Hensel's lemma, valuations, and p-adic numbers

Jordan Bell

November 2, 2014

1 Hensel's lemma

Let p be prime and $f(x) \in \mathbb{Z}[x] .{ }^{1}$ Suppose that $0 \leq a_{0}<p$, satisfies

$$
f\left(a_{0}\right) \equiv 0 \quad(\bmod p)
$$

and

$$
f^{\prime}\left(a_{0}\right) \not \equiv 0 \quad(\bmod p)
$$

Using the power series expansion

$$
f\left(a_{0}+h\right)=f\left(a_{0}\right)+f^{\prime}\left(a_{0}\right) h+\frac{f^{\prime \prime}\left(a_{0}\right)}{2} h^{2}+\cdots
$$

for any $y \in \mathbb{Z}$ we have

$$
f\left(a_{0}+p y\right)=f\left(a_{0}\right)+f^{\prime}\left(a_{0}\right) p y+\frac{f^{\prime \prime}\left(a_{0}\right)}{2} p^{2} y^{2}+\cdots
$$

so

$$
\frac{f\left(a_{0}+p y\right)}{p}=\frac{f\left(a_{0}\right)}{p}+f^{\prime}\left(a_{0}\right) y+\frac{f^{\prime \prime}\left(a_{0}\right)}{2} p y^{2}+\cdots
$$

Because $f\left(a_{0}\right) \equiv 0(\bmod p)$, each term on the right-hand side is an integer. Then, $f\left(a_{0}+p y\right) \equiv 0\left(\bmod p^{2}\right)$ is equivalent to

$$
\frac{f\left(a_{0}\right)}{p}+f^{\prime}\left(a_{0}\right) y+\frac{f^{\prime \prime}\left(a_{0}\right)}{2} p y^{2}+\cdots \equiv 0 \quad(\bmod p)
$$

i.e.,

$$
f^{\prime}\left(a_{0}\right) y \equiv-\frac{f\left(a_{0}\right)}{p} \quad(\bmod p)
$$

Because $f^{\prime}\left(a_{0}\right) \not \equiv 0(\bmod p)$, there is a unique $y(\bmod p)$ that solves the above congruence, so there is a unique $y(\bmod p)$ that solves $f\left(a_{0}+p y\right) \equiv 0\left(\bmod p^{2}\right)$. This y is

$$
y \equiv-\frac{f\left(a_{0}\right)}{p}\left(f^{\prime}\left(a_{0}\right)\right)^{-1} \quad(\bmod p)
$$

[^0]Let $0 \leq a_{1}<p$ be $a_{1} \equiv y(\bmod p)$.
Suppose that

$$
x=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{l-2} p^{l-2}, \quad 0 \leq a_{j}<p
$$

satisfies

$$
f(x) \equiv 0 \quad\left(\bmod p^{l-1}\right)
$$

and

$$
f^{\prime}(x) \not \equiv 0 \quad(\bmod p)
$$

Using the power series expansion

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2} h^{2}+\cdots
$$

for any $y \in \mathbb{Z}$ we have

$$
f\left(x+p^{l-1} y\right)=f(x)+f^{\prime}(x) p^{l-1} y+\frac{f^{\prime \prime}(x)}{2} p^{2 l-2} y^{2}+\cdots
$$

i.e.

$$
\frac{f\left(x+p^{l-1} y\right)}{p^{l-1}}=\frac{f(x)}{p^{l-1}}+f^{\prime}(x) y+\frac{f^{\prime \prime}(x)}{2} p^{l-1} y^{2}+\cdots
$$

