Explicit construction of the p-adic numbers

Jordan Bell

March 17, 2016

$1 \quad Z_p$

Let p be prime, let $N_p = \{0, \ldots, p-1\}$, and let \mathbb{Z}_p be the set of maps $x : \mathbb{Z} \to N_p$ such that x(k) = 0 for all k < 0.

1.1 Addition

For $x, y \in \mathbb{Z}_p$, we define $x + y \in \mathbb{Z}_p$ by induction. Define

 $(x+y)(0) \equiv x(0) + y(0) \pmod{p}, \qquad (x+y)(0) \in N_p.$

Assume for $k \geq 0$ that there is some $A_k \in \mathbb{Z}$ such that

$$\sum_{j=0}^{k} (x+y)(j)p^{j} = A_{k}p^{k+1} + \sum_{j=0}^{k} (x(j)+y(j))p^{j}.$$

Define

$$(x+y)(k+1) \equiv -A_k + x(k+1) + y(k+1) \pmod{p}, \qquad (x+y)(k+1) \in N_p,$$

and then define $A_k \neq \in \mathbb{Z}$ by

and then define $A_{k+1} \in \mathbb{Z}$ by

$$(x+y)(k+1) = A_{k+1}p - A_k + x(k+1) + y(k+1).$$

Then

$$\sum_{j=0}^{k+1} (x+y)(j)p^j = (x+y)(k+1)p^{k+1} + \sum_{j=0}^k (x+y)(j)p^j$$
$$= A_{k+1}p^{k+2} - A_k p^{k+1} + (x(k+1) + y(k+1))p^{k+1}$$
$$+ A_k p^{k+1} + \sum_{j=0}^k (x(j) + y(j))p^j$$
$$= A_{k+1}p^{k+2} + \sum_{j=0}^{k+1} (x(j) + y(j))p^j.$$

Thus, for each $k \ge 0$, $(x + y)(k) \in N_p$ and

$$\sum_{j=0}^{k} (x+y)(j)p^{j} \equiv \sum_{j=0}^{k} (x(j)+y(j))p^{j} \pmod{p^{k+1}}.$$
 (1)

It is immediate that x + y = y + x.

Lemma 1. If $x, y \in \mathbb{Z}_p$ and for each $k \ge 0$,

$$\sum_{j=0}^{k} x(j)p^{j} \equiv \sum_{j=0}^{k} y(j)p^{j} \pmod{p^{k+1}},$$

then x = y.

Proof. Suppose by contradiction that $x \neq y$. Now, $x(0) \equiv y(0) \pmod{p}$ and $x(0), y(0) \in N_p$ so x(0) = y(0). As $x \neq y$, there is a minimal $k \geq 0$ such that $x(k+1) \neq y(k+1)$. On the one hand,

$$\sum_{j=0}^{k+1} x(j)p^j = x(k+1)p^{k+1} + \sum_{j=0}^k y(j)p^j,$$

and on the other hand,

$$\sum_{j=0}^{k+1} x(j)p^j \equiv \sum_{j=0}^{k+1} y(j)p^j \pmod{p^{k+2}}.$$

Then there is some B such that

$$x(k+1)p^{k+1} = Cp^{k+2} + y(k+1)p^{k+1}.$$

so x(k+1) - y(k+1) = Bp. But $-p+1 \le x(k+1) - y(k+1) \le p-1$, so B = 0and hence x(k+1) = y(k+1), a contradiction and thus x = y.

Therefore, if $t \in \mathbb{Z}_p$ satisfies, for all $k \ge 0$,

$$\sum_{j=0}^{k} t(j)p^{j} \equiv \sum_{j=0}^{k} (x(j) + y(j))p^{j} \pmod{p^{k+1}}.$$

then t = x + y. Now let $x, y, z \in \mathbb{Z}_p$. For $k \ge 0$,

$$\sum_{j=0}^{k} (x + (y + z))(j)p^{j} \equiv \sum_{j=0}^{k} (x(j) + (y + z)(j))p^{j} \pmod{p^{k+1}}$$
$$= \sum_{j=0}^{k} (x(j) + y(j) + z(j))p^{j} \pmod{p^{k+1}}$$
$$\equiv \sum_{j=0}^{k} ((x + y)(j) + z(j))p^{j} \pmod{p^{k+1}},$$

which shows that x + (y + z) = (x + y) + z.

