Harmonic analysis on the p-adic numbers

Jordan Bell

March 20, 2016

$1 \quad p$-adic numbers

Let p be prime and let $N_{p}=\{0, \ldots, p-1\} . \mathbb{Q}_{p} \subset \prod_{\mathbb{Z}} N_{p}$. For $x \in \mathbb{Q}_{p}$,

$$
x=\lim _{m \rightarrow \infty} \sum_{k \leq m} x(k) p^{k}=\sum_{k \in \mathbb{Z}} x(k) p^{k}=\sum_{k \geq v_{p}(x)} x(k) p^{k}
$$

for

$$
\begin{gathered}
v_{p}(x)=\inf \{k \in \mathbb{Z}: x(k) \neq 0\} . \\
\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}: v_{p}(x) \geq 0\right\} .
\end{gathered}
$$

For $x, y \in \mathbb{Q}_{p}$,

$$
v_{p}(x y)=v_{p}(x)+v_{p}(y), \quad v_{p}(x+y) \geq \min \left(v_{p}(x), v_{p}(y)\right)
$$

and $v_{p}(x)=\infty$ if and only if $x=0$. The p-integers \mathbb{Z}_{p} with the valuation v_{p} are a Euclidean domain: for $f, g \in \mathbb{Z}_{p}$ with $v_{p}(f) \geq v_{p}(g)$ we have $f \cdot g^{-1} \in \mathbb{Z}_{p}$. \mathbb{Z}_{p}^{*} is the set of those $x \in \mathbb{Z}_{p}$ for which there is some $y \in \mathbb{Z}_{p}$ satisfying $x y=1$.

$$
\mathbb{Z}_{p}^{*}=\left\{x \in \mathbb{Q}_{p}: v_{p}(x)=0\right\} .
$$

The ideals of the ring \mathbb{Z}_{p} are $\{0\}$ and $p^{n} \mathbb{Z}_{p}, n \geq 0$. From this it follows that \mathbb{Z}_{p} is a discrete valuation ring, a principal ideal domain with exactly one maximal ideal, namely $p \mathbb{Z}_{p} ; \mathbb{Z}_{p}$ is the valuation ring of \mathbb{Q}_{p} with the valuation v_{p}. For $n \geq 1, \mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}$ is isomorphic as a ring with $\mathbb{Z} / p^{n} \mathbb{Z}$.

$$
|x|_{p}=p^{-v_{p}(x)}, \quad d_{p}(x, y)=|x-y|_{p} .
$$

With the topology induced by the metric d_{p}, \mathbb{Q}_{p} is a locally compact abelian group, and $\left(\mathbb{Q}_{p}, d_{p}\right)$ is a complete metric space. $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$ is a complete nonarchimedean valued field. For $x \in \mathbb{Q}_{p}$,

$$
\left\{x+p^{n} \mathbb{Z}_{p}: n \in \mathbb{Z}\right\}
$$

is a local base at x for the topology of \mathbb{Q}_{p}.

$$
[x]_{p}=\sum_{k \geq 0} x(k) p^{k} \in \mathbb{Z}_{p}, \quad\{x\}_{p}=\sum_{k<0} x(k) p^{k} \in[0,1) \cap \mathbb{Z}[1 / p] .
$$

$$
\psi_{p}(x)=e^{2 \pi i\{x\}_{p}}
$$

is a continuous group homomorphism $\mathbb{Q}_{p} \rightarrow S^{1}$. Its image is the discrete abelian group

$$
\mathbb{Z}\left[p^{\infty}\right]=\left\{e^{2 \pi i m p^{-n}}: m, n \geq 0\right\}
$$

the Prüfer p-group, and its kernel is $\mathbb{Z}_{p} . \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $\mathbb{Z}\left[p^{\infty}\right]$ are isomorphic as discrete abelian groups. There is a complete algebraically closed nonarchimedean valued field \mathbb{C}_{p}, unique up to unique isomorphism, that is an extension of $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$.

2 Pontryagin dual

Denote by $\widehat{\mathbb{Q}}_{p}$ the Pontryagin dual of the locally compact abelian group $\left(\mathbb{Q}_{p},+\right)$. For $\xi \in \widehat{\mathbb{Q}}_{p}$ and $x \in \mathbb{Q}_{p}$,

$$
x=\sum_{k \in \mathbb{Z}} x(k) p^{k}
$$

and

$$
\begin{equation*}
\langle x, \xi\rangle=\xi(x)=\prod_{k \in \mathbb{Z}} \xi\left(x(k) p^{k}\right)=\prod_{k \in \mathbb{Z}} \xi\left(p^{k}\right)^{x(k)} \tag{1}
\end{equation*}
$$