Because $f(x) \equiv 0\left(\bmod p^{l-1}\right)$, each term on the right-hand side is an integer. Then, $f\left(x+p^{l-1} y\right) \equiv 0\left(\bmod p^{l}\right)$ is equivalent to

$$
\frac{f(x)}{p^{l-1}}+f^{\prime}(x) y+\frac{f^{\prime \prime}(x)}{2} p^{l-1} y^{2}+\cdots \equiv 0 \quad(\bmod p)
$$

i.e.,

$$
f^{\prime}(x) y \equiv-\frac{f(x)}{p^{l-1}} \quad(\bmod p)
$$

Because $f^{\prime}(x) \not \equiv 0(\bmod p)$, there is a unique $y(\bmod p)$ that solves the above congruence, so there is a unique $y(\bmod p)$ that solves $f\left(x+p^{l-1} y\right) \equiv 0\left(\bmod p^{l}\right)$. This y is

$$
y \equiv-\frac{f(x)}{p^{l-1}}\left(f^{\prime}(x)\right)^{-1} \quad(\bmod p)
$$

Let $0 \leq a_{l-1}<p$ be $a_{l-1} \equiv y(\bmod p)$.
We have thus inductively defined a sequence $a_{0}, a_{1}, a_{2}, \ldots$, with $0 \leq a_{j}<p$, such that for any l,

$$
f\left(a_{0}+a_{1} p+\cdots+a_{l-1} p^{l-1}\right) \equiv 0 \quad\left(\bmod p^{l}\right)
$$

We wish to make sense of the infinite expression

$$
a_{0}+a_{1} p+a_{2} p^{2}+a_{3} p^{3}+\cdots
$$

Calling this x, it ought to be the case that $f(x) \equiv 0(\bmod p), f(x) \equiv 0$ $\left(\bmod p^{2}\right), f(x) \equiv 0\left(\bmod p^{3}\right)$, etc.

Example 1. Take $p=3$ and $f(x)=x^{2}-7, f^{\prime}(x)=2 x$. The two conditions $f(x) \equiv 0(\bmod p)$ and $f^{\prime}(x) \not \equiv 0(\bmod p)$ are satisfied both by $a_{0}=1$ and $a_{0}=2$. Take $a_{0}=1$. Then

$$
a_{1} \equiv-\frac{f(1)}{3}\left(f^{\prime}(1)\right)^{-1} \equiv-\frac{-6}{3}(2)^{-1} \equiv 1 \quad(\bmod 3)
$$

So $a_{1}=1$. Then,

$$
a_{2} \equiv-\frac{f(1+1 \cdot 3)}{3^{2}}\left(f^{\prime}(1+1 \cdot 3)\right)^{-1} \equiv-\frac{9}{9}(8)^{-1} \equiv-2 \equiv 1 \quad(\bmod 3)
$$

So $a_{2}=1$. Then,

$$
a_{3} \equiv-\frac{f\left(1+1 \cdot 3+1 \cdot 3^{2}\right)}{3^{3}}\left(f^{\prime}\left(1+1 \cdot 3+1 \cdot 3^{2}\right)\right)^{-1} \equiv-6 \cdot 2 \equiv 0 \quad(\bmod 3)
$$

So, $a_{3}=0$. Then,
$a_{4} \equiv-\frac{f\left(1+1 \cdot 3+1 \cdot 3^{2}+0 \cdot 3^{3}\right)}{3^{4}}\left(f^{\prime}\left(1+1 \cdot 3+1 \cdot 3^{2}+0 \cdot 3^{3}\right)\right)^{-1} \equiv-2 \cdot 2 \equiv 2 \quad(\bmod 3)$.
So, $a_{4}=2$, etc.

2 Absolute values on fields

If K is a field, an absolute value on K is a map $|\cdot|: K \rightarrow \mathbb{R}_{\geq 0}$ such that $|x|=0$ if and only if $x=0,|x y|=|x||y|$, and $|x+y| \leq|x|+|y|$. The trivial absolute value on K is $|0|=0$ and $|x|=1$ for all nonzero $x \in K$.

If $|\cdot|$ is an absolute value on K, then $d(x, y)=|x-y|$ is a metric on K. The trivial absolute value yields the discrete metric. Two absolute values $|\cdot|_{1},|\cdot|_{2}$ on K are said to be equivalent if they induce the same topology on K.