Define $t \in \mathbb{Z}_p$ by t(k) = 0 for all $k \ge 0$. It is immediate that for $x \in \mathbb{Z}_p$, x + t = x, t + x = x. If $x \ne 0$, let $m \ge 0$ be minimal such that $x(m) \ne 0$, and define $y \in \mathbb{Z}_p$ by

$$y(k) = \begin{cases} 0 & 0 \le k < m \\ p - x(m) & k = m \\ p - 1 - x(k) & k > m. \end{cases}$$

This makes sense because $1 \le x(m) \le p-1$. Then x(k)+y(k) = 0 for $0 \le k < m$, x(m) + y(m) = p, and x(k) + y(k) = p - 1 for k > m. For k > m,

$$\sum_{j=0}^{k} (x(j) + y(j))p^{j} = p \cdot p^{m} + \sum_{j=m+1}^{k} (p-1)p^{j}$$
$$= p^{m+1} + (p-1) \cdot \frac{p^{k+1} - p^{m+1}}{p-1}$$
$$= p^{k+1},$$

 \mathbf{SO}

$$\sum_{j=0}^k (x(j) + y(j)) p^j \equiv \sum_{j=0}^k 0 \cdot p^j \pmod{p^{k+1}},$$

and it follows that x + y = 0, y + x = 0, namely y = -x.

We have established that $(\mathbb{Z}_p, +)$ is an abelian group whose identity is $k \mapsto 0$, $k \ge 0$.

Lemma 2. For $x \in \mathbb{Z}_p$ and $m \ge 1$,

$$(p^m x)(k) = \begin{cases} 0 & 0 \le k < m \\ x(k-m) & k \ge m. \end{cases}$$

Proof. For $x \in \mathbb{Z}_p$ and $m \ge 1$ define y(j) = 0 for $0 \le j < m$ and y(j) = x(j-m)

for $j \ge m$. By (1), for $k \ge m$,

$$\sum_{j=0}^{k} (p^m x)(j) p^j \equiv \sum_{j=0}^{k} p^m x(j) p^j \pmod{p^{k+1}}$$
$$\equiv \sum_{j=0}^{k} x(j) p^{j+m} \pmod{p^{k+1}}$$
$$\equiv \sum_{j=m}^{m+k} x(j-m) p^j \pmod{p^{k+1}}$$
$$\equiv \sum_{j=m}^{k} x(j-m) p^j \pmod{p^{k+1}}$$
$$\equiv \sum_{j=0}^{k} y(j) p^j \pmod{p^{k+1}}.$$

The following lemma shows that if x(k) = 0 for k < m then it makes sense to talk about $p^{-m}x \in \mathbb{Z}_p$. That is, if x(k) = 0 for k < m then there is a unique $y \in \mathbb{Z}_p$ such that $p^m y = x$. (For comparison, it is false that for any $z \in \mathbb{C}$ there is a unique $z^{1/2} \in \mathbb{C}$, or that for any $n \in \mathbb{Z}$ there is a unique $p^{-1}n \in \mathbb{Z}$.)

Lemma 3. Let $x \in \mathbb{Z}_p$ with x(0) = 0. If $y \in \mathbb{Z}_p$ and py = x then y(k) = x(k+1) for $k \ge 0$.

Proof. By Lemma 2, (py)(0) = 0 and (py)(k) = y(k-1) for $k \ge 1$, and as py = x this means x(0) = 0 and x(k) = y(k-1) for $k \ge 1$, i.e. x(k+1) = y(k) for $k \ge 0$.

1.2 Multiplication

For $x, y \in \mathbb{Z}_p$, we define $xy \in \mathbb{Z}_p$ by induction. Define

$$(xy)(0) \equiv x(0)y(0) \pmod{p}, \qquad (xy)(0) \in N_p.$$

Assume for $k \ge 0$ that there is some $A_k \in \mathbb{Z}$ such that

$$\sum_{j=0}^{k} (xy)(j)p^{j} = A_{k}p^{k+1} + \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} y(j)p^{j}\right).$$

There is some $B\in\mathbb{Z}$ such that

$$\begin{pmatrix} \sum_{j=0}^{k+1} x(j)p^j \end{pmatrix} \left(\sum_{j=0}^{k+1} y(j)p^j \right)$$

$$= \left(x(k+1)p^{k+1} + \sum_{j=0}^k x(j)p^j \right) \left(y(k+1)p^{k+1} + \sum_{j=0}^k y(j)p^j \right)$$

$$= Bp^{k+2} + x(k+1)y(0)p^{k+1} + x(0)y(k+1)p^{k+1} + \left(\sum_{j=0}^k x(j)p^j \right) \left(\sum_{j=0}^k y(j)p^j \right).$$

