Explicit construction of the p-adic numbers

Jordan Bell

March 17, 2016

$1 Z_{p}$

Let p be prime, let $N_{p}=\{0, \ldots, p-1\}$, and let \mathbb{Z}_{p} be the set of maps $x: \mathbb{Z} \rightarrow N_{p}$ such that $x(k)=0$ for all $k<0$.

1.1 Addition

For $x, y \in \mathbb{Z}_{p}$, we define $x+y \in \mathbb{Z}_{p}$ by induction. Define

$$
(x+y)(0) \equiv x(0)+y(0) \quad(\bmod p), \quad(x+y)(0) \in N_{p}
$$

Assume for $k \geq 0$ that there is some $A_{k} \in \mathbb{Z}$ such that

$$
\sum_{j=0}^{k}(x+y)(j) p^{j}=A_{k} p^{k+1}+\sum_{j=0}^{k}(x(j)+y(j)) p^{j}
$$

Define
$(x+y)(k+1) \equiv-A_{k}+x(k+1)+y(k+1) \quad(\bmod p), \quad(x+y)(k+1) \in N_{p}$,
and then define $A_{k+1} \in \mathbb{Z}$ by

$$
(x+y)(k+1)=A_{k+1} p-A_{k}+x(k+1)+y(k+1)
$$

Then

$$
\begin{aligned}
\sum_{j=0}^{k+1}(x+y)(j) p^{j} & =(x+y)(k+1) p^{k+1}+\sum_{j=0}^{k}(x+y)(j) p^{j} \\
& =A_{k+1} p^{k+2}-A_{k} p^{k+1}+(x(k+1)+y(k+1)) p^{k+1} \\
& +A_{k} p^{k+1}+\sum_{j=0}^{k}(x(j)+y(j)) p^{j} \\
& =A_{k+1} p^{k+2}+\sum_{j=0}^{k+1}(x(j)+y(j)) p^{j}
\end{aligned}
$$

Thus, for each $k \geq 0,(x+y)(k) \in N_{p}$ and

$$
\begin{equation*}
\sum_{j=0}^{k}(x+y)(j) p^{j} \equiv \sum_{j=0}^{k}(x(j)+y(j)) p^{j} \quad\left(\bmod p^{k+1}\right) \tag{1}
\end{equation*}
$$

It is immediate that $x+y=y+x$.
Lemma 1. If $x, y \in \mathbb{Z}_{p}$ and for each $k \geq 0$,

$$
\sum_{j=0}^{k} x(j) p^{j} \equiv \sum_{j=0}^{k} y(j) p^{j} \quad\left(\bmod p^{k+1}\right)
$$

then $x=y$.
Proof. Suppose by contradiction that $x \neq y$. Now, $x(0) \equiv y(0)(\bmod p)$ and $x(0), y(0) \in N_{p}$ so $x(0)=y(0)$. As $x \neq y$, there is a minimal $k \geq 0$ such that $x(k+1) \neq y(k+1)$. On the one hand,

$$
\sum_{j=0}^{k+1} x(j) p^{j}=x(k+1) p^{k+1}+\sum_{j=0}^{k} y(j) p^{j}
$$

and on the other hand,

$$
\sum_{j=0}^{k+1} x(j) p^{j} \equiv \sum_{j=0}^{k+1} y(j) p^{j} \quad\left(\bmod p^{k+2}\right)
$$

Then there is some B such that

$$
x(k+1) p^{k+1}=C p^{k+2}+y(k+1) p^{k+1} .
$$

so $x(k+1)-y(k+1)=B p$. But $-p+1 \leq x(k+1)-y(k+1) \leq p-1$, so $B=0$ and hence $x(k+1)=y(k+1)$, a contradiction and thus $x=y$.

Therefore, if $t \in \mathbb{Z}_{p}$ satisfies, for all $k \geq 0$,

$$
\sum_{j=0}^{k} t(j) p^{j} \equiv \sum_{j=0}^{k}(x(j)+y(j)) p^{j} \quad\left(\bmod p^{k+1}\right)
$$

then $t=x+y$. Now let $x, y, z \in \mathbb{Z}_{p}$. For $k \geq 0$,

$$
\begin{aligned}
\sum_{j=0}^{k}(x+(y+z))(j) p^{j} & \equiv \sum_{j=0}^{k}(x(j)+(y+z)(j)) p^{j} \quad\left(\bmod p^{k+1}\right) \\
& =\sum_{j=0}^{k}(x(j)+y(j)+z(j)) p^{j} \quad\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=0}^{k}((x+y)(j)+z(j)) p^{j} \quad\left(\bmod p^{k+1}\right)
\end{aligned}
$$

which shows that $x+(y+z)=(x+y)+z$.
Define $t \in \mathbb{Z}_{p}$ by $t(k)=0$ for all $k \geq 0$. It is immediate that for $x \in \mathbb{Z}_{p}$, $x+t=x, t+x=x$. If $x \neq 0$, let $m \geq 0$ be minimal such that $x(m) \neq 0$, and define $y \in \mathbb{Z}_{p}$ by

$$
y(k)= \begin{cases}0 & 0 \leq k<m \\ p-x(m) & k=m \\ p-1-x(k) & k>m\end{cases}
$$