The following theorem characterizes equivalent absolute values. ${ }^{2}$
Theorem 2. Two nontrivial absolute values $|\cdot|_{1},|\cdot|_{2}$ are equivalent if and only if there is some real $s>0$ such that

$$
|x|_{1}=|x|_{2}^{s}, \quad x \in K
$$

Proof. Suppose that $s>0$ and that $|x|_{1}=|x|_{2}^{s}$ for all $x \in K$. Then

$$
\begin{aligned}
B_{d_{1}}(x, r) & =\left\{y \in K:|y-x|_{1}<r\right\} \\
& =\left\{y \in K:|y-x|_{2}^{s}<r\right\} \\
& =\left\{y \in K:|y-x|_{2}<r^{1 / s}\right\} \\
& =B_{d_{2}}\left(x, r^{1 / s}\right) .
\end{aligned}
$$

[^1]Since the collection of open balls for d_{1} is equal to the collection of open balls for d_{2}, the absolute values $|\cdot|_{1},|\cdot|_{2}$ induce the same topology on K.

Suppose that $|\cdot|_{1},|\cdot|_{2}$ are equivalent. If $|x|_{1}<1$ then $d_{1}\left(x^{n}, 0\right)=\left|x^{n}\right|_{1}=$ $|x|_{1}^{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus $x^{n} \rightarrow 0$ in d_{1} and hence, because the topologies induced by $|\cdot|_{1}$ and $|\cdot|_{2}$ are equal, $x^{n} \rightarrow 0$ in d_{2}, i.e. $|x|_{2}^{n}=\left|x^{n}\right|_{2}=d_{2}\left(x^{n}, 0\right) \rightarrow 0$. Therefore $|x|_{2}<1$. Thus, $|x|_{1}<1$ if and only if $|x|_{2}<1$.

Let $y \in K$ such that $|y|_{1}>1$ (there is such an element because $|\cdot|_{1}$ is nontrivial and $\left|y^{-1}\right|_{1}=|y|_{1}^{-1}$) and let $x \in K$ with $|x|_{1} \neq 0,1$. There is some nonzero $\alpha \in \mathbb{R}$ such that $|x|_{1}=|y|_{1}^{\alpha}$. Let $\frac{m_{i}}{n_{i}} \in \mathbb{Q}$ all be greater than α and converge to α. Then, because $|y|_{1}>1$, we have $|x|_{1}=|y|_{1}^{\alpha}<|y|_{1}^{\frac{m_{i}}{n_{i}}}$, hence $|x|_{1}^{n_{i}}<|y|_{1}^{m_{i}}$, hence $\frac{\left|x^{n_{i}}\right|_{1}}{\left|y^{m_{i}}\right|_{1}}<1$, hence

$$
\left|\frac{x^{n_{i}}}{y^{m_{i}}}\right|_{1}<1
$$

Because $|\cdot|_{1}$ and $|\cdot|_{2}$ are equivalent,

$$
\frac{|x|_{2}^{n_{i}}}{|y|_{2}^{m_{i}}}=\left|\frac{x^{n_{i}}}{y^{m_{i}}}\right|_{2}<1
$$

so $|x|_{2}<|y|_{2}^{\frac{m_{i}}{n_{i}}}$. Taking $i \rightarrow \infty$ gives

$$
|x|_{2} \leq|y|_{2}^{\alpha} .
$$

Similarly, we check that

$$
|x|_{2} \geq|y|_{2}^{\alpha}
$$

Therefore,

$$
|x|_{2}=|y|_{2}^{\alpha} .
$$

Using this and $|x|_{1}=|y|_{1}^{\alpha}$, we have

$$
\log |x|_{1}=\alpha \log |y|_{1}, \quad \log |x|_{2}=\alpha \log |y|_{2}
$$

and so, as $\alpha \neq 0$,

$$
\frac{\log |x|_{1}}{\log |x|_{2}}=\frac{\log |y|_{1}}{\log |y|_{2}}
$$

This is true for any $x \in K$ with $|x|_{1} \neq 0,1$. We define $s \in \mathbb{R}$ to be this common value. The fact that $|y|_{1}>1$ implies, because $|\cdot|_{1}$ and $|\cdot|_{2}$ are equivalent, that $|y|_{2}>1$, and so $s>0$.