Hence

$$\left(\sum_{j=0}^{k+1} x(j)p^j\right) \left(\sum_{j=0}^{k+1} y(j)p^j\right) = Bp^{k+2} + x(k+1)y(0)p^{k+1} + x(0)y(k+1)p^{k+1} + \sum_{j=0}^{k} (xy)(j)p^j - A_k p^{k+1}.$$

Now define

$$(xy)(k+1) \equiv x(k+1)y(0) + x(0)y(k+1) - A_k \pmod{p}, \qquad (xy)(k+1) \in N_p,$$

and let $C \in \mathbb{Z}$ such that

$$(xy)(k+1) = Cp + x(k+1)y(0) + x(0)y(k+1) - A_k,$$

whence, taking $A_{k+1} = B - C$,

$$\left(\sum_{j=0}^{k+1} x(j)p^{j}\right) \left(\sum_{j=0}^{k+1} y(j)p^{j}\right) = Bp^{k+2} + (xy)(k+1)p^{k+1} - Cp^{k+2} + A_{k}p^{k+1} + \sum_{j=0}^{k} (xy)(j)p^{j} - A_{k}p^{k+1} = A_{k+1}p^{k+2} + \sum_{j=0}^{k+1} (xy)(j)p^{j}.$$

Thus, for each $k \ge 0$, $(xy)(k) \in N_p$ and

$$\sum_{j=0}^{k} (xy)(j)p^{j} \equiv \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} y(j)p^{j}\right) \pmod{p^{k+1}}.$$
 (2)

It is immediate that xy = yz.

For $t \in \mathbb{Z}_p$, if for each $k \ge 0$,

$$\sum_{j=0}^{k} t(j)p^{j} \equiv \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} y(j)p^{j}\right) \pmod{p^{k+1}}.$$

then t = xy. Now let $x, y, z \in \mathbb{Z}_p$. For $k \ge 0$,

$$\sum_{j=0}^{k} (x(yz))(j)p^{j} \equiv \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} (yz)(j)p^{j}\right) \pmod{p^{k+1}}$$
$$\equiv \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} y(j)p^{j}\right) \left(\sum_{j=0}^{k} z(j)p^{j}\right) \pmod{p^{k+1}}$$
$$\equiv \left(\sum_{j=0}^{k} (xy)(j)p^{j}\right) \left(\sum_{j=0}^{k} z(j)p^{j}\right) \pmod{p^{k+1}}$$
$$\equiv \sum_{j=0}^{k} ((xy)z)(j)p^{j} \pmod{p^{k+1}},$$

which shows that x(yz) = (xy)z. Define $u \in \mathbb{Z}_p$ by u(0) = 1, u(k) = 0 for $k \ge 1$. It is apparent that for $x \in \mathbb{Z}_p$, xu = x and ux = x.

1.3 Ring

For $x, y, z \in \mathbb{Z}_p$ and for $k \ge 0$, using (1) and (2),

$$\begin{split} \sum_{j=0}^{k} (x(y+z))(j)p^{j} &\equiv \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} (y+z)(j)p^{j}\right) \pmod{p^{k+1}} \\ &\equiv \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} (y(j)+z(j))p^{j}\right) \pmod{p^{k+1}} \\ &\equiv \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} y(j)p^{j}\right) + \left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} z(j)p^{j}\right) \pmod{p^{k+1}} \\ &\equiv \sum_{j=0}^{k} (xy)(j)p^{j} + \sum_{j=0}^{k} (xz)(j)p^{j} \pmod{p^{k+1}} \\ &\equiv \sum_{j=0}^{k} (xy+xz)(j)p^{j} \pmod{p^{k+1}}, \end{split}$$

which shows that x(y+z) = xy + xz. Therefore \mathbb{Z}_p is a commutative ring with unity $0 \mapsto 1, k \mapsto 0$ for $k \geq 1$.

1.4 Integral domain

Let \mathbb{Z}_p^* be the set of those $x \in \mathbb{Z}_p$ for which there is some $y \in \mathbb{Z}_p$ such that xy = 1, namely the set of invertible elements of \mathbb{Z}_p .

