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1 Z,

Let p be prime, let N, = {0,...,p—1}, and let Z,, be the set of maps « : Z — N,
such that (k) = 0 for all & < 0.

1.1 Addition
For z,y € Z,, we define x + y € Z, by induction. Define

(z+9)(0) =2(0) +y(0) (modp),  (z+y)(0)€N,.
Assume for k£ > 0 that there is some Ay € Z such that

k

k
Y@+ = A+ (@) +y()p-
j=0 j=0
Define
(x+y)(k+1)= A +x(k+1)+yk+1) (modp), (z+y)(k+1)€N,,
and then define Ay4; € Z by

(x+y)(k+1)=Apy1p — Ap + (b +1) + y(k + 1).

Then
k41 . k .
D@y = (@ +y)E+ D+ (@ +y)()p
=0 =0

= Ap1p™ = A" + (kb + 1) + y(k + 1))p" !

k
+ A"+ (@) + y()p
=0
k+1 i
= App"t? + Z(»’U(j) +y(4)p.

=0



Thus, for each k > 0, (z + y)(k) € N, and

k

k
(@+y) ()’ =Y (@) +y())p'  (mod p™*1). (1)
=0

Jj=0

J
It is immediate that z +y =y + z.
Lemma 1. If z,y € Z, and for each k > 0,

k

2P’ = y(G)p’  (mod p**),

k
§=0 §=0
then z = y.

Proof. Suppose by contradiction that z # y. Now, z(0) = y(0) (mod p) and
z(0),y(0) € N, so z(0) = y(0). As z # y, there is a minimal k > 0 such that
z(k+1) # y(k +1). On the one hand,

k+1 k
o a(p = alk+ )+ >y,
=0 =0

and on the other hand,

k+1 ) k+1
doa(p’ =y (mod pF*).
§=0 J=0

Then there is some B such that
z(k 4+ 1)p"tt = Cp*+2 + y(k 4+ 1)phtt

sox(k+1)—y(k+1)=Bp. But —p+1 < a(k+1)—y(k+1) <p—-1,50 B=0
and hence z(k 4+ 1) = y(k + 1), a contradiction and thus = = y. O

Therefore, if t € Z,, satisfies, for all k¥ > 0,

k
> @) +y()p’  (mod pFth.

'Pﬁw‘
<
Il



which shows that = + (y + 2) = (x + y) + 2.

Define ¢t € Z, by t(k) = 0 for all k£ > 0. It is immediate that for z € Z,,
x+t=zt+xz =2z If z+#0,let m >0 be minimal such that x(m) # 0, and
define y € Z,, by

0 0<k<m
ylk)=qp—=z(m)  k=m
p—1—a(k) k>m.
This makes sense because 1 < z(m) < p—1. Then z(k)+y(k) = 0for 0 < k < m,
x(m) +y(m) = p, and (k) + y(k) =p — 1 for k > m. For k > m,

i: NP =p-p"+ z:

7=0 j=m+1

— ,m+1 pk+1
=p" + (1)

_ pm+1

p—1

SO

k
> (@) + @)y =D 0-p (mod pFt),
: par

and it follows that x +y =0, y + = 0, namely y = —z.
We have established that (Z,, +) is an abelian group whose identity is k — 0,
k> 0.

Lemma 2. For x € Z, and m > 1,

oo 0<k<m
wme)(k) = {x(k‘—m) k> m.

Proof. For x € Z, and m > 1 define y(j) = 0for 0 < j < m and y(j) = z(j —m)



for j > m. By (1), for k > m,

k k
(p"2)()p’ =D _p"x(G)p’  (mod pFt1)
Jj=0 j

O

The following lemma shows that if x(k) = 0 for k¥ < m then it makes sense
to talk about p~™z € Z,. That is, if (k) = 0 for k¥ < m then there is a unique
y € Z,, such that p™y = z. (For comparison, it is false that for any z € C there
is a unique z'/2 € C, or that for any n € Z there is a unique p~'n € Z.)

Lemma 3. Let z € Z, with 2(0) = 0. If y € Z,, and py = x then y(k) = z(k+1)
for k£ > 0.