This makes sense because $1 \leq x(m) \leq p-1$. Then $x(k)+y(k)=0$ for $0 \leq k<m$, $x(m)+y(m)=p$, and $x(k)+y(k)=p-1$ for $k>m$. For $k>m$,

$$
\begin{aligned}
\sum_{j=0}^{k}(x(j)+y(j)) p^{j} & =p \cdot p^{m}+\sum_{j=m+1}^{k}(p-1) p^{j} \\
& =p^{m+1}+(p-1) \cdot \frac{p^{k+1}-p^{m+1}}{p-1} \\
& =p^{k+1},
\end{aligned}
$$

so

$$
\sum_{j=0}^{k}(x(j)+y(j)) p^{j} \equiv \sum_{j=0}^{k} 0 \cdot p^{j} \quad\left(\bmod p^{k+1}\right)
$$

and it follows that $x+y=0, y+x=0$, namely $y=-x$.
We have established that $\left(\mathbb{Z}_{p},+\right)$ is an abelian group whose identity is $k \mapsto 0$, $k \geq 0$.

Lemma 2. For $x \in \mathbb{Z}_{p}$ and $m \geq 1$,

$$
\left(p^{m} x\right)(k)= \begin{cases}0 & 0 \leq k<m \\ x(k-m) & k \geq m\end{cases}
$$

Proof. For $x \in \mathbb{Z}_{p}$ and $m \geq 1$ define $y(j)=0$ for $0 \leq j<m$ and $y(j)=x(j-m)$
for $j \geq m$. By (1), for $k \geq m$,

$$
\begin{aligned}
\sum_{j=0}^{k}\left(p^{m} x\right)(j) p^{j} & \equiv \sum_{j=0}^{k} p^{m} x(j) p^{j} \quad\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=0}^{k} x(j) p^{j+m} \quad\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=m}^{m+k} x(j-m) p^{j} \quad\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=m}^{k} x(j-m) p^{j} \quad\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=0}^{k} y(j) p^{j} \quad\left(\bmod p^{k+1}\right)
\end{aligned}
$$

The following lemma shows that if $x(k)=0$ for $k<m$ then it makes sense to talk about $p^{-m} x \in \mathbb{Z}_{p}$. That is, if $x(k)=0$ for $k<m$ then there is a unique $y \in \mathbb{Z}_{p}$ such that $p^{m} y=x$. (For comparison, it is false that for any $z \in \mathbb{C}$ there is a unique $z^{1 / 2} \in \mathbb{C}$, or that for any $n \in \mathbb{Z}$ there is a unique $p^{-1} n \in \mathbb{Z}$.)

Lemma 3. Let $x \in \mathbb{Z}_{p}$ with $x(0)=0$. If $y \in \mathbb{Z}_{p}$ and $p y=x$ then $y(k)=x(k+1)$ for $k \geq 0$.

Proof. By Lemma $2,(p y)(0)=0$ and $(p y)(k)=y(k-1)$ for $k \geq 1$, and as $p y=x$ this means $x(0)=0$ and $x(k)=y(k-1)$ for $k \geq 1$, i.e. $x(k+1)=y(k)$ for $k \geq 0$.

1.2 Multiplication

For $x, y \in \mathbb{Z}_{p}$, we define $x y \in \mathbb{Z}_{p}$ by induction. Define

$$
(x y)(0) \equiv x(0) y(0) \quad(\bmod p), \quad(x y)(0) \in N_{p}
$$

Assume for $k \geq 0$ that there is some $A_{k} \in \mathbb{Z}$ such that

$$
\sum_{j=0}^{k}(x y)(j) p^{j}=A_{k} p^{k+1}+\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right)
$$

There is some $B \in \mathbb{Z}$ such that

$$
\begin{aligned}
& \left(\sum_{j=0}^{k+1} x(j) p^{j}\right)\left(\sum_{j=0}^{k+1} y(j) p^{j}\right) \\
= & \left(x(k+1) p^{k+1}+\sum_{j=0}^{k} x(j) p^{j}\right)\left(y(k+1) p^{k+1}+\sum_{j=0}^{k} y(j) p^{j}\right) \\
= & B p^{k+2}+x(k+1) y(0) p^{k+1}+x(0) y(k+1) p^{k+1}+\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\sum_{j=0}^{k+1} x(j) p^{j}\right)\left(\sum_{j=0}^{k+1} y(j) p^{j}\right) & =B p^{k+2}+x(k+1) y(0) p^{k+1}+x(0) y(k+1) p^{k+1} \\
& +\sum_{j=0}^{k}(x y)(j) p^{j}-A_{k} p^{k+1} .
\end{aligned}
$$