For $y \in \mathbb{Q}_{p}$, define $m_{y}: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ by $m_{y}(x)=y \cdot x$, which is a continuous group homomorphism. Then $\xi_{y}=\psi_{p} \circ m_{y}$ is a continuous group homomorphism $\mathbb{Q}_{p} \rightarrow S^{1}$, namely $\xi_{y} \in \widehat{\mathbb{Q}}_{p}$. The kernel of ξ_{y} is $\left\{x \in \mathbb{Q}_{p}: y x \in \mathbb{Z}_{p}\right\}$, in other words

$$
\operatorname{ker} \xi_{y}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq|y|_{p}^{-1}\right\}
$$

where $|0|_{p}^{-1}=\infty$. If $y \neq 0$ then

$$
\operatorname{ker} \xi_{y}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq|y|_{p}^{-1}\right\}=p^{-v_{p}(y)} \mathbb{Z}_{p}
$$

We shall prove that $y \mapsto \xi_{y}$ is an isomorphism of topological groups $\mathbb{Q}_{p} \rightarrow$ $\widehat{\mathbb{Q}}_{p}$. We will use the following lemma. ${ }^{1}$

Lemma 1. If $\xi \in \widehat{\mathbb{Q}}_{p}$ then there is some $n \in \mathbb{Z}$ such that $\langle x, \xi\rangle=1$ for $x \in p^{n} \mathbb{Z}_{p}$.

Proof. Let $U=\left\{e^{2 \pi i \theta}:|\theta|<\frac{1}{4}\right\}$, which is an open set in S^{1}. As $\xi(0) \in U$ and $\left\{p^{n} \mathbb{Z}_{p}: n \in \mathbb{Z}\right\}$ is a local base at 0 , there is some $n \in \mathbb{Z}$ such that $p^{n} \mathbb{Z}_{p} \subset$ $\xi^{-1}(U)$. This means that $\xi\left(p^{n} \mathbb{Z}_{p}\right) \subset U$, and because $\xi: \mathbb{Q}_{p} \rightarrow S^{1}$ is a group homomorphism, $\xi\left(p^{n} \mathbb{Z}_{p}\right)$ is therefore a subgroup of S^{1} contained in U. But the only subgroup of S^{1} contained in U is $\{1\}$, and therefore $\xi\left(p^{n} \mathbb{Z}_{p}\right)=\{1\}$.

[^0]Suppose $\xi \in \widehat{\mathbb{Q}}_{p}, \xi \neq 1$. By (1) there is then some k such that $\xi\left(p^{k}\right) \neq 1$. Now, $\left|p^{j}\right|_{p}=p^{-j} \rightarrow 0$ as $j \rightarrow \infty$, so $p^{j} \rightarrow 0$ in \mathbb{Q}_{p} and therefore $\xi\left(p^{j}\right) \rightarrow 1$ as $j \rightarrow \infty$. Let

$$
j_{\xi}-1=\max \left\{k \in \mathbb{Z}:\left\langle p^{k}, \xi\right\rangle \neq 1\right\} .
$$

Then $\left\langle p^{j_{\xi}-1}, \xi, \neq\right\rangle 1$ and $\left\langle p^{j}, \xi\right\rangle=1$ for $j \geq j_{\xi}$. In particular, $j_{\xi}=0$ is equivalent with $\langle 1, \xi\rangle=1$ and $\langle p, \xi\rangle \neq 1 .{ }^{2}$

Lemma 2. Suppose that $\xi \in \widehat{\mathbb{Q}}_{p}$ with $\langle 1, \xi\rangle=1$ and $\left\langle p^{-1}, \xi\right\rangle \neq 1$. Then there are $c_{j} \in N_{p}, j \geq 0$, with $c_{0} \neq 0$, such that

$$
\left\langle p^{-k}, \xi\right\rangle=\exp \left(2 \pi i \sum_{j=1}^{k} c_{k-j} p^{-j}\right), \quad k \geq 1
$$

Proof. Let $\omega_{0}=\langle 1, \xi\rangle=1$ and for $k \geq 1$ let $\omega_{k}=\left\langle p^{-k}, \xi\right\rangle \in S^{1}$, which satisfy

$$
\omega_{k+1}^{p}=\left\langle p^{-k}, \xi\right\rangle=\omega_{k} .
$$

Because $\omega_{1}^{p}=1$ this means that there is some $c_{0} \in N_{p}$ such that $\omega_{1}=e^{2 \pi i c_{0} p^{-1}}$, and by hypothesis $\omega_{1} \neq 1$, which means $c_{0} \neq 0$. By induction, suppose for some $k \geq 1$ and $c_{0}, \ldots, c_{k-1} \in N_{p}, c_{0} \neq 0$, such that