Now take $x \in K$. If $x=0$ then $|x|_{1}=0=0^{s}=|x|_{2}^{s}$. Because $|\cdot|_{1}$ and $|\cdot|_{2}$ are equivalent, $|x|_{2}>1$ implies that $|x|_{1}>1$ and $|x|_{2}<1$ implies that $|x|_{1}<1$, so if $|x|_{1}=1$ then $|x|_{2}=1$ and hence $|x|_{1}=1=1^{s}=|x|_{2}^{s}$. If $|x|_{1} \neq 0,1$, then the above shows that

$$
\frac{\log |x|_{1}}{\log |x|_{2}}=s
$$

i.e., $|x|_{1}=|x|_{2}^{s}$, proving the claim.

An absolute value $|\cdot|: K \rightarrow \mathbb{R}_{\geq 0}$ is said to be non-Archimedean if

$$
|x+y| \leq \max \{|x|,|y|\}, \quad x, y \in K
$$

An absolute value is called Archimedean if it is not non-Archimedean. For example, the absolute value on the field \mathbb{R} is Archimedean, since, for example, $|1+1|=2>\max \{|1|,|1|\}=1$.
Lemma 3. If $|\cdot|$ is a non-Archimedean absolute value on a field K and $|x| \neq|y|$, then

$$
|x+y|=\max \{|x|,|y|\} .
$$

3 Valuations

A valuation on a field K is a function $v: K \rightarrow \mathbb{R} \cup\{\infty\}$ satisfying $v(x)=\infty$ if and only if $x=0, v(x y)=v(x)+v(y)$, and

$$
v(x+y) \geq \min \{v(x), v(y)\}
$$

The trivial valuation is $v(x)=0$ for $x \neq 0$ and $v(0)=\infty$.
Lemma 4. Let v be a valuation on a field K. If $v(x) \neq v(y)$, then $v(x+y)=$ $\min \{v(x), v(y)\}$.
Proof. Take $v(y)<v(x) \leq \infty$. For $x=0$,

$$
v(x+y)=v(y)=\min \{\infty, v(y)\}=\min \{v(x), v(y)\}
$$

For $x \neq 0$, assume by contradiction that $\min \{v(x+y), v(x)\}=v(x)$. Then, since $v(-x)=v(-1 \cdot x)=v(-1)+v(x)=v(x)$,

$$
v(x)>v(y)=v(x+y-x) \geq \min \{v(x+y), v(x)\}=v(x)
$$

a contradiction. Hence $\min \{v(x+y), v(x)\}=v(x+y)$. Then

$$
\begin{aligned}
v(y) & =v(x+y-x) \\
& \geq \min \{v(x+y), v(x)\} \\
& =v(x+y) \\
& \geq \min \{v(x), v(y)\} \\
& =v(y)
\end{aligned}
$$

Hence $v(x+y)=v(y)=\min \{v(x), v(y)\}$, completing the proof.
Theorem 5. Let K be a field. If $|\cdot|$ is a non-Archimedean absolute value on K and $s>0$, then $v_{s}: K \rightarrow \mathbb{R} \cup\{\infty\}$ defined by $v_{s}(x)=-s \log |x|$ for $x \neq 0$ and $v_{s}(0)=\infty$ is a valuation on K.

If v is a valuation on K and $q>1$, then the function $|\cdot|_{q}: K \rightarrow \mathbb{R}_{\geq 0}$ defined $b y|x|_{q}=q^{-v(x)}$ for $x \neq 0$ and $|0|_{q}=0$ is a non-Archimedean absolute value on K.