Lemma 4. Let $x \in \mathbb{Z}_p$. $x \in \mathbb{Z}_p^*$ if and only if $x(0) \neq 0$.

Proof. If x(0) = 0 and $y \in \mathbb{Z}_p$ then $(xy)(0) \equiv x(0)y(0) \equiv 0 \pmod{p}$ while $1(0) \equiv 1 \pmod{p}$, so $xy \neq 1$ and therefore $x \notin \mathbb{Z}_p^*$.

If $x(0) \neq 0$, we define $y \in \mathbb{Z}_p$ by induction. As $x(0) \neq 0$, it makes sense to define

$$y(0)x(0) \equiv 1 \pmod{p}, \qquad y(0) \in N_p.$$

We use (2) and the fact that 1(0) = 1, 1(k) = 0 for $k \ge 1$. Suppose for $k \ge 0$ that there is some $A_k \in \mathbb{Z}$ such that

$$\left(\sum_{j=0}^{k} x(j)p^{j}\right) \left(\sum_{j=0}^{k} y(j)p^{j}\right) = A_{k}p^{k+1} + 1.$$

Because $x(0) \neq 0$, it makes sense to define

$$y(k+1)x(0) + x(k+1)y(0) \equiv -A_k \pmod{p}.$$

Then

$$\begin{pmatrix} \sum_{j=0}^{k+1} x(j)p^j \end{pmatrix} \left(\sum_{j=0}^{k+1} y(j)p^j \right) \equiv x(k+1)y(0)p^{k+1} + y(k+1)x(0)p^{k+1} \\ \left(\sum_{j=0}^k x(j)p^j \right) \left(\sum_{j=0}^k y(j)p^j \right) \pmod{p^{k+2}} \\ \equiv -A_k p^{k+1} + A_k p^{k+1} + 1 \pmod{p^{k+2}} \\ \equiv 1 \pmod{p^{k+2}}.$$

This shows that xy = 1, thus $x \in \mathbb{Z}_p^*$ and $y = x^{-1}$.

Theorem 5. \mathbb{Z}_p is an integral domain.

Proof. Let $x, y \in \mathbb{Z}_p$ be nonzero. Let $m \ge 0$ be minimal such that $x(m) \ne 0$ and let $n \ge 0$ be minimal such that $y(n) \ne 0$. Then $(p^{-m}x)(0) \ne 0$ and $(p^{-n}y)(0) \neq 0$, and using $p^{-m-n}(xy) = p^{-m}x \cdot p^{-n}y$,

$$\begin{aligned} (xy)(m+n) &\equiv (p^{-m-n}(xy))(0) \pmod{p} \\ &\equiv (p^{-m}x)(0) \cdot (p^{-n}y)(0) \pmod{p} \\ &\not\equiv 0 \pmod{p}, \end{aligned}$$

thus $xy \neq 0$.

1.5*p*-adic valuation

For $x \in \mathbb{Z}_p$, let

$$v_p(x) = \inf\{k \ge 0 : x(k) \ne 0\}.$$

x(k) = 0 for $0 \le k < v_p(x)$. $v_p(x) = \infty$ if and only if x = 0.

Lemma 6. For $x, y \in \mathbb{Z}_p$,

$$v_p(xy) = v_p(x) + v_p(y)$$

and

$$v_p(x+y) \ge \min(v_p(x), v_p(y))$$

Lemma 4 says that for $x \in \mathbb{Z}_p$, $x \in \mathbb{Z}_p^*$ if and only if $x(0) \neq 0$. In other words, $\mathbb{T}^* \quad \{x \in \mathbb{Z} : |x|_n = 1\}.$

$$\mathbb{Z}_p^* = \{ x \in \mathbb{Z}_p : v_p(x) = 0 \} = \{ x \in \mathbb{Z}_p : |x|_p = 1 \}$$

For $n \geq 1$, define $\pi_n : \mathbb{Z}_p \to \mathbb{Z}/p^n\mathbb{Z}$ by

$$\pi_n(x) = \sum_{k=0}^{n-1} x(k)p^k + p^n \mathbb{Z}.$$

It is apparent that π_n is onto.