$$
\omega_{k}=\exp \left(2 \pi i \sum_{j=1}^{k} c_{k-j} p^{-j}\right)
$$

Generally, if $z^{p}=e^{i \theta}$ then there is some $c \in N_{p}$ such that $z=e^{\frac{1}{p} i \theta} e^{2 \pi i c p^{-1}}$. Thus, the fact that $\omega_{k+1}^{p}=\omega_{k}$ means that there is some $c_{k} \in N_{p}$ such that

$$
\omega_{k+1}=\exp \left(\frac{1}{p} \cdot 2 \pi i \sum_{j=1}^{k} c_{k-j} p^{-j}\right) \cdot e^{2 \pi i c_{k} p^{-1}}=\exp \left(2 \pi i \sum_{j=1}^{k+1} c_{k+1-j} p^{-j}\right)
$$

We prove a final lemma. ${ }^{3}$
Lemma 3. Suppose that $\xi \in \widehat{\mathbb{Q}}_{p}$ with $\langle 1, \xi\rangle=1$ and $\left\langle p^{-1}, \xi\right\rangle \neq 1$. Then there is some $y \in \mathbb{Q}_{p}$ with $|y|_{p}=1$ and $\xi=\xi_{y}$.

Proof. By Lemma 2 there are $c_{j} \in N_{p}, j \geq 0, c_{0} \neq 0$, such that

$$
\left\langle p^{-k}, \xi\right\rangle=\exp \left(2 \pi i \sum_{j=1}^{k} c_{k-j} p^{-j}\right), \quad k \geq 1
$$

[^1]Define $y \in \mathbb{Q}_{p}$ by $y(j)=c_{j}$ for $j \geq 0$ and $y(j)=0$ for $j<0$. As $y(0)=c_{0} \neq 0$, $|y|_{p}=1$. For $k \geq 1$ and $-k \leq j \leq-1$ we have $\left(p^{-k} y\right)(j)=y(j+k)=c_{j+k}$, and for $j<-k$ we have $\left(p^{-k} y\right)(j)=y(j+k)=0$, so

$$
\left\{p^{-k} y\right\}_{p}=\sum_{j<0}\left(p^{-k} y\right)(j) p^{j}=\sum_{-k \leq j \leq-1}\left(p^{-k} y\right)(j) p^{j}=\sum_{-k \leq j \leq-1} c_{j+k} p^{j},
$$

yielding

$$
\left\langle p^{-k}, \xi\right\rangle=\exp \left(2 \pi i \sum_{-k \leq j \leq-1} c_{k+j} p^{j}\right)=\exp \left(2 \pi i\left\{p^{-k} y\right\}_{p}\right),
$$

i.e. $\left\langle p^{-k}, \xi\right\rangle=\psi_{p}\left(p^{-k} y\right)=\left\langle p^{-k}, \xi_{y}\right\rangle$. But $\langle 1, \xi\rangle=1$ implies that $\left\langle p^{k}, \xi\right\rangle=1$ for $k \geq 0$, and because $y(k)=0$ for $k<0$,

$$
\left\langle 1, \xi_{y}\right\rangle=e^{2 \pi i\{y\}_{p}}=1
$$

which implies that $\left\langle p^{k}, \xi\right\rangle=1$ for $k \geq 0$. Therefore $\left\langle p^{k}, \xi\right\rangle=\left\langle p^{k}, \xi_{y}\right\rangle$ for all $k \in \mathbb{Z}$, which implies that $\xi=\xi_{y}$.

We now have worked out enough to prove that $y \mapsto \xi_{y}$ is an isomorphism. ${ }^{4}$
Theorem 4. $y \mapsto \xi_{y}$ is an isomorphism of topological groups $\mathbb{Q}_{p} \rightarrow \widehat{\mathbb{Q}}_{p}$.
Proof. For $x \in \mathbb{Q}_{p}$,

$$
\left\langle x, \xi_{y} \xi_{z}\right\rangle=\left\langle x, \xi_{y}\right\rangle\left\langle x, \xi_{z}\right\rangle=\psi_{p}(y x) \psi_{p}(z x)=\psi_{p}(y x+z x)=\left\langle x, \xi_{y+z}\right\rangle,
$$

showing that $y \mapsto \xi_{y}$ is a group homomorphism. Suppose that $\xi_{y}=1$. Then for all $x \in \mathbb{Q}_{p}$ we have $\left\langle x, \xi_{y}\right\rangle=1$, i.e. $e^{2 \pi i\{y x\}_{p}}=1$, i.e. $\{y x\}_{p}=0$, i.e. $y x \in \mathbb{Z}_{p}$. This implies $y=0$, showing that $y \mapsto \xi_{y}$ is injective. It remains to show that $y \mapsto \xi_{y}$ is surjective, that it is continuous, and that it is an open map. But in fact, the open mapping theorem for locally compact groups ${ }^{5}$ tells us that if $f: G \rightarrow H$ is a continuous group homomorphism of locally compact groups that is surjective and G is σ-compact then f is open. \mathbb{Q}_{p} is σ-compact: $\mathbb{Q}_{p}=\bigcup_{n \in \mathbb{Z}} p^{n} \mathbb{Z}_{p}$. So to prove the claim it suffices to prove that $y \mapsto \xi_{y}$ is surjective and continuous.