Proof. Suppose that $|\cdot|$ is a non-Archimedean absolute value on K and that $s>0$. Let $x, y \in K$. If either is 0 , then it is immediate that $v_{s}(x y)=\infty=$ $v_{s}(x)+v_{s}(y)$. If neither is 0 , then

$$
v_{s}(x y)=-s \log |x y|=-s \log (|x||y|)=-s \log |x|-s \log |y|=v_{s}(x)+v_{s}(y) .
$$

Now, if both x, y are 0 then

$$
v_{s}(x+y)=v_{s}(0)=\infty=\min \{\infty, \infty\}=\min \left\{v_{s}(x), v_{s}(y)\right\}
$$

If $x=0$ and $y \neq 0$ then

$$
v_{s}(x+y)=v_{s}(y)=-s \log |y|=\min \{-s \log |y|, \infty\}=\min \left\{v_{s}(y), v_{s}(x)\right\}
$$

If neither x, y is 0 but $x=-y$, then

$$
v_{s}(x+y)=v_{s}(0)=\infty \geq \min \left\{v_{s}(x), v_{s}(y)\right\}
$$

Finally, if neither x, y is 0 and $x \neq-y$, then, because $|\cdot|$ is non-Archimedean,

$$
\begin{aligned}
v_{s}(x+y) & =-s \log |x+y| \\
& \geq-s \log (\max \{|x|,|y|\}) \\
& =\min \{-s \log |x|,-s \log |y|\} \\
& =\min \left\{v_{s}(x), v_{s}(y)\right\}
\end{aligned}
$$

Thus v_{s} is a valuation on K.
Suppose that v is a valuation on K and that $q>1$. If x, y are nonzero, then

$$
|x y|_{q}=q^{-v(x y)}=q^{-v(x)-v(y)}=q^{-v(x)} q^{-v(y)}=|x|_{q}|y|_{q} .
$$

Let $x, y \in K$. To show that $|x+y|_{q} \leq|x|_{q}+|y|_{q}$, it suffices to show that $|x+y|_{q} \leq \max \left\{|x|_{q},|y|_{q}\right\}$; proving this will establish that $|\cdot|_{q}$ is an absolute value and furthermore that $|\cdot|_{q}$ is non-Archimedean. If x, y are both 0 , then $|x+y|_{q}=|0|_{q}=0=\max \{0,0\}=\max \left\{|x|_{q},|y|_{q}\right\}$. If $x=0$ and $y \neq 0$, then $|x+y|_{q}=|y|_{q}=q^{-v(y)}=\max \left\{q^{-v(y)}, 0\right\}=\max \left\{|y|_{q},|x|_{q}\right\}$. If neither x, y is 0 but $x=-y$, then

$$
|x+y|_{q}=|0|_{q}=0 \leq \max \left\{|x|_{q},|y|_{q}\right\} .
$$

Finally, if neither x, y is 0 and $x \neq-y$, then

$$
\begin{aligned}
|x+y|_{q} & =q^{-v(x+y)} \\
& \leq q^{-\min \{v(x), v(y)\}} \\
& =\max \left\{q^{-v(x)}, q^{-v(y)}\right\} \\
& =\max \left\{|x|_{q},|y|_{q}\right\} .
\end{aligned}
$$