Proof. By Lemma 2, (py)(0) = 0 and (py)(k) = y(k — 1) for &k > 1, and as
py = x this means z(0) =0 and z(k) = y(k — 1) for k > 1, i.e. z(k+1) =y(k)
for £ > 0. O

1.2 Multiplication

For z,y € Z,, we define zy € Z, by induction. Define

(zy)(0) = z(0)y(0) (mod p),  (2y)(0) € Np.

Assume for k > 0 that there is some Aj, € Z such that

(B

I
=)

k
(xy) ()P’ = App"*t +
=0

k
()P’ | [ D vi)p
j=0

J



There is some B € Z such that

k+1 . k+1 )
(Zx(j)pf) (Z y(j)p])
§=0

Jj=0

k k
- (fﬂ(k + 1P+ Zx(j)pj> (y(k + 1)+ Zy(j)pj>

Jj=0 Jj=0

Kk ‘ k ‘
o) ()
=0 =0
Hence

k+1 k+1
(Z x(j)pj> (Z y(j)pj) = Bp* " + a(k + Dy (0)p* ' + 2(0)y(k + 1)p**!

=0

=Bp" 2 4 2(k + 1)y(0)p" Tt + 2(0)y(k + 1)pF ! + (

k
+) (@) (G — A"
=0

J
Now define
(zy)(k+1) = 2(k+1)y(0) +z(0)y(k+1) — Ay (mod p), (zy)(k+1) € Np,
and let C' € Z such that

(xy)(k+1) =Cp+x(k + 1)y(0) + z(0)y(k + 1) — A,

whence, taking Ax11 = B — C,

k+1 k+1
(Z x(j)pj) (Z y(j)pj) = Bp*? + (wy)(k + 1)p"*! — CpM+2 4 At
j=0

Jj=0

k
+> (xy) )y — App™t!
7=0

k+1 )
= A"+ (@) ().
=0
Thus, for each k£ > 0, (zy)(k) € N, and
> (@) = ( w(j)pf) (Z y(])ﬂ) (mod p**). (2)
j=0 j=0 =0

It is immediate that zy = yz.



For t € Z,, if for each k > 0,

= (ix ) (Zy ) (mod p*T1).

then t = zy. Now let z,y,z € Z,. For k > 0,

k
> (@(y2) (i)’
=0

Mw

x(j ) (Z yz)( ) (mod p*tt)
x(j ) (;)y ) (;z ) (mod pF*1)
) (Zz ) (mod p*tt)

k
Z((wy)Z)(j)pj (mod p**1),

<.
I
o

-

<.
I
o

which shows that z(yz) = (zy)z.
Define u € Z, by u(0) = 1, u(k) = 0 for & > 1. It is apparent that for
T € Zp, xu =z and ux = .



1.3 Ring
For z,y,z € Z, and for k > 0, using (1) and (2),

k k k
(@(y+2)0)p' = | D z(i)p’ Z(y+z)(j)l7j) (mod p**)
=0 =0 j=0
k k )
=D 2G| [ Dowl) +Z(j))p’) (mod p**)
=0 =0
=D =6 | [ D] y(j)pj)
=0 j=0
k ) k .
+ (D26’ | [ Doz06) | (mod pHH)
=0 =0
k 4 k
= (xy)(G)p’ + Y _(x2)(j)p’ (mod p**H)
=0 =
k
=) (zy+=2)(j)p’ (mod p**),
7=0

which shows that (y + z) = xy + xz. Therefore Z, is a commutative ring with
unity 0 — 1, k— 0 for £ > 1.

1.4 Integral domain

Let Z;, be the set of those € Z, for which there is some y € Z, such that
zy = 1, namely the set of invertible elements of Z,.

Lemma 4. Let z € Zy,. x € Zy, if and only if z(0) # 0.

Proof. If 2(0) = 0 and y € Z, then (2y)(0) = z(0)y(0) = 0 (mod p) while
1(0) =1 (mod p), so zy # 1 and therefore = ¢ Z;.
If 2(0) # 0, we define y € Z, by induction. As z(0) # 0, it makes sense to
define
y(0)z(0) =1 (mod p), y(0) € N,,.

