
Abstract Fourier series and Parseval’s identity

Jordan Bell

April 3, 2014

1 Orthonormal basis

LetH be a separable complex Hilbert space.1 If ei ∈ H, i ≥ 1, and ⟨ei, ej⟩ = δi,j ,
we say that the set {ei} is orthonormal. If span{ei : i ≥ 1} is a dense subspace
of H, we say that {ei : i ≥ 1} is an orthonormal basis for H. We can write this
in another way. If Sα, α ∈ I are subsets of H, let

∨
α∈I Sα be the closure of the

span of
⋃

α∈I Sα. To say that {ei} is an orthonormal basis for H is to say that
{ei} is orthonormal and that H =

∨
i≥1{ei}.

2 Abstract Fourier series

If ak ∈ C and the sequence
∑n

k=1 akek converges in H, we denote its limit by

∞∑
k=1

akek.

This is a definition of an infinite sum in H. Since H is complete, one usually
shows that a sequence converges by showing that the sequence is Cauchy, and
hence to show that

∑n
k=1 akek converges it is equivalent to show that

n∑
k=m+1

akek → 0

as m,n → ∞. And showing this is equivalent to showing that〈
n∑

k=m+1

akek,

n∑
k=m+1

akek

〉
→ 0

as m,n → ∞. This is equivalent to

n∑
k=m+1

|ak|2 → 0

1One talk do everything we are doing and obtain the same results for nonseparable Hilbert
spaces, but one has to define what uncountable sums mean. This is done in John B. Conway,
A Course in Functional Analysis, second ed., chapter I.
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as m,n → ∞, and this is equivalent to the series

∞∑
k=1

|ak|2

converging. Thus, the series
∑∞

k=1 akek converges if and only if the series∑∞
k=1 |ak|2 converges.2

Let {ei : i ≥ 1} be an orthonormal basis for H; it is a fact that one exists.
Let v ∈ H and define

sn =

n∑
k=1

⟨v, ek⟩ ek.

If 1 ≤ i ≤ n then

⟨v − sn, ei⟩ = ⟨v, ei⟩ −
n∑

k=1

⟨v, ek⟩ ⟨ek, ei⟩ = ⟨v, ei⟩ − ⟨v, ei⟩ = 0,

hence
⟨v − sn, sn⟩ = 0.

It follows that

n∑
k=1

| ⟨v, ek⟩ |2 = ⟨sn, sn⟩

≤ ⟨sn, sn⟩+ ⟨v − sn, v − sn⟩
= ⟨v, v⟩ ,

where we used ⟨v − sn, sn⟩ = 0 in the third line. Therefore the series
∑∞

k=1 | ⟨v, ek⟩ |2
converges, and so the sequence sn converges to some v′ =

∑∞
k=1 ⟨v, ek⟩ ek ∈ H.

Since sn converges to v′, in particular it converges weakly to v′, i.e., for any
w ∈ H,

lim
n→∞

⟨sn, w⟩ = ⟨v′, w⟩ .

Therefore for any j,

⟨v − v′, ej⟩ = ⟨v, ej⟩ − ⟨v′, ej⟩ = ⟨v, vj⟩ − lim
n→∞

⟨sn, ej⟩ = ⟨v, vj⟩ − ⟨v, vj⟩ = 0;

this is because for n ≥ j we have ⟨v − sn, ej⟩ = 0 and hence ⟨v, ej⟩ = ⟨sn, ej⟩.
As ⟨v − v′, ej⟩ = 0 for all j, it follows that v − v′ = 0, i.e. v = v′. Hence,

v =

∞∑
k=1

⟨v, ek⟩ ek.

2Furthermore, using the triangle inequality rather than the orthonormality of the ek, one
can check that if the series

∑∞
k=1 |ak| converges then the series

∑∞
k=1 akek converges.
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We call this an abstract Fourier series for v.3 It can be written as

v =

∞∑
k=1

(ek ⊗ ek)v,

and thus can be written without v as

idH =

∞∑
k=1

ek ⊗ ek;

ek ⊗ ek ∈ B(H) is a projection with rank 1, and the above series conveges in
the strong operator topology on B(H). Writing the identity map in this way is
called a resolution of the identity.

3 Parseval’s identity

On the one hand

lim
n→∞

∥sn∥2 =

∞∑
k=1

| ⟨v, ek⟩ |2.

On the other hand,
lim

n→∞
∥sn∥2 = ∥v∥2 .

Hence

∥v∥2 =

∞∑
k=1

| ⟨v, ek⟩ |2,

which is Parseval’s identity.

3If H = L2(T), one checks that ek = eik, k ∈ Z, is an orthonormal basis for H. Then,

⟨f, ek⟩ =
1

2π

∫ 2π

0
f(t)e−ikdt

and f is the limit in H of
∑n

k=0 ⟨f, ek⟩ eik. Thus in H,

f =
∑
k∈Z

⟨f, ek⟩ eik.
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