Two valuations v_{1}, v_{2} on a field K are said to be equivalent if there is some real $s>0$ such that

$$
v_{1}=s v_{2}
$$

A valuation v on a field K is said to be discrete if there is some real $s>0$ such that

$$
v\left(K^{*}\right)=s \mathbb{Z}
$$

A valuation is said to be normalized if

$$
v\left(K^{*}\right)=\mathbb{Z}
$$

4 Valuation rings

Theorem 6. If K is a field and v is a nontrivial valuation on K, then

$$
\mathcal{O}_{v}=\{x \in K: v(x) \geq 0\}
$$

is a maximal proper subring of K, and for all $x \neq 0, x \in \mathcal{O}_{v}$ or $x^{-1} \in \mathcal{O}_{v}$. The set

$$
\{x \in K: v(x)=0\}
$$

is the group of invertible elements of \mathcal{O}_{v}, and the set

$$
\mathfrak{p}_{v}=\{x \in K: v(x)>0\}
$$

is the unique maximal ideal of \mathcal{O}_{v}.
Proof. It is immediate that $0,1 \in \mathcal{O}_{v}$. For $x \in \mathcal{O}_{v}, v(-x)=v(x) \geq 0$, so $-x \in \mathcal{O}_{v}$. For $x, y \in \mathcal{O}_{v}, v(x y)=v(x)+v(y) \geq 0$, so $x y \in \mathcal{O}_{v}$. And $v(x+y) \geq$ $\min \{v(x), v(y)\} \geq 0$, so $x+y \in \mathcal{O}_{v}$. Thus \mathcal{O}_{v} is a subring of K. For nonzero $x \in K$, if $v(x) \geq 0$ then $x \in \mathcal{O}_{v}$, and if $v(x)<0$ then $v\left(x^{-1}\right)=-v(x)>0$, so $x^{-1} \in \mathcal{O}_{v}$.

Since v is nontrivial, there is some $x \in K$ with $v(x) \neq 0, \infty$. If $x \in \mathcal{O}_{v}$ then $v(x)>0$ and so $v\left(x^{-1}\right)=-v(x)<0$, giving $x^{-1} \notin \mathcal{O}_{v}$. Hence $\mathcal{O}_{v} \neq K$, showing that \mathcal{O}_{v} is a proper subring of K.

To show that \mathcal{O}_{v} is a maximal proper subring, it suffices to show that if $z \in K \backslash \mathcal{O}_{v}$ then $\mathcal{O}_{v}[z]=K$, i.e., that the smallest ring containing \mathcal{O}_{v} and z is K. As $z \notin \mathcal{O}_{v}, v(z)<0$. Let $y \in K$. For any positive integer j we have $v\left(y z^{-j}\right)=v(y)-j v(z)$, and because $v(z)<0$, there is some $j=j(y)$ such that $v\left(y z^{-j}\right)>0$. For this $j, y z^{-j} \in \mathcal{O}_{v}$. Hence $y \in \mathcal{O}_{v}[z]$, and so $\mathcal{O}_{v}[z]=K$, showing that \mathcal{O}_{v} is a maximal proper subring.

Suppose that $x \in \mathcal{O}_{v}$ and $x^{-1} \in \mathcal{O}_{v}$. If $v(x)>0$, then $v\left(x^{-1}=-v(x)<0\right.$, contradicting that $x^{-1} \in \mathcal{O}_{v}$. Hence $v(x)=0$. If $v(x)=0$, then, as $x^{-1} \in K$, $v\left(x^{-1}\right)=-v(x)=0$, so $x^{-1} \in \mathcal{O}_{v}$, hence x is an element of \mathcal{O}_{v} whose inverse is in \mathcal{O}_{v}.

Let $x, y \in \mathfrak{p}_{v}$. Then, since $v(x)>0$ and $v(y)>0$,

$$
v(x-y) \geq \min \{v(x), v(-y)\}=\min \{v(x), v(y)\}>0
$$

showing that $x-y \in \mathfrak{p}_{v}$, and thus that \mathfrak{p}_{v} is an additive subgroup of \mathcal{O}_{v}. Let $x \in \mathfrak{p}_{v}$ and $z \in \mathcal{O}_{v}$. Then, since $v(z) \geq 0$ and $v(x)>0$,

$$
v(z x)=v(z)+v(x) \geq v(x)>0
$$

showing that $z x \in \mathfrak{p}_{v}$. Therefore \mathfrak{p}_{v} is an ideal in the ring \mathcal{O}_{v}. Since $v(1)=0$, $1 \notin \mathfrak{p}_{v}$, so \mathfrak{p}_{v} is a proper ideal.