Now define
$(x y)(k+1) \equiv x(k+1) y(0)+x(0) y(k+1)-A_{k} \quad(\bmod p), \quad(x y)(k+1) \in N_{p}$,
and let $C \in \mathbb{Z}$ such that

$$
(x y)(k+1)=C p+x(k+1) y(0)+x(0) y(k+1)-A_{k},
$$

whence, taking $A_{k+1}=B-C$,

$$
\begin{aligned}
\left(\sum_{j=0}^{k+1} x(j) p^{j}\right)\left(\sum_{j=0}^{k+1} y(j) p^{j}\right) & =B p^{k+2}+(x y)(k+1) p^{k+1}-C p^{k+2}+A_{k} p^{k+1} \\
& +\sum_{j=0}^{k}(x y)(j) p^{j}-A_{k} p^{k+1} \\
& =A_{k+1} p^{k+2}+\sum_{j=0}^{k+1}(x y)(j) p^{j}
\end{aligned}
$$

Thus, for each $k \geq 0,(x y)(k) \in N_{p}$ and

$$
\begin{equation*}
\sum_{j=0}^{k}(x y)(j) p^{j} \equiv\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right) \quad\left(\bmod p^{k+1}\right) . \tag{2}
\end{equation*}
$$

It is immediate that $x y=y z$.

For $t \in \mathbb{Z}_{p}$, if for each $k \geq 0$,

$$
\sum_{j=0}^{k} t(j) p^{j} \equiv\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right) \quad\left(\bmod p^{k+1}\right)
$$

then $t=x y$. Now let $x, y, z \in \mathbb{Z}_{p}$. For $k \geq 0$,

$$
\begin{aligned}
\sum_{j=0}^{k}(x(y z))(j) p^{j} & \equiv\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k}(y z)(j) p^{j}\right)\left(\bmod p^{k+1}\right) \\
& \equiv\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right)\left(\sum_{j=0}^{k} z(j) p^{j}\right)\left(\bmod p^{k+1}\right) \\
& \equiv\left(\sum_{j=0}^{k}(x y)(j) p^{j}\right)\left(\sum_{j=0}^{k} z(j) p^{j}\right)\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=0}^{k}((x y) z)(j) p^{j} \quad\left(\bmod p^{k+1}\right)
\end{aligned}
$$

which shows that $x(y z)=(x y) z$.
Define $u \in \mathbb{Z}_{p}$ by $u(0)=1, u(k)=0$ for $k \geq 1$. It is apparent that for $x \in \mathbb{Z}_{p}, x u=x$ and $u x=x$.

1.3 Ring

For $x, y, z \in \mathbb{Z}_{p}$ and for $k \geq 0$, using (1) and (2),

$$
\begin{aligned}
\sum_{j=0}^{k}(x(y+z))(j) p^{j} & \equiv\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k}(y+z)(j) p^{j}\right) \quad\left(\bmod p^{k+1}\right) \\
& \equiv\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k}(y(j)+z(j)) p^{j}\right) \quad\left(\bmod p^{k+1}\right) \\
& \equiv\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right) \\
& +\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} z(j) p^{j}\right) \quad\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=0}^{k}(x y)(j) p^{j}+\sum_{j=0}^{k}(x z)(j) p^{j} \quad\left(\bmod p^{k+1}\right) \\
& \equiv \sum_{j=0}^{k}(x y+x z)(j) p^{j}\left(\bmod p^{k+1}\right)
\end{aligned}
$$

which shows that $x(y+z)=x y+x z$. Therefore \mathbb{Z}_{p} is a commutative ring with unity $0 \mapsto 1, k \mapsto 0$ for $k \geq 1$.

1.4 Integral domain

Let \mathbb{Z}_{p}^{*} be the set of those $x \in \mathbb{Z}_{p}$ for which there is some $y \in \mathbb{Z}_{p}$ such that $x y=1$, namely the set of invertible elements of \mathbb{Z}_{p}.
Lemma 4. Let $x \in \mathbb{Z}_{p} . x \in \mathbb{Z}_{p}^{*}$ if and only if $x(0) \neq 0$.
Proof. If $x(0)=0$ and $y \in \mathbb{Z}_{p}$ then $(x y)(0) \equiv x(0) y(0) \equiv 0(\bmod p)$ while $1(0) \equiv 1(\bmod p)$, so $x y \neq 1$ and therefore $x \notin \mathbb{Z}_{p}^{*}$.