We use (2) and the fact that 1(0) = 1, 1(k) = 0 for ¥ > 1. Suppose for k > 0
that there is some Ay € Z such that

k k
Soa(’ | | o | = At 4L
§=0 3=0

Because z(0) # 0, it makes sense to define

y(k+ 1Dz(0) + z(k + 1)y(0) = -4 (mod p).



k+1 k+1
Sz | | Do v’ | = alk+ Dy0)pH ! + y(k + Da(0)pFH
j=0 j=0
k _ k _
S | | Dou@)p’ | (mod pFt?)
j=0 j=0
= _Akpk+1 + Akpk+1 +1 (mod pk+2)
=1 (mod p"2).
This shows that zy =1, thus x € Z and y = x L O

Theorem 5. Z, is an integral domain.

Proof. Let z,y € Z, be nonzero. Let m > 0 be minimal such that z(m) # 0
and let n > 0 be minimal such that y(n) # 0. Then (p~™x)(0) # 0 and

(p7"y)(0) # 0, and using p~™ " (zy) =p~"x - p~ "y,
"(xy))(0) (mod p)

(p~™"
(p~™z)(0) - (p~"y)(0) (mod p)
0 (mod p),

(zy)(m+n) =

ALl

thus zy # 0. O

1.5 p-adic valuation

For x € Zy, let
vp(x) = inf{k > 0: z(k) # 0}.

z(k) =0 for 0 < k < vy(x). vp(x) = oo if and only if x = 0.

Lemma 6. For z,y € Z,,

vp(zy) = vp(z) + vp(y)
and
vp(x +y) > min(vy(z), vp(y)).

Lemma 4 says that for x € Z,, € Z; if and only if 2(0) # 0. In other
words,
Zy=A{x €Ly :vp(x) =0} ={z € Zp : |z, = 1}.
For n > 1, define m, : Z, — Z/p"Z by

1
() = z(k)p* + p"Z.
0

3
|

E
I

It is apparent that , is onto.



Lemma 7. m, : Z, — Z/p™Z is a ring homomorphism, and
kerm, = {z € Z, : vy(x) > n} =p"Z
Proof. Let x,y € Z,. By (1),

S @Rt 2= 3 e+ Sy + ",
k=0 k=0 k=0
h 7@+ ) = T(@) + Tnly).
By (2),
n—1 n—1 n—1
> (ay)(k)p* +p"Z = (Z x(k)p* + p”Z> (Z y(k)p® + p”Z> :
k=0 k=0 k=0

Wn(xy) = Wn(x)ﬂ—n(y)
For 1€ Z,, 1(0) =1, 1(k) =0 for k > 1, so

(1) =1+ p"Z,

which is the unity of Z/p"Z. Therefore m, is a ring homomorphism.

7 (2) = 0 means
Z p € p"Z.
k=0

But 0 < Yp” ( < Sz é( )pk = p™ — 1, so m,(x) = 0 if and only if
x(k)—OforOSkgn—l O

Then for n > 1,

Zy, U i+ p"Zy)
=0

= U {z €Zp:vp(x—j) 2n}

p—1

U {z€Zy:|z—jl, <p™"}

p"—1

= Uflzez,:fo—jl, <p )
j=0

Because Z/pZ is a field and my : Z, — Z/pZ is an onto ring homomorphism,
ker m = pZy

is a maximal ideal in Z,.



Theorem 8. If I is an ideal in Z, and I # {0}, then there is some n > 0 such
that I = p"Z,,.

Proof. There is some a € I with minimal v,(a) > 0, and as I # {0}, v,(a) # oc.
Then (p~"»(¥a)(0) = a(vy(a)) # 0, so by Lemma 4, p~%»(@q € Z,. Hence there
is some u € Z;, such that p~ g =y, ie p*»(@ =y 1a. But I is an ideal and
a €I, so p*»@ e I, which shows that p“P(“)Zp CI. Letxzel, z+#0. Then
there is some v € Z;, such that p @y = v, ie. z = p»@y. Because vp(a) is
minimal, v,(z) > v,(a) and so

T = pvp(aj)v — pvp(a) . p")p(w)f'”p(a) e pvp(a)Zp.