The fact that \mathfrak{p}_{v} is maximal follows from it being the set of noninvertible elements of \mathcal{O}_{v}. Suppose that B is a maximal ideal B of \mathcal{O}_{v}. Because B is a proper ideal it contains no invertible elements, and hence is contained in \mathfrak{p}_{v}, the set of noninvertible elements of \mathcal{O}_{v}. Since B is maximal, it must be that $B=\mathfrak{p}_{v}$. Therefore, any maximal ideal of \mathcal{O}_{v} is \mathfrak{p}_{v}, showing that \mathfrak{p}_{v} is the unique maximal ideal of \mathcal{O}_{v}.

The above ring \mathcal{O}_{v} is called the valuation ring. Generally, a ring that has a unique maximal ideal is called a local ring, and thus the above theorem shows that the valuation ring is a local ring. We call the quotient $\mathcal{O}_{v} / \mathfrak{p}_{v}$ the residue field of \mathcal{O}_{v}.

Lemma 7. If v is a normalized valuation on a field K then for all nonzero $x \in K$ and $t \in \mathfrak{p}_{v}, v(t)=1$, there is some $u \in \mathcal{O}_{v}^{*}$ such that

$$
x=u t^{n}, \quad n=v(x) .
$$

Proof. Since $x \neq 0, v(x)=n \in \mathbb{Z}$. Hence $v\left(x t^{-n}\right)=v(x)-n v(t)=v(x)-n=0$, and therefore $u=x t^{-n} \in \mathcal{O}^{*}$. Then $x=u t^{n}$, completing the proof.

Theorem 8. If v is a normalized valuation on a field K, then \mathcal{O}_{v} is a principal ideal domain. If A is a nonzero ideal of \mathcal{O}_{v}, then there is some $t \in \mathfrak{p}, v(t)=1$ and $n \geq 0$ such that

$$
A=t^{n} \mathcal{O}_{v}=\{x \in K: v(x) \geq n\}=\mathfrak{p}_{v}^{n}
$$

and

$$
\mathfrak{p}_{v}^{n} / \mathfrak{p}_{v}^{n+1} \cong \mathcal{O}_{v} / \mathfrak{p}_{v}
$$

as $\mathcal{O}_{v} / \mathfrak{p}_{v}$-linear vector spaces.
Proof. Let $A \neq\{0\}$ be an ideal of \mathcal{O}_{v}. For any $y \in A, v(y) \geq 0$, and we take $x \in A$ such that

$$
\begin{equation*}
v(x)=\min \{v(y): y \in A\} . \tag{1}
\end{equation*}
$$

Since $v\left(K^{*}\right)=\mathbb{Z}$, there is some $t \in K$ with $v(t)=1$, and because $v(t)>0$, $t \in \mathfrak{p}_{v}$. By Lemma 7, there is some $u \in \mathcal{O}^{*}$ such that $x=u t^{n}, n=v(x)$. For any $z \in \mathcal{O}, x z \in A$ and so $t^{n} z \in A$. Thus $t^{n} \mathcal{O}_{v} \subset A$. On the other hand, let $y \in A$. Then also by Lemma 7 there is some $w \in \mathcal{O}_{v}^{*}$ such that $y=w t^{m}$,
$m=v(y)$. By (1), $m=v(y) \geq v(x)=n$, so $v\left(t^{m-n}\right)=(m-n) v(t)=m-n \geq 0$ so $t^{m-n} \in \mathcal{O}_{v}$, giving

$$
y=w t^{m}=t^{n}\left(w t^{m-n}\right) \in t^{n} \mathcal{O}_{v}
$$

Therefore $A \subset t^{n} \mathcal{O}_{v}$, and so $A=t^{n} \mathcal{O}_{v}$. That is, A is the principal ideal generated by t^{n}, which shows that \mathcal{O}_{v} is a principal ideal domain.