If $x(0) \neq 0$, we define $y \in \mathbb{Z}_{p}$ by induction. As $x(0) \neq 0$, it makes sense to define

$$
y(0) x(0) \equiv 1 \quad(\bmod p), \quad y(0) \in N_{p}
$$

We use (2) and the fact that $1(0)=1,1(k)=0$ for $k \geq 1$. Suppose for $k \geq 0$ that there is some $A_{k} \in \mathbb{Z}$ such that

$$
\left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right)=A_{k} p^{k+1}+1
$$

Because $x(0) \neq 0$, it makes sense to define

$$
y(k+1) x(0)+x(k+1) y(0) \equiv-A_{k} \quad(\bmod p) .
$$

Then

$$
\begin{aligned}
\left(\sum_{j=0}^{k+1} x(j) p^{j}\right)\left(\sum_{j=0}^{k+1} y(j) p^{j}\right) & \equiv x(k+1) y(0) p^{k+1}+y(k+1) x(0) p^{k+1} \\
& \left(\sum_{j=0}^{k} x(j) p^{j}\right)\left(\sum_{j=0}^{k} y(j) p^{j}\right) \quad\left(\bmod p^{k+2}\right) \\
& \equiv-A_{k} p^{k+1}+A_{k} p^{k+1}+1 \quad\left(\bmod p^{k+2}\right) \\
& \equiv 1 \quad\left(\bmod p^{k+2}\right)
\end{aligned}
$$

This shows that $x y=1$, thus $x \in \mathbb{Z}_{p}^{*}$ and $y=x^{-1}$.
Theorem 5. \mathbb{Z}_{p} is an integral domain.
Proof. Let $x, y \in \mathbb{Z}_{p}$ be nonzero. Let $m \geq 0$ be minimal such that $x(m) \neq 0$ and let $n \geq 0$ be minimal such that $y(n) \neq 0$. Then $\left(p^{-m} x\right)(0) \neq 0$ and $\left(p^{-n} y\right)(0) \neq 0$, and using $p^{-m-n}(x y)=p^{-m} x \cdot p^{-n} y$,

$$
\begin{aligned}
(x y)(m+n) & \equiv\left(p^{-m-n}(x y)\right)(0) \quad(\bmod p) \\
& \equiv\left(p^{-m} x\right)(0) \cdot\left(p^{-n} y\right)(0) \quad(\bmod p) \\
& \not \equiv 0 \quad(\bmod p),
\end{aligned}
$$

thus $x y \neq 0$.

$1.5 \quad p$-adic valuation

For $x \in \mathbb{Z}_{p}$, let

$$
v_{p}(x)=\inf \{k \geq 0: x(k) \neq 0\}
$$

$x(k)=0$ for $0 \leq k<v_{p}(x) . v_{p}(x)=\infty$ if and only if $x=0$.
Lemma 6. For $x, y \in \mathbb{Z}_{p}$,

$$
v_{p}(x y)=v_{p}(x)+v_{p}(y)
$$

and

$$
v_{p}(x+y) \geq \min \left(v_{p}(x), v_{p}(y)\right)
$$

Lemma 4 says that for $x \in \mathbb{Z}_{p}, x \in \mathbb{Z}_{p}^{*}$ if and only if $x(0) \neq 0$. In other words,

$$
\mathbb{Z}_{p}^{*}=\left\{x \in \mathbb{Z}_{p}: v_{p}(x)=0\right\}=\left\{x \in \mathbb{Z}_{p}:|x|_{p}=1\right\}
$$

For $n \geq 1$, define $\pi_{n}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ by

$$
\pi_{n}(x)=\sum_{k=0}^{n-1} x(k) p^{k}+p^{n} \mathbb{Z}
$$

It is apparent that π_{n} is onto.

Lemma 7. $\pi_{n}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ is a ring homomorphism, and

$$
\operatorname{ker} \pi_{n}=\left\{x \in \mathbb{Z}_{p}: v_{p}(x) \geq n\right\}=p^{n} \mathbb{Z}_{p}
$$

Proof. Let $x, y \in \mathbb{Z}_{p}$. By (1),

$$
\sum_{k=0}^{n-1}(x+y)(k) p^{k}+p^{n} \mathbb{Z}=\sum_{k=0}^{n-1} x(k) p^{k}+\sum_{k=0}^{n-1} y(k) p^{k}+p^{n} \mathbb{Z}
$$

i.e.

$$
\pi_{n}(x+y)=\pi_{n}(x)+\pi_{n}(y)
$$

By (2),

$$
\sum_{k=0}^{n-1}(x y)(k) p^{k}+p^{n} \mathbb{Z}=\left(\sum_{k=0}^{n-1} x(k) p^{k}+p^{n} \mathbb{Z}\right)\left(\sum_{k=0}^{n-1} y(k) p^{k}+p^{n} \mathbb{Z}\right)
$$

i.e.

