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1 p-adic numbers

Let p be prime and let Np = {0, . . . , p− 1}. Qp ⊂
∏

ZNp. For x ∈ Qp,

x = lim
m→∞

∑
k≤m

x(k)pk =
∑
k∈Z

x(k)pk =
∑

k≥vp(x)

x(k)pk

for
vp(x) = inf{k ∈ Z : x(k) ̸= 0}.

Zp = {x ∈ Qp : vp(x) ≥ 0}.

For x, y ∈ Qp,

vp(xy) = vp(x) + vp(y), vp(x+ y) ≥ min(vp(x), vp(y)),

and vp(x) = ∞ if and only if x = 0. The p-integers Zp with the valuation vp
are a Euclidean domain: for f, g ∈ Zp with vp(f) ≥ vp(g) we have f · g−1 ∈ Zp.
Z∗
p is the set of those x ∈ Zp for which there is some y ∈ Zp satisfying xy = 1.

Z∗
p = {x ∈ Qp : vp(x) = 0}.

The ideals of the ring Zp are {0} and pnZp, n ≥ 0. From this it follows that
Zp is a discrete valuation ring, a principal ideal domain with exactly one
maximal ideal, namely pZp; Zp is the valuation ring of Qp with the valuation
vp. For n ≥ 1, Zp/p

nZp is isomorphic as a ring with Z/pnZ.

|x|p = p−vp(x), dp(x, y) = |x− y|p.

With the topology induced by the metric dp, Qp is a locally compact abelian
group, and (Qp, dp) is a complete metric space. (Qp, | · |p) is a complete nonar-
chimedean valued field. For x ∈ Qp,

{x+ pnZp : n ∈ Z}

is a local base at x for the topology of Qp.

[x]p =
∑
k≥0

x(k)pk ∈ Zp, {x}p =
∑
k<0

x(k)pk ∈ [0, 1) ∩ Z[1/p].
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ψp(x) = e2πi{x}p

is a continuous group homomorphism Qp → S1. Its image is the discrete abelian
group

Z[p∞] = {e2πimp−n

: m,n ≥ 0},

the Prüfer p-group, and its kernel is Zp. Qp/Zp and Z[p∞] are isomorphic
as discrete abelian groups. There is a complete algebraically closed nonar-
chimedean valued field Cp, unique up to unique isomorphism, that is an exten-
sion of (Qp, | · |p).

2 Pontryagin dual

Denote by Q̂p the Pontryagin dual of the locally compact abelian group

(Qp,+). For ξ ∈ Q̂p and x ∈ Qp,

x =
∑
k∈Z

x(k)pk

and
⟨x, ξ⟩ = ξ(x) =

∏
k∈Z

ξ(x(k)pk) =
∏
k∈Z

ξ(pk)x(k). (1)

For y ∈ Qp, define my : Qp → Qp by my(x) = y · x, which is a continuous
group homomorphism. Then ξy = ψp◦my is a continuous group homomorphism

Qp → S1, namely ξy ∈ Q̂p. The kernel of ξy is {x ∈ Qp : yx ∈ Zp}, in other
words

ker ξy = {x ∈ Qp : |x|p ≤ |y|−1
p }

where |0|−1
p = ∞. If y ̸= 0 then

ker ξy = {x ∈ Qp : |x|p ≤ |y|−1
p } = p−vp(y)Zp.

We shall prove that y 7→ ξy is an isomorphism of topological groups Qp →
Q̂p. We will use the following lemma.1

Lemma 1. If ξ ∈ Q̂p then there is some n ∈ Z such that ⟨x, ξ⟩ = 1 for x ∈ pnZp.

Proof. Let U = {e2πiθ : |θ| < 1
4}, which is an open set in S1. As ξ(0) ∈ U

and {pnZp : n ∈ Z} is a local base at 0, there is some n ∈ Z such that pnZp ⊂
ξ−1(U). This means that ξ(pnZp) ⊂ U , and because ξ : Qp → S1 is a group
homomorphism, ξ(pnZp) is therefore a subgroup of S1 contained in U . But the
only subgroup of S1 contained in U is {1}, and therefore ξ(pnZp) = {1}.

1Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Lemma 4.9.

2



Suppose ξ ∈ Q̂p, ξ ̸= 1. By (1) there is then some k such that ξ(pk) ̸= 1.
Now, |pj |p = p−j → 0 as j → ∞, so pj → 0 in Qp and therefore ξ(pj) → 1 as
j → ∞. Let

jξ − 1 = max{k ∈ Z :
〈
pk, ξ

〉
̸= 1}.

Then
〈
pjξ−1, ξ, ̸=

〉
1 and

〈
pj , ξ

〉
= 1 for j ≥ jξ. In particular, jξ = 0 is equivalent

with ⟨1, ξ⟩ = 1 and ⟨p, ξ⟩ ≠ 1.2

Lemma 2. Suppose that ξ ∈ Q̂p with ⟨1, ξ⟩ = 1 and
〈
p−1, ξ

〉
̸= 1. Then there

are cj ∈ Np, j ≥ 0, with c0 ̸= 0, such that

〈
p−k, ξ

〉
= exp

2πi

k∑
j=1

ck−jp
−j

 , k ≥ 1.

Proof. Let ω0 = ⟨1, ξ⟩ = 1 and for k ≥ 1 let ωk =
〈
p−k, ξ

〉
∈ S1, which satisfy

ωp
k+1 =

〈
p−k, ξ

〉
= ωk.

Because ωp
1 = 1 this means that there is some c0 ∈ Np such that ω1 = e2πic0p

−1

,
and by hypothesis ω1 ̸= 1, which means c0 ̸= 0. By induction, suppose for some
k ≥ 1 and c0, . . . , ck−1 ∈ Np, c0 ̸= 0, such that

ωk = exp

2πi

k∑
j=1

ck−jp
−j

 .

Generally, if zp = eiθ then there is some c ∈ Np such that z = e
1
p iθe2πicp

−1

.
Thus, the fact that ωp

k+1 = ωk means that there is some ck ∈ Np such that

ωk+1 = exp

1

p
· 2πi

k∑
j=1

ck−jp
−j

 · e2πickp
−1

= exp

2πi

k+1∑
j=1

ck+1−jp
−j

 .

We prove a final lemma.3

Lemma 3. Suppose that ξ ∈ Q̂p with ⟨1, ξ⟩ = 1 and
〈
p−1, ξ

〉
̸= 1. Then there

is some y ∈ Qp with |y|p = 1 and ξ = ξy.

Proof. By Lemma 2 there are cj ∈ Np, j ≥ 0, c0 ̸= 0, such that

〈
p−k, ξ

〉
= exp

2πi

k∑
j=1

ck−jp
−j

 , k ≥ 1.

2Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Lemma 4.10.
3Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Lemma 4.11.
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Define y ∈ Qp by y(j) = cj for j ≥ 0 and y(j) = 0 for j < 0. As y(0) = c0 ̸= 0,
|y|p = 1. For k ≥ 1 and −k ≤ j ≤ −1 we have (p−ky)(j) = y(j + k) = cj+k,
and for j < −k we have (p−ky)(j) = y(j + k) = 0, so

{p−ky}p =
∑
j<0

(p−ky)(j)pj =
∑

−k≤j≤−1

(p−ky)(j)pj =
∑

−k≤j≤−1

cj+kp
j ,

yielding

〈
p−k, ξ

〉
= exp

2πi
∑

−k≤j≤−1

ck+jp
j

 = exp(2πi{p−ky}p),

i.e.
〈
p−k, ξ

〉
= ψp(p

−ky) =
〈
p−k, ξy

〉
. But ⟨1, ξ⟩ = 1 implies that

〈
pk, ξ

〉
= 1 for

k ≥ 0, and because y(k) = 0 for k < 0,

⟨1, ξy⟩ = e2πi{y}p = 1,

which implies that
〈
pk, ξ

〉
= 1 for k ≥ 0. Therefore

〈
pk, ξ

〉
=

〈
pk, ξy

〉
for all

k ∈ Z, which implies that ξ = ξy.