Lemma 7. $\pi_n: \mathbb{Z}_p \to \mathbb{Z}/p^n\mathbb{Z}$ is a ring homomorphism, and

$$\ker \pi_n = \{x \in \mathbb{Z}_p : v_p(x) \ge n\} = p^n \mathbb{Z}_p$$

Proof. Let $x, y \in \mathbb{Z}_p$. By (1),

$$\sum_{k=0}^{n-1} (x+y)(k)p^k + p^n \mathbb{Z} = \sum_{k=0}^{n-1} x(k)p^k + \sum_{k=0}^{n-1} y(k)p^k + p^n \mathbb{Z},$$

i.e.

$$\pi_n(x+y) = \pi_n(x) + \pi_n(y).$$

By (2),

$$\sum_{k=0}^{n-1} (xy)(k)p^k + p^n \mathbb{Z} = \left(\sum_{k=0}^{n-1} x(k)p^k + p^n \mathbb{Z}\right) \left(\sum_{k=0}^{n-1} y(k)p^k + p^n \mathbb{Z}\right),$$

i.e.

$$\pi_n(xy) = \pi_n(x)\pi_n(y).$$

For $1 \in \mathbb{Z}_p$, 1(0) = 1, 1(k) = 0 for $k \ge 1$, so

$$\pi_n(1) = 1 + p^n \mathbb{Z},$$

which is the unity of $\mathbb{Z}/p^n\mathbb{Z}$. Therefore π_n is a ring homomorphism.

 $\pi_n(x) = 0$ means

$$\sum_{k=0}^{n-1} x(k) p^k \in p^n \mathbb{Z}.$$

But $0 \le \sum_{k=0}^{n-1} x(k) p^k < \sum_{k=0}^{n-1} (p-1) p^k = p^n - 1$, so $\pi_n(x) = 0$ if and only if x(k) = 0 for $0 \le k \le n - 1$.

Then for $n \geq 1$,

$$\mathbb{Z}_{p} = \bigcup_{j=0}^{p^{n}-1} (j+p^{n}\mathbb{Z}_{p})$$
$$= \bigcup_{j=0}^{p^{n}-1} \{x \in \mathbb{Z}_{p} : v_{p}(x-j) \ge n\}$$
$$= \bigcup_{j=0}^{p^{n}-1} \{x \in \mathbb{Z}_{p} : |x-j|_{p} \le p^{-n}\}$$
$$= \bigcup_{j=0}^{p^{n}-1} \{x \in \mathbb{Z}_{p} : |x-j|_{p} < p^{-n+1}\}.$$

Because $\mathbb{Z}/p\mathbb{Z}$ is a field and $\pi_1: \mathbb{Z}_p \to \mathbb{Z}/p\mathbb{Z}$ is an onto ring homomorphism,

$$\ker \pi_1 = p\mathbb{Z}_p$$

is a maximal ideal in \mathbb{Z}_p .

Theorem 8. If I is an ideal in \mathbb{Z}_p and $I \neq \{0\}$, then there is some $n \ge 0$ such that $I = p^n \mathbb{Z}_p$.

Proof. There is some $a \in I$ with minimal $v_p(a) \ge 0$, and as $I \ne \{0\}$, $v_p(a) \ne \infty$. Then $(p^{-v_p(a)}a)(0) = a(v_p(a)) \ne 0$, so by Lemma 4, $p^{-v_p(a)}a \in \mathbb{Z}_p^*$. Hence there is some $u \in \mathbb{Z}_p^*$ such that $p^{-v_p(a)}a = u$, i.e. $p^{v_p(a)} = u^{-1}a$. But I is an ideal and $a \in I$, so $p^{v_p(a)} \in I$, which shows that $p^{v_p(a)}\mathbb{Z}_p \subset I$. Let $x \in I$, $x \ne 0$. Then there is some $v \in \mathbb{Z}_p^*$ such that $p^{-v_p(x)}x = v$, i.e. $x = p^{v_p(x)}v$. Because $v_p(a)$ is minimal, $v_p(x) \ge v_p(a)$ and so

$$x = p^{v_p(x)}v = p^{v_p(a)} \cdot p^{v_p(x) - v_p(a)} \in p^{v_p(a)}\mathbb{Z}_p.$$

Therefore $I = p^{v_p(a)} \mathbb{Z}_p$.

$2 \quad Q_p$

Let \mathbb{Q}_p be the set of maps $x : \mathbb{Z} \to N_p$ such that for some $m \in \mathbb{Z}$, x(k) = 0 for all k < m. For $x \in \mathbb{Q}_p$ define

$$v_p(x) = \inf\{k \in \mathbb{Z} : x(k) \neq 0\}.$$

x(k) = 0 for $k < v_p(x), k \in \mathbb{Z}$. $v_p(x) = \infty$ if and only if x = 0.