$$
\pi_{n}(x y)=\pi_{n}(x) \pi_{n}(y)
$$

For $1 \in \mathbb{Z}_{p}, 1(0)=1,1(k)=0$ for $k \geq 1$, so

$$
\pi_{n}(1)=1+p^{n} \mathbb{Z}
$$

which is the unity of $\mathbb{Z} / p^{n} \mathbb{Z}$. Therefore π_{n} is a ring homomorphism. $\pi_{n}(x)=0$ means

$$
\sum_{k=0}^{n-1} x(k) p^{k} \in p^{n} \mathbb{Z}
$$

But $0 \leq \sum_{k=0}^{n-1} x(k) p^{k}<\sum_{k=0}^{n-1}(p-1) p^{k}=p^{n}-1$, so $\pi_{n}(x)=0$ if and only if $x(k)=0$ for $0 \leq k \leq n-1$.

Then for $n \geq 1$,

$$
\begin{aligned}
\mathbb{Z}_{p} & =\bigcup_{j=0}^{p^{n}-1}\left(j+p^{n} \mathbb{Z}_{p}\right) \\
& =\bigcup_{j=0}^{p^{n}-1}\left\{x \in \mathbb{Z}_{p}: v_{p}(x-j) \geq n\right\} \\
& =\bigcup_{j=0}^{p^{n}-1}\left\{x \in \mathbb{Z}_{p}:|x-j|_{p} \leq p^{-n}\right\} \\
& =\bigcup_{j=0}^{p^{n}-1}\left\{x \in \mathbb{Z}_{p}:|x-j|_{p}<p^{-n+1}\right\} .
\end{aligned}
$$

Because $\mathbb{Z} / p \mathbb{Z}$ is a field and $\pi_{1}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p \mathbb{Z}$ is an onto ring homomorphism,

$$
\operatorname{ker} \pi_{1}=p \mathbb{Z}_{p}
$$

is a maximal ideal in \mathbb{Z}_{p}.

Theorem 8. If I is an ideal in \mathbb{Z}_{p} and $I \neq\{0\}$, then there is some $n \geq 0$ such that $I=p^{n} \mathbb{Z}_{p}$.
Proof. There is some $a \in I$ with minimal $v_{p}(a) \geq 0$, and as $I \neq\{0\}, v_{p}(a) \neq \infty$. Then $\left(p^{-v_{p}(a)} a\right)(0)=a\left(v_{p}(a)\right) \neq 0$, so by Lemma $4, p^{-v_{p}(a)} a \in \mathbb{Z}_{p}^{*}$. Hence there is some $u \in \mathbb{Z}_{p}^{*}$ such that $p^{-v_{p}(a)} a=u$, i.e. $p^{v_{p}(a)}=u^{-1} a$. But I is an ideal and $a \in I$, so $p^{v_{p}(a)} \in I$, which shows that $p^{v_{p}(a)} \mathbb{Z}_{p} \subset I$. Let $x \in I, x \neq 0$. Then there is some $v \in \mathbb{Z}_{p}^{*}$ such that $p^{-v_{p}(x)} x=v$, i.e. $x=p^{v_{p}(x)} v$. Because $v_{p}(a)$ is minimal, $v_{p}(x) \geq v_{p}(a)$ and so

$$
x=p^{v_{p}(x)} v=p^{v_{p}(a)} \cdot p^{v_{p}(x)-v_{p}(a)} \in p^{v_{p}(a)} \mathbb{Z}_{p} .
$$

Therefore $I=p^{v_{p}(a)} \mathbb{Z}_{p}$.

$2 Q_{p}$

Let \mathbb{Q}_{p} be the set of maps $x: \mathbb{Z} \rightarrow N_{p}$ such that for some $m \in \mathbb{Z}, x(k)=0$ for all $k<m$. For $x \in \mathbb{Q}_{p}$ define

$$
v_{p}(x)=\inf \{k \in \mathbb{Z}: x(k) \neq 0\}
$$

$x(k)=0$ for $k<v_{p}(x), k \in \mathbb{Z} . v_{p}(x)=\infty$ if and only if $x=0$.

$$
\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}: v_{p}(x) \geq 0\right\}
$$