We now have worked out enough to prove that y 7→ ξy is an isomorphism.4

Theorem 4. y 7→ ξy is an isomorphism of topological groups Qp → Q̂p.

Proof. For x ∈ Qp,

⟨x, ξyξz⟩ = ⟨x, ξy⟩ ⟨x, ξz⟩ = ψp(yx)ψp(zx) = ψp(yx+ zx) = ⟨x, ξy+z⟩ ,

showing that y 7→ ξy is a group homomorphism. Suppose that ξy = 1. Then
for all x ∈ Qp we have ⟨x, ξy⟩ = 1, i.e. e2πi{yx}p = 1, i.e. {yx}p = 0, i.e.
yx ∈ Zp. This implies y = 0, showing that y 7→ ξy is injective. It remains to
show that y 7→ ξy is surjective, that it is continuous, and that it is an open
map. But in fact, the open mapping theorem for locally compact groups5 tells
us that if f : G → H is a continuous group homomorphism of locally compact
groups that is surjective and G is σ-compact then f is open. Qp is σ-compact:
Qp =

⋃
n∈Z p

nZp. So to prove the claim it suffices to prove that y 7→ ξy is
surjective and continuous.

Let ξ ∈ Q̂p, ξ ̸= 1. By Lemma 1, let

j − 1 = max{k ∈ Z :
〈
pk, ξ

〉
̸= 1},

for which
〈
pj−1, ξ

〉
̸= 1 and

〈
pj , ξ

〉
= 1. Define η ∈ Q̂p by

⟨x, η⟩ =
〈
pjx, ξ

〉
,

4Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Theorem 4.12.
5Karl H. Hofmann and Sidney A. Morris, The Structure of Compact Groups, 2nd revised

and augmented edition, p. 669, Appendix 1.
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which satisfies ⟨1, η⟩ =
〈
pjx, ξ

〉
= 1 and

〈
p−1, η

〉
=

〈
pj−1, ξ

〉
̸= 1. Thus we can

apply Lemma 3: there is some z ∈ Qp, |z|p = 1, such that η = ξz. Now let
y = p−jz ∈ Qp, which satisfies

⟨x, ξy⟩ = e2πi{yx}p = e2πi{z·p
−jx}p =

〈
p−jx, ξz

〉
=

〈
p−jx, η

〉
= ⟨x, ξ⟩ ,

from which it follows that ξ = ξy. Therefore y 7→ ξy is surjective.
For j ≥ 1 and k ≥ 1 define

N(j, k) = {ξ ∈ Q̂p : | ⟨x, ξ⟩ − 1| < j−1 for |x|p ≤ p−k}.

It is a fact that {N(j, k) : j ≥ 1, k ≥ 1} is a local base at 1 for the topology

of Q̂p. Suppose y ∈ Zp. For j ≥ 1, k ≥ 1 and |x|p ≤ p−k, we have xy ∈ Zp

and hence ⟨x, ξy⟩ = 1, hence y ∈ N(j, k). This shows that ξ(Zp) ⊂ N(j, k), and
therefore y 7→ ξy is continuous at 0.

3 Haar measure

For a locally compact abelian group G, a Haar measure on G is a Borel
measure m on G such that (i) m(x + E) = m(E) for each Borel set E and
x ∈ G, (ii) if K is a compact set then m(K) <∞, (iii) if E is a Borel set then

m(E) = inf{m(U) : E ⊂ U , U open},

and (iv) if U is an open set then

m(E) = sup{m(K) : K ⊂ U , K compact},

It is a fact that for any locally compact abelian group G there is a Haar measure
m that is not identically 0. One proves that if U is an open set then m(U) > 0
and that if m1,m2 are Haar measures that are not identically 0 then for some
positive real c, m1 = cm2.