Let $\xi \in \widehat{\mathbb{Q}}_{p}, \xi \neq 1$. By Lemma 1, let

$$
j-1=\max \left\{k \in \mathbb{Z}:\left\langle p^{k}, \xi\right\rangle \neq 1\right\}
$$

for which $\left\langle p^{j-1}, \xi\right\rangle \neq 1$ and $\left\langle p^{j}, \xi\right\rangle=1$. Define $\eta \in \widehat{\mathbb{Q}}_{p}$ by

$$
\langle x, \eta\rangle=\left\langle p^{j} x, \xi\right\rangle,
$$

[^2]which satisfies $\langle 1, \eta\rangle=\left\langle p^{j} x, \xi\right\rangle=1$ and $\left\langle p^{-1}, \eta\right\rangle=\left\langle p^{j-1}, \xi\right\rangle \neq 1$. Thus we can apply Lemma 3: there is some $z \in \mathbb{Q}_{p},|z|_{p}=1$, such that $\eta=\xi_{z}$. Now let $y=p^{-j} z \in \mathbb{Q}_{p}$, which satisfies
$$
\left\langle x, \xi_{y}\right\rangle=e^{2 \pi i\{y x\}_{p}}=e^{2 \pi i\left\{z \cdot p^{-j} x\right\}_{p}}=\left\langle p^{-j} x, \xi_{z}\right\rangle=\left\langle p^{-j} x, \eta\right\rangle=\langle x, \xi\rangle,
$$
from which it follows that $\xi=\xi_{y}$. Therefore $y \mapsto \xi_{y}$ is surjective.
For $j \geq 1$ and $k \geq 1$ define
$$
N(j, k)=\left\{\xi \in \widehat{\mathbb{Q}}_{p}:|\langle x, \xi\rangle-1|<j^{-1} \text { for }|x|_{p} \leq p^{-k}\right\} .
$$

It is a fact that $\{N(j, k): j \geq 1, k \geq 1\}$ is a local base at 1 for the topology of $\widehat{\mathbb{Q}}_{p}$. Suppose $y \in \mathbb{Z}_{p}$. For $j \geq 1, k \geq 1$ and $|x|_{p} \leq p^{-k}$, we have $x y \in \mathbb{Z}_{p}$ and hence $\left\langle x, \xi_{y}\right\rangle=1$, hence $y \in N(j, k)$. This shows that $\xi\left(\mathbb{Z}_{p}\right) \subset N(j, k)$, and therefore $y \mapsto \xi_{y}$ is continuous at 0 .

3 Haar measure

For a locally compact abelian group G, a Haar measure on G is a Borel measure m on G such that (i) $m(x+E)=m(E)$ for each Borel set E and $x \in G$, (ii) if K is a compact set then $m(K)<\infty$, (iii) if E is a Borel set then

$$
m(E)=\inf \{m(U): E \subset U, U \text { open }\},
$$

and (iv) if U is an open set then

$$
m(E)=\sup \{m(K): K \subset U, K \text { compact }\}
$$

It is a fact that for any locally compact abelian group G there is a Haar measure m that is not identically 0 . One proves that if U is an open set then $m(U)>0$ and that if m_{1}, m_{2} are Haar measures that are not identically 0 then for some positive real $c, m_{1}=c m_{2} .{ }^{6}$
\mathbb{Q}_{p} is a locally compact abelian group, so there is a Haar measure m on \mathbb{Q}_{p} that is not identically 0 . Because \mathbb{Z}_{p} is compact, $m\left(\mathbb{Z}_{p}\right)<\infty$, and because \mathbb{Z}_{p} is open, $m\left(\mathbb{Z}_{p}\right)>0$. Then let $\mu=\frac{1}{m\left(\mathbb{Z}_{p}\right)} m$, which is the unique Haar measure on \mathbb{Q}_{p} satisfying