Therefore I = pvp(“)Zp. O

2 Qp

Let Q, be the set of maps « : Z — N, such that for some m € Z, x(k) = 0 for
all k <m. For x € Q, define

vp(x) = inf{k € Z : x(k) # 0}.
z(k) =0 for k < vy(x), k € Z. vp(x) = oo if and only if = 0.
Z, = (v € Qy s vy(w) > 0},
For m € Z and x € Q,, define
(Trmz) (k) = z(k +m), ke Z.
For z € Q, with z(k) =0 for k < m, if k£ < 0 then k +m < m and so
(Thz)(k) = z(k +m) =0,

which means that T,z € Z,. For z,y € Q, with z(k) = 0 and y(k) = 0 for
E<m, Tz, Tny € Zy and T,z + Ty € Zy. Define

T+y= T—m(me + Tmy) € Qp-
Check that this makes sense. Likewise, 1,2 - T,y € Zjp, and define
zy =T_p Tz - Tny) € Qp.

Check that this makes sense. Check that Q,, is a commutative ring with additive
identity k + 0 for k € Z. and unity 0+ 1, k + 0 for k # 0. Finally,!

m

Thr=p "z.

Theorem 9. Q, is a field, of characteristic 0.

1For a ring R with = € R, px = zzl z. It does not make sense to talk about pz before
we have x +y, and it is nonsense to talk about p~™x for « € Q, before have defined addition
on Qp. This is why I defined T}, rather than initially using « — p~™uw; it is incorrect and a
sloppy habit to use properties of an object before showing that it exists.

10



3 Metric

For x € Q, define
el = 57,

|z, = 0 if and only if x = 0. For z,y € Q, define

dp(xay) = |£L‘ - y|;D'
dp is an ultrametric:

dp(x, z) < max(dy(z,y), dp(y, 2)).
Theorem 10. Q, is a topological field.
Proof. For (z,y), (u,v) € Q, x Q, let
p((l‘, y)’ (ua U)) = max(dp(xv u)> dp(y7 U))
dy(o+ g, u+v) = |2 = 0)+ (y = 0)|p = max((e — ulp, [y —vly) = p((z,v), (0,0)),
which shows that (x,y) — x + y is continuous Q, x Q, — Q,. And
dp(—z,—y) ==z —ylp = | = 1plz + ylp = |z + ylp = dp(z,y),

which shows that x — —x is continuous Q, — Q,. For p((z,y), (u,v)) <4,
|z —ul, <6 so |ulp, <|z|,+ 6 and

dp(zy, uv) = vy — wvl,
= |y — uy + uy — uv|,
= max(|zy — uylp, [uy — uvlp)
= max(|y|p|z — ulp, [ulply — vlp)
< max(|y|,9, (|z|, + 6)J),

which shows that (x,y) — zy is continuous Q, X Q, — Q,. Finally, for z,y # 0,

dp(z™y™) = 2™ =y = oyl y — oy,
which shows that z +— 27! is continuous Q, \ {0} — Q, \ {0}. O

For z € Q, and r > 0, write
Ber() ={y e Q:ly—alp <7}, Bar(@)={yeQ:ly—al, <r}.
Thus, for x € Q, and n > 0,
x4 p"Z = B<p—n(x).
Lemma 11. For z € Q,,
{z+p"Zy, :n >0}

is a local base at x.

11
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Proof. For € > 0, let p~™ < ¢, n > 0, namely n > ozp

log % For this n,

x +p"Zy = B<p-n(x) C Bec(x).

Theorem 12. Z, is a compact subspace of Q,,.

Proof. Let x,, € Z, be a sequence. Because z,(0) € Np, n > 0, there is some
a(0) € N, and an infinite subset Iy of {n > 0} such that z,,(0) = a(0) for n € I.
Suppose by induction that for some N > 0 there are a(0),...,a(N) € N, and
an infinite set Iy C {n > 0} such that

zn (k) = a(k), 0<k<N, nely.

But for each x € Iy, ,(N + 1) belongs to the finite set N, and because Iy is
infinite there is some a(N + 1) € N, and an infinite set Iy41 C Iy such that
zn (N +1) =a(N +1) for n € Ini1. We have thus defined a € Z,,.

