows that the above theorem is sharp.

[^0]: ${ }^{1}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 9, Proposition 1.1.1.

[^1]: ${ }^{2}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 136, Lemma 4.11.

[^2]: ${ }^{3}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 17, Theorem 1.2.1; Manfred Einsiedler and Thomas Ward, Ergodic Theory with a view towards Number Theory, p. 77, Lemma 3.5.

[^3]: ${ }^{4}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 18, Theorem 1.2.2.

[^4]: ${ }^{5}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 21, Corollary 1.2.6.

[^5]: ${ }^{6}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 22, Proposition 1.2.7.

[^6]: ${ }^{7}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 59, Proposition 2.1.2.

[^7]: ${ }^{8}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 60, Proposition 2.1.3
 ${ }^{9}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 61, Proposition 2.1.5.

[^8]: ${ }^{10}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 63, Proposition 2.1.7.

[^9]: ${ }^{11}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 65, Proposition 2.1.11.

[^10]: ${ }^{12}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 66, Proposition 2.1.12.

[^11]: ${ }^{13}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 67, Proposition 2.1.14.