6

Qp is a locally compact abelian group, so there is a Haar measure m on Qp

that is not identically 0. Because Zp is compact, m(Zp) < ∞, and because Zp

is open, m(Zp) > 0. Then let µ = 1
m(Zp)

m, which is the unique Haar measure

on Qp satisfying
µ(Zp) = 1.

Lemma 5. For k ∈ Z,
µ(pkZp) = p−k.

Proof. If k > 0, then pkZp is an ideal in Zp and Zp/p
kZp is isomorphic as a ring

with Z/pkZ. So there are xj ∈ Zp, 1 ≤ j ≤ pk, such that Zp =
⋃

1≤j≤pk(xj +

pkZp), and the sets xj + pkZp are pairwise disjoint. Therefore

1 = µ(Zp) =

pk∑
j=1

µ(xj + pkZp) =

pk∑
j=1

µ(pkZp) = pkµ(pkZp),

6Walter Rudin, Fourier Analysis on Groups, pp. 1–2.
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yielding µ(pkZp) = p−k.
If k < 0, then pkZp is a ring and Zp is an ideal in this ring.

We calculate µ(x · E).7

Lemma 6. For A a Borel set in Qp and x ∈ Qp,

µ(x ·A) = |x|pµ(A).

Proof. If x = 0 then x · A = {0} and µ(x · A) = 0 and |x|pµ(A) = 0 · µ(A) = 0.
(The set Qp is infinite and µ is translation invariant, so finite sets have measure
0.) For x ̸= 0, writeMx(y) = x−1 ·y, which is an isomorphism of locally compact
groups (Qp,+) → (Qp,+). Let µx be the pushforward of µ by Mx:

µx(E) = µ(M−1
x E) = µ({y ∈ Qp : x−1y ∈ E}) = µ(x · E).

Because Mx is an isomorphism, it follows that µx is a Haar measure on Qp.
And because µx(Qp) = µ(Qp) = ∞, showing µx is not identically 0, there is
some cx > 0 such that µx = cxµ.

Now, as x ̸= 0, vp(x) ∈ Z and |x|p = p−vp(x). Then p−vp(x)x ∈ Z∗
p, so

there is some y ∈ Z∗
p such that x = pvp(x)y. As y ∈ Z∗

p, y · Zp = Zp and hence

x · Zp = pvp(x) · Zp. By Lemma 5, µ(pvp(x)Z) = p−vp(x), so

µx(Zp) = µ(x · Zp) = µ(pvp(x)Z) = p−vp(x)

and therefore
p−vp(x) = cxµ(Zp) = cx,

and |x|p = p−vp(x) so cx = |x|p. Therefore µx = |x|pµ.

Lemma 7. For f ∈ L1(Qp) and x ̸= 0,∫
Qp

f(x−1y)dµ(y) = |x|p
∫
Qp

f(y)dµ(y).

Proof. µx is the pushforward of µ by Mx(y) = x−1 · y, and by the change of
variables formula,∫
Qp

f(x−1y)dµ(y) =

∫
Qp

(f◦Mx)(y)dµ(y) =

∫
Qp

f(y)dµx(y) = |x|p
∫
Qp

f(y)dµ(y).

The restriction of µ to the Borel σ-algebra of Q∗
p = Qp \ {0} is a Borel

measure on Q∗
p. We prove that the Borel measure on Q∗

p whose density with

respect to µ is x 7→ 1
|x|p is a Haar measure.8

7Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed.,
p. 254, Lemma 13.2.1.

8Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed.,
p. 255, Proposition 13.2.2.
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Theorem 8. 1
|x|p dµ(x) is a Haar measure on the multiplicative group Q∗

p.