$$
\mu\left(\mathbb{Z}_{p}\right)=1 .
$$

Lemma 5. For $k \in \mathbb{Z}$,

$$
\mu\left(p^{k} \mathbb{Z}_{p}\right)=p^{-k}
$$

Proof. If $k>0$, then $p^{k} \mathbb{Z}_{p}$ is an ideal in \mathbb{Z}_{p} and $\mathbb{Z}_{p} / p^{k} \mathbb{Z}_{p}$ is isomorphic as a ring with $\mathbb{Z} / p^{k} \mathbb{Z}$. So there are $x_{j} \in \mathbb{Z}_{p}, 1 \leq j \leq p^{k}$, such that $\mathbb{Z}_{p}=\bigcup_{1 \leq j \leq p^{k}}\left(x_{j}+\right.$ $p^{k} \mathbb{Z}_{p}$), and the sets $x_{j}+p^{k} \mathbb{Z}_{p}$ are pairwise disjoint. Therefore

$$
1=\mu\left(\mathbb{Z}_{p}\right)=\sum_{j=1}^{p^{k}} \mu\left(x_{j}+p^{k} \mathbb{Z}_{p}\right)=\sum_{j=1}^{p_{k}} \mu\left(p^{k} \mathbb{Z}_{p}\right)=p^{k} \mu\left(p^{k} \mathbb{Z}_{p}\right)
$$

[^3]yielding $\mu\left(p^{k} \mathbb{Z}_{p}\right)=p^{-k}$.
If $k<0$, then $p^{k} \mathbb{Z}_{p}$ is a ring and \mathbb{Z}_{p} is an ideal in this ring.
We calculate $\mu(x \cdot E) .{ }^{7}$
Lemma 6. For A a Borel set in \mathbb{Q}_{p} and $x \in \mathbb{Q}_{p}$,
$$
\mu(x \cdot A)=|x|_{p} \mu(A)
$$

Proof. If $x=0$ then $x \cdot A=\{0\}$ and $\mu(x \cdot A)=0$ and $|x|_{p} \mu(A)=0 \cdot \mu(A)=0$. (The set \mathbb{Q}_{p} is infinite and μ is translation invariant, so finite sets have measure 0 .) For $x \neq 0$, write $M_{x}(y)=x^{-1} \cdot y$, which is an isomorphism of locally compact groups $\left(\mathbb{Q}_{p},+\right) \rightarrow\left(\mathbb{Q}_{p},+\right)$. Let μ_{x} be the pushforward of μ by M_{x} :

$$
\mu_{x}(E)=\mu\left(M_{x}^{-1} E\right)=\mu\left(\left\{y \in \mathbb{Q}_{p}: x^{-1} y \in E\right\}\right)=\mu(x \cdot E)
$$

Because M_{x} is an isomorphism, it follows that μ_{x} is a Haar measure on \mathbb{Q}_{p}. And because $\mu_{x}\left(\mathbb{Q}_{p}\right)=\mu\left(\mathbb{Q}_{p}\right)=\infty$, showing μ_{x} is not identically 0 , there is some $c_{x}>0$ such that $\mu_{x}=c_{x} \mu$.

Now, as $x \neq 0, v_{p}(x) \in \mathbb{Z}$ and $|x|_{p}=p^{-v_{p}(x)}$. Then $p^{-v_{p}(x)} x \in \mathbb{Z}_{p}^{*}$, so there is some $y \in \mathbb{Z}_{p}^{*}$ such that $x=p^{v_{p}(x)} y$. As $y \in \mathbb{Z}_{p}^{*}, y \cdot \mathbb{Z}_{p}=\mathbb{Z}_{p}$ and hence $x \cdot \mathbb{Z}_{p}=p^{v_{p}(x)} \cdot \mathbb{Z}_{p}$. By Lemma $5, \mu\left(p^{v_{p}(x)} \mathbb{Z}\right)=p^{-v_{p}(x)}$, so

$$
\mu_{x}\left(\mathbb{Z}_{p}\right)=\mu\left(x \cdot \mathbb{Z}_{p}\right)=\mu\left(p^{v_{p}(x)} \mathbb{Z}\right)=p^{-v_{p}(x)}
$$

and therefore

$$
p^{-v_{p}(x)}=c_{x} \mu\left(\mathbb{Z}_{p}\right)=c_{x},
$$

and $|x|_{p}=p^{-v_{p}(x)}$ so $c_{x}=|x|_{p}$. Therefore $\mu_{x}=|x|_{p} \mu$.
Lemma 7. For $f \in L^{1}\left(\mathbb{Q}_{p}\right)$ and $x \neq 0$,

$$
\int_{\mathbb{Q}_{p}} f\left(x^{-1} y\right) d \mu(y)=|x|_{p} \int_{\mathbb{Q}_{p}} f(y) d \mu(y)
$$