For $m \in \mathbb{Z}$ and $x \in \mathbb{Q}_{p}$, define

$$
\left(T_{m} x\right)(k)=x(k+m), \quad k \in \mathbb{Z}
$$

For $x \in \mathbb{Q}_{p}$ with $x(k)=0$ for $k<m$, if $k<0$ then $k+m<m$ and so

$$
\left(T_{m} x\right)(k)=x(k+m)=0,
$$

which means that $T_{m} x \in \mathbb{Z}_{p}$. For $x, y \in \mathbb{Q}_{p}$ with $x(k)=0$ and $y(k)=0$ for $k<m, T_{m} x, T_{m} y \in \mathbb{Z}_{p}$ and $T_{m} x+T_{m} y \in \mathbb{Z}_{p}$. Define

$$
x+y=T_{-m}\left(T_{m} x+T_{m} y\right) \in \mathbb{Q}_{p}
$$

Check that this makes sense. Likewise, $T_{m} x \cdot T_{m} y \in \mathbb{Z}_{p}$, and define

$$
x y=T_{-m}\left(T_{m} x \cdot T_{m} y\right) \in \mathbb{Q}_{p}
$$

Check that this makes sense. Check that \mathbb{Q}_{p} is a commutative ring with additive identity $k \mapsto 0$ for $k \in \mathbb{Z}$. and unity $0 \mapsto 1, k \mapsto 0$ for $k \neq 0$. Finally, ${ }^{1}$

$$
T_{m} x=p^{-m} x
$$

Theorem 9. \mathbb{Q}_{p} is a field, of characteristic 0 .

[^0]
3 Metric

For $x \in \mathbb{Q}_{p}$ define

$$
|x|_{p}=p^{-v_{p}(x)}
$$

$|x|_{p}=0$ if and only if $x=0$. For $x, y \in \mathbb{Q}_{p}$ define

$$
d_{p}(x, y)=|x-y|_{p}
$$

d_{p} is an ultrametric:

$$
d_{p}(x, z) \leq \max \left(d_{p}(x, y), d_{p}(y, z)\right)
$$

Theorem 10. \mathbb{Q}_{p} is a topological field.
Proof. For $(x, y),(u, v) \in \mathbb{Q}_{p} \times \mathbb{Q}_{p}$ let

$$
\rho((x, y),(u, v))=\max \left(d_{p}(x, u), d_{p}(y, v)\right) .
$$

$d_{p}(x+y, u+v)=|(x-u)+(y-v)|_{p}=\max \left(|x-u|_{p},|y-v|_{p}\right)=\rho((x, y),(u, v))$, which shows that $(x, y) \mapsto x+y$ is continuous $\mathbb{Q}_{p} \times \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$. And

$$
d_{p}(-x,-y)=|-x-y|_{p}=|-1|_{p}|x+y|_{p}=|x+y|_{p}=d_{p}(x, y)
$$

which shows that $x \mapsto-x$ is continuous $\mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$. For $\rho((x, y),(u, v)) \leq \delta$, $|x-u|_{p} \leq \delta$ so $|u|_{p} \leq|x|_{p}+\delta$ and

$$
\begin{aligned}
d_{p}(x y, u v) & =|x y-u v|_{p} \\
& =|x y-u y+u y-u v|_{p} \\
& =\max \left(|x y-u y|_{p},|u y-u v|_{p}\right) \\
& =\max \left(|y|_{p}|x-u|_{p},|u|_{p}|y-v|_{p}\right) \\
& \leq \max \left(|y|_{p} \delta,\left(|x|_{p}+\delta\right) \delta\right),
\end{aligned}
$$

which shows that $(x, y) \mapsto x y$ is continuous $\mathbb{Q}_{p} \times \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$. Finally, for $x, y \neq 0$,

$$
d_{p}\left(x^{-1}, y^{-1}\right)=\left|x^{-1}-y^{-1}\right|_{p}=|x y|_{p}^{-1}|y-x|_{p}
$$

which shows that $x \mapsto x^{-1}$ is continuous $\mathbb{Q}_{p} \backslash\{0\} \rightarrow \mathbb{Q}_{p} \backslash\{0\}$.
For $x \in \mathbb{Q}_{p}$ and $r>0$, write

$$
B_{<r}(x)=\left\{y \in \mathbb{Q}_{p}:|y-x|_{p}<r\right\}, \quad B_{\leq r}(x)=\left\{y \in \mathbb{Q}_{p}:|y-x|_{p}<r\right\} .
$$

Thus, for $x \in \mathbb{Q}_{p}$ and $n \geq 0$,

$$
x+p^{n} \mathbb{Z}=B_{\leq p^{-n}}(x)
$$

Lemma 11. For $x \in \mathbb{Q}_{p}$,

$$
\left\{x+p^{n} \mathbb{Z}_{p}: n \geq 0\right\}
$$

is a local base at x.