Proof. For f ∈ Cc(Q∗
p) and y ∈ Q∗

p, writing gy(x) =
f(x)
|yx|p , by Lemma 7 we have∫

Q∗
p

f(y−1x)
1

|x|p
dµ(x) =

∫
Q∗

p

(gy ◦My)(x)dµ(x)

=

∫
Q∗

p

gy(x)dµy(x)

= |y|p
∫
Q∗

p

gy(x)dµ(x)

= |y|p
∫
Q∗

p

f(x)

|yx|p
dµ(x)

=

∫
Q∗

p

f(x)
1

|x|p
dµ(x).

Write dν0(x) =
1

|x|p dµ(x). For x ∈ Q∗
p, p

−vp(x)x ∈ Z∗
p, i.e. x ∈ pvp(x)Z∗

p, and

Z∗
p is the kernel of the group homomorphism x 7→ vp(x), Q∗

p → Z. It follows

that the sets pkZ∗
p, k ∈ Z, are pairwise disjoint and Q∗

p =
⋃

k∈Z p
kZ∗

p. For k ∈ Z,
because pkZ∗

p is a compact open set in Qp it is the case that 1pkZ∗
p
∈ Cc(Qp) so

by Lemma 7,

ν0(p
kZ∗

p) =

∫
Q∗

p

1pkZ∗
p
(x)

1

|x|p
dµ(x)

=

∫
Q∗

p

1Z∗
p
(p−kx)

1

|p−k · pkx|p
dµ(x)

=

∫
Q∗

p

1Z∗
p
(x)

1

|pkx|p
dµpk(x)

= |pk|p
∫
Q∗

p

1Z∗
p
(x)

1

|pkx|p
dµ(x)

=

∫
Q∗

p

1Z∗
p

1

|x|p
dµ(x)

=

∫
Q∗

p

1Z∗
p
dµ(x)

= µ(Z∗
p).

Check that 1 + pZp is a subgroup of Z∗
p with index p − 1: the sets a + pZp,

a ∈ Np, a ̸= 0, are contained in Z∗
p and are pairwise disjoint. This implies

µ(Z∗
p) = (p− 1)µ(pZp) =

p− 1

p
.
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Then

dν(x) =
p

p− 1

1

|x|p
dµ(x)

is a Haar measure on Q∗
p with ν(Z∗

p) = 1.

4 Integration

As Zp \ {0} =
⋃

n≥0 p
nZ∗

p, for Re s > −1,∫
Zp\{0}

|x|spdµ(x) =
∑
n≥0

∫
pnZ∗

p

|x|spdµ(x)

=
∑
n≥0

p−nsµ(pnZ∗
p)

=
∑
n≥0

p−nsp−n · µ(Z∗
p)

=
∑
n≥0

p−nsp−n · p− 1

p

=
p− 1

p(1− p−1−s)
.

For Re s > 0,∫
Zp\{0}

|x|spdν(x) =
∑
n≥0

∫
pnZ∗

p

|x|sp
p

p− 1

1

|x|p
dµ(x)

=
p

p− 1

∑
n≥0

∫
pnZ∗

p

(p−n)s−1dµ(x)

=
p

p− 1

∑
n≥0

p(−s+1)np−n · p− 1

p

=
∑
n≥0

p−ns

=
1

1− p−s
.

It is worth remarking that this is a factor of the Euler product for the Riemann
zeta function.

We will use the following when working with the Fourier transform.9

Lemma 9. For n ∈ Z,∫
Qp

1pnZp(x)e
−2πi{x}pdµ(x) =

{
p−n n ≥ 0

0 otherwise.

9Dorian Goldfeld and Joseph Hundley, Automorphic Representations and L-Functions for
the General Linear Group, volume I, p. 16, Lemma 1.6.4.
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Proof. If n ≥ 0 and x ∈ pnZp then {x}p = 0 so∫
Qp

1pnZp(x)e
−2πi{x}pdµ(x) = µ(pnZp) = p−n.