Let ag € Iy, and by induction let o, > ap—1, o, € I,; in particular as
ag > 0 we have o, > m. Then for any n > 0, z, (k) = a(k) for 0 < k < n.
Take € > 0 and let p~™~! < e. For n > m,

m—1

|Ta, —al, <p " P<pTT <,

which shows that the sequence z,, tends to a. This means that Z, is sequen-
tially compact and therefore compact. O

For z,y € Qp,

dp(pz,py) = Ipx — Pylp = Plplz — Ylp = 'z — Ylp,

which shows that x +— px is continuous Q, — Q,. Therefore, the fact that Z,
is compact implies that for n > 0, p"Z, is compact. Then by Lemma 11 we get
the following.

Theorem 13. Q, is locally compact.
Theorem 14. Q, is a complete metric space.

A topological space X is zero-dimensional if there is a base for its topology
each element of which is clopen. In a Hausdorff space, a compact set is closed,
and because the sets p"Z, are compact, n > 0, from Lemma 11 we get the
following.

Lemma 15. Q, is zero-dimensional.

It is a fact that if a Hausdorff space is zero-dimensional then it is totally
disconnected, so by the above, Q, is totally disconnected.

12



4 p-adic fractional part

For x € Qp, let

]y = Y a(k)p" € Z,

k>0

and

{2}, =Y a(k)p* € Z[1/p] C Q.

k<0

We call {z}, the p-adic fractional part of z. Then
z = [zl + {z}p € Q.
Furthermore, as z(k) — 0 as k — —o0,
oo
0<{a}, <> (-1 =(-1> pr=1,
k<0 k=1

therefore for x € Q,,
{z}p € [0,1)NZ[1/p].
Define the Priifer p-group

n

Z(p™®) = {e*™™ " i m,n > 0}.

We assign the Priifer p-group the discrete topology.
Define 1, : Q, — S* by

Yp(z) = e?mwhy,

We prove that this is a homomorphism from the locally compact group Q, whose
image is the Priifer p-group and whose kernel is Z,.>

Theorem 16. 1, : Q, — S! is a homomorphism of locally compact groups.
Yp(Qp) = Z(p™), and keryp, = Z,,.

Proof. For z,y € Qp,

{fet+yty —{zh —{yhp=c+y—lz+ylp—z+[z, —y+ [,
= [z]p+[y}p_ [33+y]p € Lp.

Check that Z[1/p| N Z, = Z. It then follows that

{z+ytp —{z}p —{y}p € Z,

therefore e2mi({ztulr—{zdr—{v}r) = 1 je.

%}(x ty) = e2ri{etyly _ p2mi{a}y 2mi{y}y _ ¢p($)¢p(y)7 z,y € Qp,

2Alain M. Robert, A Course in p-adic Analysis, p. 42, Proposition 5.4.
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namely 1, is a homomorphism.

Yp(x) = 1 if and only if 2 {=}» = 1 if and only if {z}, € Z. But {z}, €
[0,1), so ¢¥p(z) = 1 if and only if {z}, = 0, hence ¥,(x) = 1 if and only if
x € Zp, namely

ker ¢, = Zy.

Let x € Qp. As {z}, € Z[1/p], there is some n > 0 such that p"{z}, € Z, so
Yp(x)P" = 1, which means that ¢, (z) € Z[p*]. Let €27 " € Z[p>], n,m > 0.
But p~" € Q, and, whether or not n > 0,

Z/Jp(?fn) _ 627ri{p_"}p _ 627rip_"’

and mp~" € Qp, and using that 1), is a homomorphism,

n

wp(mp_") = ¢p(p_n)m =

This shows that 1,(Q,) = Z[p™].
Finally, let € Q,. For y € B<1(x) = © + Z,, so there is some w € Z,, such
that y =  + w. But ¥, (x + w) = ¥, (x)p(w) = Yp(x), so

[Vp(y) — p(2)] = |1bp(x) — Pp(z)| =0,
showing that v, is continuous at x. O

Because Z[p*] is discrete, it is immediate that 1, is an open map. The
first isomorphism theorem for topological groups states that if G and
H are locally compact groups, f : G — H is a homomorphism of topological
groups that is onto and open, then G/ ker f and H are isomorphic as topological
groups. Therefore the quotient group Q,/Z, and the Priifer group Z[p™] are
isomorphic as topological groups.
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