Proof. For $\epsilon>0$, let $p^{-n}<\epsilon, n \geq 0$, namely $n>\frac{1}{\log p} \log \frac{1}{\epsilon}$. For this n,

$$
x+p^{n} \mathbb{Z}_{p}=B_{\leq p^{-n}}(x) \subset B_{<\epsilon}(x)
$$

Theorem 12. \mathbb{Z}_{p} is a compact subspace of \mathbb{Q}_{p}.
Proof. Let $x_{n} \in \mathbb{Z}_{p}$ be a sequence. Because $x_{n}(0) \in N_{p}, n \geq 0$, there is some $a(0) \in N_{p}$ and an infinite subset I_{0} of $\{n \geq 0\}$ such that $x_{n}(0)=a(0)$ for $n \in I_{0}$. Suppose by induction that for some $N \geq 0$ there are $a(0), \ldots, a(N) \in N_{p}$ and an infinite set $I_{N} \subset\{n \geq 0\}$ such that

$$
x_{n}(k)=a(k), \quad 0 \leq k \leq N, \quad n \in I_{N} .
$$

But for each $x \in I_{N}, x_{n}(N+1)$ belongs to the finite set N_{p}, and because I_{N} is infinite there is some $a(N+1) \in N_{p}$ and an infinite set $I_{N+1} \subset I_{N}$ such that $x_{n}(N+1)=a(N+1)$ for $n \in I_{N+1}$. We have thus defined $a \in \mathbb{Z}_{p}$.

Let $\alpha_{0} \in I_{0}$, and by induction let $\alpha_{n}>\alpha_{n-1}, \alpha_{n} \in I_{n}$; in particular as $\alpha_{0} \geq 0$ we have $\alpha_{n} \geq n$. Then for any $n \geq 0, x_{\alpha_{n}}(k)=a(k)$ for $0 \leq k \leq n$. Take $\epsilon>0$ and let $p^{-m-1}<\epsilon$. For $n \geq m$,

$$
\left|x_{\alpha_{n}}-a\right|_{p} \leq p^{-n-1} \leq p^{-m-1}<\epsilon
$$

which shows that the sequence $x_{\alpha_{n}}$ tends to a. This means that \mathbb{Z}_{p} is sequentially compact and therefore compact.

For $x, y \in \mathbb{Q}_{p}$,

$$
d_{p}(p x, p y)=|p x-p y|_{p}=|p|_{p}|x-y|_{p}=p^{-1}|x-y|_{p}
$$

which shows that $x \mapsto p x$ is continuous $\mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$. Therefore, the fact that \mathbb{Z}_{p} is compact implies that for $n \geq 0, p^{n} \mathbb{Z}_{p}$ is compact. Then by Lemma 11 we get the following.

Theorem 13. \mathbb{Q}_{p} is locally compact.
Theorem 14. \mathbb{Q}_{p} is a complete metric space.
A topological space X is zero-dimensional if there is a base for its topology each element of which is clopen. In a Hausdorff space, a compact set is closed, and because the sets $p^{n} \mathbb{Z}_{p}$ are compact, $n \geq 0$, from Lemma 11 we get the following.

Lemma 15. \mathbb{Q}_{p} is zero-dimensional.
It is a fact that if a Hausdorff space is zero-dimensional then it is totally disconnected, so by the above, \mathbb{Q}_{p} is totally disconnected.

$4 \quad p$-adic fractional part

For $x \in \mathbb{Q}_{p}$, let

$$
[x]_{p}=\sum_{k \geq 0} x(k) p^{k} \in \mathbb{Z}_{p}
$$

and

$$
\{x\}_{p}=\sum_{k<0} x(k) p^{k} \in \mathbb{Z}[1 / p] \subset \mathbb{Q} .
$$

We call $\{x\}_{p}$ the p-adic fractional part of x. Then

$$
x=[x]_{p}+\{x\}_{p} \in \mathbb{Q}_{p} .
$$

Furthermore, as $x(k) \rightarrow 0$ as $k \rightarrow-\infty$,

$$
0 \leq\{x\}_{p}<\sum_{k<0}(p-1) p^{k}=(p-1) \sum_{k=1}^{\infty} p^{-k}=1
$$

therefore for $x \in \mathbb{Q}_{p}$,

$$
\{x\}_{p} \in[0,1) \cap \mathbb{Z}[1 / p] .
$$

Define the Prüfer p-group

$$
\mathbb{Z}\left(p^{\infty}\right)=\left\{e^{2 \pi i m p^{-n}}: m, n \geq 0\right\}
$$

We assign the Prüfer p-group the discrete topology.
Define $\psi_{p}: \mathbb{Q}_{p} \rightarrow S^{1}$ by

$$
\psi_{p}(x)=e^{2 \pi i\{x\}_{p}}
$$

We prove that this is a homomorphism from the locally compact group \mathbb{Q}_{p} whose image is the Prüfer p-group and whose kernel is $\mathbb{Z}_{p} .{ }^{2}$