Proof. μ_{x} is the pushforward of μ by $M_{x}(y)=x^{-1} \cdot y$, and by the change of variables formula,

$$
\int_{\mathbb{Q}_{p}} f\left(x^{-1} y\right) d \mu(y)=\int_{\mathbb{Q}_{p}}\left(f \circ M_{x}\right)(y) d \mu(y)=\int_{\mathbb{Q}_{p}} f(y) d \mu_{x}(y)=|x|_{p} \int_{\mathbb{Q}_{p}} f(y) d \mu(y) .
$$

The restriction of μ to the Borel σ-algebra of $\mathbb{Q}_{p}^{*}=\mathbb{Q}_{p} \backslash\{0\}$ is a Borel measure on \mathbb{Q}_{p}^{*}. We prove that the Borel measure on \mathbb{Q}_{p}^{*} whose density with respect to μ is $x \mapsto \frac{1}{|x|_{p}}$ is a Haar measure. ${ }^{8}$

[^4]Theorem 8. $\frac{1}{|x|_{p}} d \mu(x)$ is a Haar measure on the multiplicative group \mathbb{Q}_{p}^{*}.
Proof. For $f \in C_{c}\left(\mathbb{Q}_{p}^{*}\right)$ and $y \in \mathbb{Q}_{p}^{*}$, writing $g_{y}(x)=\frac{f(x)}{|y x|_{p}}$, by Lemma 7 we have

$$
\begin{aligned}
\int_{\mathbb{Q}_{p}^{*}} f\left(y^{-1} x\right) \frac{1}{|x|_{p}} d \mu(x) & =\int_{\mathbb{Q}_{p}^{*}}\left(g_{y} \circ M_{y}\right)(x) d \mu(x) \\
& =\int_{\mathbb{Q}_{p}^{*}} g_{y}(x) d \mu_{y}(x) \\
& =|y|_{p} \int_{\mathbb{Q}_{p}^{*}} g_{y}(x) d \mu(x) \\
& =|y|_{p} \int_{\mathbb{Q}_{p}^{*}} \frac{f(x)}{|y x|_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}^{*}} f(x) \frac{1}{|x|_{p}} d \mu(x)
\end{aligned}
$$

Write $d \nu_{0}(x)=\frac{1}{|x|_{p}} d \mu(x)$. For $x \in \mathbb{Q}_{p}^{*}, p^{-v_{p}(x)} x \in \mathbb{Z}_{p}^{*}$, i.e. $x \in p^{v_{p}(x)} \mathbb{Z}_{p}^{*}$, and \mathbb{Z}_{p}^{*} is the kernel of the group homomorphism $x \mapsto v_{p}(x), \mathbb{Q}_{p}^{*} \rightarrow \mathbb{Z}$. It follows that the sets $p^{k} \mathbb{Z}_{p}^{*}, k \in \mathbb{Z}$, are pairwise disjoint and $\mathbb{Q}_{p}^{*}=\bigcup_{k \in \mathbb{Z}} p^{k} \mathbb{Z}_{p}^{*}$. For $k \in \mathbb{Z}$, because $p^{k} \mathbb{Z}_{p}^{*}$ is a compact open set in \mathbb{Q}_{p} it is the case that $1_{p^{k} \mathbb{Z}_{p}^{*}} \in C_{c}\left(\mathbb{Q}_{p}\right)$ so by Lemma 7 ,

$$
\begin{aligned}
\nu_{0}\left(p^{k} \mathbb{Z}_{p}^{*}\right) & =\int_{\mathbb{Q}_{p}^{*}} 1_{p^{k} \mathbb{Z}_{p}^{*}}(x) \frac{1}{|x|_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}^{*}} 1_{\mathbb{Z}_{p}^{*}}\left(p^{-k} x\right) \frac{1}{\left|p^{-k} \cdot p^{k} x\right|_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}^{*}} 1_{\mathbb{Z}_{p}^{*}}(x) \frac{1}{\left|p^{k} x\right|_{p}} d \mu_{p^{k}}(x) \\
& =\left|p^{k}\right|_{p} \int_{\mathbb{Q}_{p}^{*}} 1_{\mathbb{Z}_{p}^{*}}(x) \frac{1}{\left|p^{k} x\right|_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}^{*}} 1_{\mathbb{Z}_{p}^{*}} \frac{1}{|x|_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}^{*}} 1_{\mathbb{Z}_{p}^{*}} d \mu(x) \\
& =\mu\left(\mathbb{Z}_{p}^{*}\right) .
\end{aligned}
$$

Check that $1+p \mathbb{Z}_{p}$ is a subgroup of \mathbb{Z}_{p}^{*} with index $p-1$: the sets $a+p \mathbb{Z}_{p}$, $a \in N_{p}, a \neq 0$, are contained in \mathbb{Z}_{p}^{*} and are pairwise disjoint. This implies

$$
\mu\left(\mathbb{Z}_{p}^{*}\right)=(p-1) \mu\left(p \mathbb{Z}_{p}\right)=\frac{p-1}{p} .
$$

Then

$$
d \nu(x)=\frac{p}{p-1} \frac{1}{|x|_{p}} d \mu(x)
$$

is a Haar measure on \mathbb{Q}_{p}^{*} with $\nu\left(\mathbb{Z}_{p}^{*}\right)=1$.