If n < 0, let y = pn ∈ pnZp, for which {y}p = pn. Define T : Qp → Qp by
T (x) = −y + x. Then, as µ is translation invariant and as x+ y ∈ pnZp if and
only if x ∈ pnZp,∫

Qp

1pnZp
(x)e−2πi{x}pdµ(x) =

∫
Qp

(1pnZp
◦ T )(y + x)e−2πi{T (y+x)}pdµ(x)

=

∫
Qp

1pnZp
(y + x)e−2πi{y+x}pdµ(x)

=

∫
Qp

1pnZp
(x)e−2πi{y+x}pdµ(x)

= e−2πi{y}p

∫
Qp

1pnZp
(x)e−2πi{x}pdµ(x).

Because e−2πi{y}p ̸= 1, for I = e−2πi{y}pI we have I = 0.

Lemma 10. For n ∈ Z and y ∈ Qp,∫
Qp

1pnZp(x)e
−2πi{yx}pdµ(x) =

{
p−n y ∈ p−nZp

0 otherwise.

Proof. If y ∈ p−nZp then for any x ∈ pnZp we have yx ∈ Zp and so {yx}p = 0
and I = µ(pnZp) = p−n.

Another lemma.10

Lemma 11. For n ∈ Z,

∫
Qp

1pnZ∗
p
(x)e−2πi{x}pdµ(x) =


p−n(1− p−1) n ≥ 0

−1 n = −1

0 n < −1.

Proof. Z∗
p = Zp − pZp and pnZ∗

p = pnZp − pn+1Zp and then∫
Qp

1pnZ∗
p
(x)e−2πi{x}pdµ(x) =

∫
Qp

1pnZp
(x)e−2πi{x}pdµ(x)

−
∫
Qp

1pn+1Zp
(x)e−2πi{x}pdµ(x)

= I1 − I2.

10Dorian Goldfeld and Joseph Hundley, Automorphic Representations and L-Functions for
the General Linear Group, volume I, p. 16, Proposition 1.6.5.
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We apply Lemma 9. If n ≥ 0 then I1 = p−n and I2 = p−n−1 so I = p−n −
p−n−1 = p−n(1− p−1). If n = −1 then I1 = 0 and n+1 ≥ 0 so I2 = p−n−1 = 1
hence I = −1. Finally if n < −1 then I1 = 0 and I2 = 0 so I = 0.

For f ∈ L1(Qp) and y ∈ Qp, define f̂ ∈ C0(Qp) by

f̂(y) = (Ff)(y) =

∫
Qp

f(x)e−2πi{yx}pdµ(x).

Let S be the set of locally constant functionsQp → C with compact support.
We call an element of S a p-adic Schwartz function.11 We prove that
the Fourier transform of a p-adic Schwartz function is itself a p-adic Schwartz
function.12

Theorem 12. If f ∈ S then f̂ ∈ S .

Proof. Let n ∈ Z, a ∈ Qp, and let N = a+ pnZp. For y ∈ Qp, applying Lemma
10,

1̂N (y) =

∫
Qp

1a+pnZp(x)e
−2πi{yx}pdµ(x)

=

∫
Qp

1pnZp
(−a+ x)e−2πi{y(−a+x)+ay}pdµ(x)

= e−2πi{ay}y

∫
Qp

1pnZp(−a+ x)e−2πi{y(−a+x)}pdµ(x)

= e−2πi{ay}y

∫
Qp

1pnZp
(x)e−2πi{yx}pdµ(x)

= e−2πi{ay}yp−n1p−nZp
(y).

11cf. A. A. Kirillov and A. D. Gvishiani, Theorems and Problems in Functional Analysis,
p. 210, no. 639.

12Dorian Goldfeld and Joseph Hundley, Automorphic Representations and L-Functions for
the General Linear Group, volume I, p. 17, Theorem 1.6.8.
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