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : v_p(x) \ge 0 \}.$$

For $m \in \mathbb{Z}$ and $x \in \mathbb{Q}_p$, define

$$(T_m x)(k) = x(k+m), \qquad k \in \mathbb{Z}$$

For $x \in \mathbb{Q}_p$ with x(k) = 0 for k < m, if k < 0 then k + m < m and so

$$(T_m x)(k) = x(k+m) = 0$$

which means that $T_m x \in \mathbb{Z}_p$. For $x, y \in \mathbb{Q}_p$ with x(k) = 0 and y(k) = 0 for $k < m, T_m x, T_m y \in \mathbb{Z}_p$ and $T_m x + T_m y \in \mathbb{Z}_p$. Define

$$x + y = T_{-m}(T_m x + T_m y) \in \mathbb{Q}_p.$$

Check that this makes sense. Likewise, $T_m x \cdot T_m y \in \mathbb{Z}_p$, and define

$$xy = T_{-m}(T_m x \cdot T_m y) \in \mathbb{Q}_p$$

Check that this makes sense. Check that \mathbb{Q}_p is a commutative ring with additive identity $k \mapsto 0$ for $k \in \mathbb{Z}$. and unity $0 \mapsto 1$, $k \mapsto 0$ for $k \neq 0$. Finally,¹

$$T_m x = p^{-m} x$$

Theorem 9. \mathbb{Q}_p is a field, of characteristic 0.

¹For a ring R with $x \in R$, $px = \sum_{k=1}^{p} x$. It does not make sense to talk about px before we have x + y, and it is nonsense to talk about $p^{-m}x$ for $x \in \mathbb{Q}_p$ before have defined addition on \mathbb{Q}_p . This is why I defined T_m rather than initially using $x \mapsto p^{-m}x$; it is incorrect and a sloppy habit to use properties of an object before showing that it exists.

3 Metric

For $x \in \mathbb{Q}_p$ define

$$|x|_p = p^{-v_p(x)}.$$

 $|x|_p=0$ if and only if x=0. For $x,y\in \mathbb{Q}_p$ define

$$d_p(x,y) = |x-y|_p$$

 d_p is an **ultrametric**:

$$d_p(x,z) \le \max(d_p(x,y), d_p(y,z)).$$

Theorem 10. \mathbb{Q}_p is a topological field.

Proof. For $(x, y), (u, v) \in \mathbb{Q}_p \times \mathbb{Q}_p$ let

$$\rho((x,y),(u,v)) = \max(d_p(x,u),d_p(y,v)).$$

$$\begin{split} d_p(x+y,u+v) &= |(x-u)+(y-v)|_p = \max(|x-u|_p,|y-v|_p) = \rho((x,y),(u,v)),\\ \text{which shows that } (x,y) \mapsto x+y \text{ is continuous } \mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{Q}_p. \end{split}$$

$$d_p(-x,-y) = |-x-y|_p = |-1|_p |x+y|_p = |x+y|_p = d_p(x,y),$$

which shows that $x \mapsto -x$ is continuous $\mathbb{Q}_p \to \mathbb{Q}_p$. For $\rho((x, y), (u, v)) \leq \delta$, $|x - u|_p \leq \delta$ so $|u|_p \leq |x|_p + \delta$ and

$$d_{p}(xy, uv) = |xy - uv|_{p}$$

= $|xy - uy + uy - uv|_{p}$
= $\max(|xy - uy|_{p}, |uy - uv|_{p})$
= $\max(|y|_{p}|x - u|_{p}, |u|_{p}|y - v|_{p})$
 $\leq \max(|y|_{p}\delta, (|x|_{p} + \delta)\delta),$

which shows that $(x, y) \mapsto xy$ is continuous $\mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{Q}_p$. Finally, for $x, y \neq 0$,

$$d_p(x^{-1}, y^{-1}) = |x^{-1} - y^{-1}|_p = |xy|_p^{-1}|y - x|_p,$$

which shows that $x \mapsto x^{-1}$ is continuous $\mathbb{Q}_p \setminus \{0\} \to \mathbb{Q}_p \setminus \{0\}$.