4 Integration

As $\mathbb{Z}_{p} \backslash\{0\}=\bigcup_{n \geq 0} p^{n} \mathbb{Z}_{p}^{*}$, for $\operatorname{Re} s>-1$,

$$
\begin{aligned}
\int_{\mathbb{Z}_{p} \backslash\{0\}}|x|_{p}^{s} d \mu(x) & =\sum_{n \geq 0} \int_{p^{n} \mathbb{Z}_{p}^{*}}|x|_{p}^{s} d \mu(x) \\
& =\sum_{n \geq 0} p^{-n s} \mu\left(p^{n} \mathbb{Z}_{p}^{*}\right) \\
& =\sum_{n \geq 0} p^{-n s} p^{-n} \cdot \mu\left(\mathbb{Z}_{p}^{*}\right) \\
& =\sum_{n \geq 0} p^{-n s} p^{-n} \cdot \frac{p-1}{p} \\
& =\frac{p-1}{p\left(1-p^{-1-s}\right)} .
\end{aligned}
$$

For $\operatorname{Re} s>0$,

$$
\begin{aligned}
\int_{\mathbb{Z}_{p} \backslash\{0\}}|x|_{p}^{s} d \nu(x) & =\sum_{n \geq 0} \int_{p^{n} \mathbb{Z}_{p}^{*}}|x|_{p}^{s} \frac{p}{p-1} \frac{1}{|x|_{p}} d \mu(x) \\
& =\frac{p}{p-1} \sum_{n \geq 0} \int_{p^{n} \mathbb{Z}_{p}^{*}}\left(p^{-n}\right)^{s-1} d \mu(x) \\
& =\frac{p}{p-1} \sum_{n \geq 0} p^{(-s+1) n} p^{-n} \cdot \frac{p-1}{p} \\
& =\sum_{n \geq 0} p^{-n s} \\
& =\frac{1}{1-p^{-s}} .
\end{aligned}
$$

It is worth remarking that this is a factor of the Euler product for the Riemann zeta function.

We will use the following when working with the Fourier transform. ${ }^{9}$
Lemma 9. For $n \in \mathbb{Z}$,

$$
\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x)= \begin{cases}p^{-n} & n \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

[^5]Proof. If $n \geq 0$ and $x \in p^{n} \mathbb{Z}_{p}$ then $\{x\}_{p}=0$ so

$$
\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x)=\mu\left(p^{n} \mathbb{Z}_{p}\right)=p^{-n}
$$

If $n<0$, let $y=p^{n} \in p^{n} \mathbb{Z}_{p}$, for which $\{y\}_{p}=p^{n}$. Define $T: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ by $T(x)=-y+x$. Then, as μ is translation invariant and as $x+y \in p^{n} \mathbb{Z}_{p}$ if and only if $x \in p^{n} \mathbb{Z}_{p}$,

$$
\begin{aligned}
\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x) & =\int_{\mathbb{Q}_{p}}\left(1_{p^{n} \mathbb{Z}_{p}} \circ T\right)(y+x) e^{-2 \pi i\{T(y+x)\}_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(y+x) e^{-2 \pi i\{y+x\}_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{y+x\}_{p}} d \mu(x) \\
& =e^{-2 \pi i\{y\}_{p}} \int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x)
\end{aligned}
$$

Because $e^{-2 \pi i\{y\}_{p}} \neq 1$, for $I=e^{-2 \pi i\{y\}_{p}} I$ we have $I=0$.
Lemma 10. For $n \in \mathbb{Z}$ and $y \in \mathbb{Q}_{p}$,

$$
\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{y x\}_{p}} d \mu(x)= \begin{cases}p^{-n} & y \in p^{-n} \mathbb{Z}_{p} \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. If $y \in p^{-n} \mathbb{Z}_{p}$ then for any $x \in p^{n} \mathbb{Z}_{p}$ we have $y x \in \mathbb{Z}_{p}$ and so $\{y x\}_{p}=0$ and $I=\mu\left(p^{n} \mathbb{Z}_{p}\right)=p^{-n}$.