Theorem 16. $\psi_{p}: \mathbb{Q}_{p} \rightarrow S^{1}$ is a homomorphism of locally compact groups. $\psi_{p}\left(\mathbb{Q}_{p}\right)=\mathbb{Z}\left(p^{\infty}\right)$, and $\operatorname{ker} \psi_{p}=\mathbb{Z}_{p}$.
Proof. For $x, y \in \mathbb{Q}_{p}$,

$$
\begin{aligned}
\{x+y\}_{p}-\{x\}_{p}-\{y\}_{p} & =x+y-[x+y]_{p}-x+[x]_{p}-y+[y]_{p} \\
& =[x]_{p}+[y]_{p}-[x+y]_{p} \in \mathbb{Z}_{p}
\end{aligned}
$$

Check that $\mathbb{Z}[1 / p] \cap \mathbb{Z}_{p}=\mathbb{Z}$. It then follows that

$$
\{x+y\}_{p}-\{x\}_{p}-\{y\}_{p} \in \mathbb{Z},
$$

therefore $e^{2 \pi i\left(\{x+y\}_{p}-\{x\}_{p}-\{y\}_{p}\right)}=1$, i.e.

$$
\psi_{p}(x+y)=e^{2 \pi i\{x+y\}_{p}}=e^{2 \pi i\{x\}_{p}} e^{2 \pi i\{y\}_{p}}=\psi_{p}(x) \psi_{p}(y), \quad x, y \in \mathbb{Q}_{p}
$$

[^1]namely ψ_{p} is a homomorphism.
$\psi_{p}(x)=1$ if and only if $e^{2 \pi i\{x\}_{p}}=1$ if and only if $\{x\}_{p} \in \mathbb{Z}$. But $\{x\}_{p} \in$ $[0,1)$, so $\psi_{p}(x)=1$ if and only if $\{x\}_{p}=0$, hence $\psi_{p}(x)=1$ if and only if $x \in \mathbb{Z}_{p}$, namely
$$
\operatorname{ker} \psi_{p}=\mathbb{Z}_{p}
$$

Let $x \in \mathbb{Q}_{p}$. As $\{x\}_{p} \in \mathbb{Z}[1 / p]$, there is some $n \geq 0$ such that $p^{n}\{x\}_{p} \in \mathbb{Z}$, so $\psi_{p}(x)^{p^{n}}=1$, which means that $\psi_{p}(x) \in \mathbb{Z}\left[p^{\infty}\right]$. Let $e^{2 \pi i m p^{-n}} \in \mathbb{Z}\left[p^{\infty}\right], n, m \geq 0$. But $p^{-n} \in \mathbb{Q}_{p}$ and, whether or not $n>0$,

$$
\psi_{p}\left(p^{-n}\right)=e^{2 \pi i\left\{p^{-n}\right\}_{p}}=e^{2 \pi i p^{-n}}
$$

and $m p^{-n} \in \mathbb{Q}_{p}$, and using that ψ_{p} is a homomorphism,

$$
\psi_{p}\left(m p^{-n}\right)=\psi_{p}\left(p^{-n}\right)^{m}=e^{2 \pi i m p^{-n}} .
$$

This shows that $\psi_{p}\left(\mathbb{Q}_{p}\right)=\mathbb{Z}\left[p^{\infty}\right]$.
Finally, let $x \in \mathbb{Q}_{p}$. For $y \in B_{\leq 1}(x)=x+\mathbb{Z}_{p}$, so there is some $w \in \mathbb{Z}_{p}$ such that $y=x+w$. But $\psi_{p}(x+w)=\psi_{p}(x) \psi_{p}(w)=\psi_{p}(x)$, so

$$
\left|\psi_{p}(y)-\psi_{p}(x)\right|=\left|\psi_{p}(x)-\psi_{p}(x)\right|=0,
$$

showing that ψ_{p} is continuous at x.
Because $\mathbb{Z}\left[p^{\infty}\right]$ is discrete, it is immediate that ψ_{p} is an open map. The first isomorphism theorem for topological groups states that if G and H are locally compact groups, $f: G \rightarrow H$ is a homomorphism of topological groups that is onto and open, then $G / \operatorname{ker} f$ and H are isomorphic as topological groups. Therefore the quotient group $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ and the Prüfer group $\mathbb{Z}\left[p^{\infty}\right]$ are isomorphic as topological groups.

[^0]: ${ }^{1}$ For a ring R with $x \in R, p x=\sum_{k=1}^{p} x$. It does not make sense to talk about $p x$ before we have $x+y$, and it is nonsense to talk about $p^{-m} x$ for $x \in \mathbb{Q}_{p}$ before have defined addition on \mathbb{Q}_{p}. This is why I defined T_{m} rather than initially using $x \mapsto p^{-m} x$; it is incorrect and a sloppy habit to use properties of an object before showing that it exists.

[^1]: ${ }^{2}$ Alain M. Robert, A Course in p-adic Analysis, p. 42, Proposition 5.4.