For $x \in \mathbb{Q}_p$ and r > 0, write

$$B_{< r}(x) = \{ y \in \mathbb{Q}_p : |y - x|_p < r \}, \quad B_{< r}(x) = \{ y \in \mathbb{Q}_p : |y - x|_p < r \}.$$

Thus, for $x \in \mathbb{Q}_p$ and $n \ge 0$,

$$x + p^n \mathbb{Z} = B_{< p^{-n}}(x).$$

Lemma 11. For $x \in \mathbb{Q}_p$,

$$\{x + p^n \mathbb{Z}_p : n \ge 0\}$$

is a local base at x.

Proof. For $\epsilon > 0$, let $p^{-n} < \epsilon$, $n \ge 0$, namely $n > \frac{1}{\log p} \log \frac{1}{\epsilon}$. For this n,

$$x + p^n \mathbb{Z}_p = B_{\leq p^{-n}}(x) \subset B_{<\epsilon}(x)$$

Theorem 12. \mathbb{Z}_p is a compact subspace of \mathbb{Q}_p .

Proof. Let $x_n \in \mathbb{Z}_p$ be a sequence. Because $x_n(0) \in N_p$, $n \geq 0$, there is some $a(0) \in N_p$ and an infinite subset I_0 of $\{n \geq 0\}$ such that $x_n(0) = a(0)$ for $n \in I_0$. Suppose by induction that for some $N \geq 0$ there are $a(0), \ldots, a(N) \in N_p$ and an infinite set $I_N \subset \{n \geq 0\}$ such that

$$x_n(k) = a(k), \qquad 0 \le k \le N, \quad n \in I_N.$$

But for each $x \in I_N$, $x_n(N+1)$ belongs to the finite set N_p , and because I_N is infinite there is some $a(N+1) \in N_p$ and an infinite set $I_{N+1} \subset I_N$ such that $x_n(N+1) = a(N+1)$ for $n \in I_{N+1}$. We have thus defined $a \in \mathbb{Z}_p$.

Let $\alpha_0 \in I_0$, and by induction let $\alpha_n > \alpha_{n-1}$, $\alpha_n \in I_n$; in particular as $\alpha_0 \ge 0$ we have $\alpha_n \ge n$. Then for any $n \ge 0$, $x_{\alpha_n}(k) = a(k)$ for $0 \le k \le n$. Take $\epsilon > 0$ and let $p^{-m-1} < \epsilon$. For $n \ge m$,

$$|x_{\alpha_n} - a|_p \le p^{-n-1} \le p^{-m-1} < \epsilon,$$

which shows that the sequence x_{α_n} tends to a. This means that \mathbb{Z}_p is sequentially compact and therefore compact.

For $x, y \in \mathbb{Q}_p$,

$$d_p(px, py) = |px - py|_p = |p|_p |x - y|_p = p^{-1} |x - y|_p,$$

which shows that $x \mapsto px$ is continuous $\mathbb{Q}_p \to \mathbb{Q}_p$. Therefore, the fact that \mathbb{Z}_p is compact implies that for $n \ge 0$, $p^n \mathbb{Z}_p$ is compact. Then by Lemma 11 we get the following.

Theorem 13. \mathbb{Q}_p is locally compact.

Theorem 14. \mathbb{Q}_p is a complete metric space.

A topological space X is **zero-dimensional** if there is a base for its topology each element of which is clopen. In a Hausdorff space, a compact set is closed, and because the sets $p^n \mathbb{Z}_p$ are compact, $n \ge 0$, from Lemma 11 we get the following.

Lemma 15. \mathbb{Q}_p is zero-dimensional.

It is a fact that if a Hausdorff space is zero-dimensional then it is **totally disconnected**, so by the above, \mathbb{Q}_p is totally disconnected.

4 *p*-adic fractional part

For $x \in \mathbb{Q}_p$, let

$$[x]_p = \sum_{k \ge 0} x(k) p^k \in \mathbb{Z}_p$$

and

$$\{x\}_p = \sum_{k < 0} x(k)p^k \in \mathbb{Z}[1/p] \subset \mathbb{Q}.$$

We call $\{x\}_p$ the *p*-adic fractional part of *x*. Then

$$x = [x]_p + \{x\}_p \in \mathbb{Q}_p.$$

Furthermore, as $x(k) \to 0$ as $k \to -\infty$,

$$0 \le \{x\}_p < \sum_{k < 0} (p-1)p^k = (p-1)\sum_{k=1}^{\infty} p^{-k} = 1,$$

therefore for $x \in \mathbb{Q}_p$,

$${x}_p \in [0,1) \cap \mathbb{Z}[1/p].$$

Define the **Prüfer** p-group

$$\mathbb{Z}(p^{\infty}) = \{e^{2\pi i m p^{-n}} : m, n \ge 0\}.$$

We assign the Prüfer $p\text{-}{\rm group}$ the discrete topology. Define $\psi_p:\mathbb{Q}_p\to S^1$ by

$$\psi_p(x) = e^{2\pi i \{x\}_p}.$$

We prove that this is a homomorphism from the locally compact group \mathbb{Q}_p whose image is the Prüfer *p*-group and whose kernel is \mathbb{Z}_p .²