Another lemma. ${ }^{10}$
Lemma 11. For $n \in \mathbb{Z}$,

$$
\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}^{*}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x)= \begin{cases}p^{-n}\left(1-p^{-1}\right) & n \geq 0 \\ -1 & n=-1 \\ 0 & n<-1\end{cases}
$$

Proof. $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p}-p \mathbb{Z}_{p}$ and $p^{n} \mathbb{Z}_{p}^{*}=p^{n} \mathbb{Z}_{p}-p^{n+1} \mathbb{Z}_{p}$ and then

$$
\begin{aligned}
\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}^{*}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x) & =\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x) \\
& -\int_{\mathbb{Q}_{p}} 1_{p^{n+1} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{x\}_{p}} d \mu(x) \\
& =I_{1}-I_{2} .
\end{aligned}
$$

[^6]We apply Lemma 9. If $n \geq 0$ then $I_{1}=p^{-n}$ and $I_{2}=p^{-n-1}$ so $I=p^{-n}-$ $p^{-n-1}=p^{-n}\left(1-p^{-1}\right)$. If $n=-1$ then $I_{1}=0$ and $n+1 \geq 0$ so $I_{2}=p^{-n-1}=1$ hence $I=-1$. Finally if $n<-1$ then $I_{1}=0$ and $I_{2}=0$ so $I=0$.

For $f \in L^{1}\left(\mathbb{Q}_{p}\right)$ and $y \in \mathbb{Q}_{p}$, define $\hat{f} \in C_{0}\left(\mathbb{Q}_{p}\right)$ by

$$
\widehat{f}(y)=(\mathscr{F} f)(y)=\int_{\mathbb{Q}_{p}} f(x) e^{-2 \pi i\{y x\}_{p}} d \mu(x)
$$

Let \mathscr{S} be the set of locally constant functions $\mathbb{Q}_{p} \rightarrow \mathbb{C}$ with compact support. We call an element of \mathscr{S} a p-adic Schwartz function. ${ }^{11}$ We prove that the Fourier transform of a p-adic Schwartz function is itself a p-adic Schwartz function. ${ }^{12}$

Theorem 12. If $f \in \mathscr{S}$ then $\hat{f} \in \mathscr{S}$.
Proof. Let $n \in \mathbb{Z}, a \in \mathbb{Q}_{p}$, and let $N=a+p^{n} \mathbb{Z}_{p}$. For $y \in \mathbb{Q}_{p}$, applying Lemma 10,

$$
\begin{aligned}
\widehat{1}_{N}(y) & =\int_{\mathbb{Q}_{p}} 1_{a+p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{y x\}_{p}} d \mu(x) \\
& =\int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(-a+x) e^{-2 \pi i\{y(-a+x)+a y\}_{p}} d \mu(x) \\
& =e^{-2 \pi i\{a y\}_{y}} \int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(-a+x) e^{-2 \pi i\{y(-a+x)\}_{p}} d \mu(x) \\
& =e^{-2 \pi i\{a y\}_{y}} \int_{\mathbb{Q}_{p}} 1_{p^{n} \mathbb{Z}_{p}}(x) e^{-2 \pi i\{y x\}_{p}} d \mu(x) \\
& =e^{-2 \pi i\{a y\}_{y}} p^{-n} 1_{p^{-n} \mathbb{Z}_{p}}(y) .
\end{aligned}
$$

[^7]
[^0]: ${ }^{1}$ Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Lemma 4.9.

[^1]: ${ }^{2}$ Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Lemma 4.10.
 ${ }^{3}$ Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Lemma 4.11.

[^2]: ${ }^{4}$ Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Theorem 4.12.
 ${ }^{5}$ Karl H. Hofmann and Sidney A. Morris, The Structure of Compact Groups, 2nd revised and augmented edition, p. 669, Appendix 1.

[^3]: ${ }^{6}$ Walter Rudin, Fourier Analysis on Groups, pp. 1-2.

[^4]: ${ }^{7}$ Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed., p. 254, Lemma 13.2.1.
 ${ }^{8}$ Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed., p. 255, Proposition 13.2.2.

[^5]: ${ }^{9}$ Dorian Goldfeld and Joseph Hundley, Automorphic Representations and L-Functions for the General Linear Group, volume I, p. 16, Lemma 1.6.4.

[^6]: ${ }^{10}$ Dorian Goldfeld and Joseph Hundley, Automorphic Representations and L-Functions for the General Linear Group, volume I, p. 16, Proposition 1.6.5.

[^7]: ${ }^{11}$ cf. A. A. Kirillov and A. D. Gvishiani, Theorems and Problems in Functional Analysis, p. 210, no. 639.
 ${ }^{12}$ Dorian Goldfeld and Joseph Hundley, Automorphic Representations and L-Functions for the General Linear Group, volume I, p. 17, Theorem 1.6.8.