Theorem 16. $\psi_p : \mathbb{Q}_p \to S^1$ is a homomorphism of locally compact groups. $\psi_p(\mathbb{Q}_p) = \mathbb{Z}(p^{\infty})$, and ker $\psi_p = \mathbb{Z}_p$.

Proof. For $x, y \in \mathbb{Q}_p$,

$$\{x+y\}_p - \{x\}_p - \{y\}_p = x+y - [x+y]_p - x + [x]_p - y + [y]_p$$

= $[x]_p + [y]_p - [x+y]_p \in \mathbb{Z}_p.$

Check that $\mathbb{Z}[1/p] \cap \mathbb{Z}_p = \mathbb{Z}$. It then follows that

$$\{x+y\}_p - \{x\}_p - \{y\}_p \in \mathbb{Z},\$$

therefore $e^{2\pi i(\{x+y\}_p - \{x\}_p - \{y\}_p)} = 1$, i.e.

$$\psi_p(x+y) = e^{2\pi i \{x+y\}_p} = e^{2\pi i \{x\}_p} e^{2\pi i \{y\}_p} = \psi_p(x)\psi_p(y), \qquad x, y \in \mathbb{Q}_p,$$

²Alain M. Robert, A Course in p-adic Analysis, p. 42, Proposition 5.4.

namely ψ_p is a homomorphism.

 $\psi_p(x) = 1$ if and only if $e^{2\pi i \{x\}_p} = 1$ if and only if $\{x\}_p \in \mathbb{Z}$. But $\{x\}_p \in [0,1)$, so $\psi_p(x) = 1$ if and only if $\{x\}_p = 0$, hence $\psi_p(x) = 1$ if and only if $x \in \mathbb{Z}_p$, namely

$$\ker \psi_p = \mathbb{Z}_p$$

Let $x \in \mathbb{Q}_p$. As $\{x\}_p \in \mathbb{Z}[1/p]$, there is some $n \ge 0$ such that $p^n\{x\}_p \in \mathbb{Z}$, so $\psi_p(x)^{p^n} = 1$, which means that $\psi_p(x) \in \mathbb{Z}[p^{\infty}]$. Let $e^{2\pi i m p^{-n}} \in \mathbb{Z}[p^{\infty}]$, $n, m \ge 0$. But $p^{-n} \in \mathbb{Q}_p$ and, whether or not n > 0,

$$\psi_p(p^{-n}) = e^{2\pi i \{p^{-n}\}_p} = e^{2\pi i p^{-n}},$$

and $mp^{-n} \in \mathbb{Q}_p$, and using that ψ_p is a homomorphism,

$$\psi_p(mp^{-n}) = \psi_p(p^{-n})^m = e^{2\pi i mp^{-n}}$$

This shows that $\psi_p(\mathbb{Q}_p) = \mathbb{Z}[p^{\infty}].$

Finally, let $x \in \mathbb{Q}_p$. For $y \in B_{\leq 1}(x) = x + \mathbb{Z}_p$, so there is some $w \in \mathbb{Z}_p$ such that y = x + w. But $\psi_p(x + w) = \psi_p(x)\psi_p(w) = \psi_p(x)$, so

$$|\psi_p(y) - \psi_p(x)| = |\psi_p(x) - \psi_p(x)| = 0,$$

showing that ψ_p is continuous at x.

Because $\mathbb{Z}[p^{\infty}]$ is discrete, it is immediate that ψ_p is an open map. The **first isomorphism theorem for topological groups** states that if G and H are locally compact groups, $f: G \to H$ is a homomorphism of topological groups that is onto and open, then $G/\ker f$ and H are isomorphic as topological groups. Therefore the quotient group $\mathbb{Q}_p/\mathbb{Z}_p$ and the Prüfer group $\mathbb{Z}[p^{\infty}]$ are isomorphic as topological groups.