Let $t \in \mathfrak{p}_{v}$ with $v(t)=1$, and define $\phi: \mathfrak{p}_{v}^{n} \rightarrow \mathcal{O}_{v} / \mathfrak{p}_{v}$ by $v\left(a t^{n}\right)=a+\mathfrak{p}$, for $a \in \mathcal{O}_{v}$.

Lemma 9. If v_{1}, v_{2} are discrete valuations on a field K such that $\mathcal{O}_{v_{1}}=\mathcal{O}_{v_{2}}$, then v_{1} and v_{2} are equivalent.

$5 \quad p$-adic valuations

Fix a prime number p. For nonzero $a \in \mathbb{Q}$, there are unique integers n, r, s satisfying

$$
a=\frac{r}{s} p^{n},
$$

where r, s are coprime, $s>0$, and $p \nmid r s$. We define $v_{p}(a)=n$. Furthermore, we define $v_{p}(0)=\infty$.

Theorem 10. $v_{p}: \mathbb{Q} \rightarrow \mathbb{R} \cup\{\infty\}$ is a normalized valuation.
Proof. For nonzero $a, b \in \mathbb{Q}$, write

$$
a=\frac{r_{1}}{s_{1}} p^{m}, \quad b=\frac{r_{2}}{s_{2}} p^{n},
$$

where $\operatorname{gcd}\left(r_{1}, s_{1}\right)=\operatorname{gcd}\left(r_{2}, s_{2}\right)=1, s_{1}, s_{2}>0$, and $p \nmid r_{1} s_{1}, p \nmid r_{2} s_{2}$. Then,

$$
a b=\frac{r_{1} r_{2}}{s_{1} s_{2}} p^{m+n}
$$

where $p \nmid r_{1} s_{1} r_{2} s_{2}$; the fraction $\frac{r_{1} r_{2}}{s_{1} s_{2}}$ need not be in lowest terms. So $v_{p}(a b)=$ $m+n=v_{p}(a)+v_{p}(n)$.

Suppose that $v_{p}(a) \leq v_{p}(b)$. Then

$$
a+b=\frac{r_{1}}{s_{1}} p^{m}+\frac{r_{2}}{s_{2}} p^{n}=\left(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}} p^{n-m}\right) p^{m}=\frac{r_{1} s_{2}+r_{2} s_{1} p^{n-m}}{s_{1} s_{2}} p^{m} .
$$

Since $p \nmid s_{1}$ and $p \nmid s_{2}$, then

$$
v_{p}(a+b) \geq m=v_{p}(a)=\min \left\{v_{p}(a), v_{p}(b)\right\} .
$$

We call v_{p} the p-adic valuation. The valuation ring of \mathbb{Q} corresponding to v_{p} is

$$
\mathcal{O}_{p}=\left\{x \in \mathbb{Q}: v_{p}(x) \geq 0\right\}
$$

in other words, those rational numbers such that in lowest terms, p does not divide their denominator. For example, $\frac{11}{169},-\frac{9}{35} \in \mathcal{O}_{3}$, and $\frac{5}{3} \notin \mathcal{O}_{3}$. By Theorem 6, the group of units of the valuation $\operatorname{ring} \mathcal{O}_{p}$ is

$$
\mathcal{O}_{p}^{*}=\left\{x \in \mathbb{Q}: v_{p}(x)=0\right\}
$$

in other words, those rational numbers such that in lowest terms, p divides neither their numerator nor their denominator. As well by Theorem $6, \mathcal{O}_{p}$ is a local ring whose unique maximal ideal is

$$
\mathfrak{p}_{p}=\left\{x \in \mathbb{Q}: v_{p}(x)>0\right\},
$$

in other words, those rational numbers such that in lowest terms, p divides their numerator and does not divide their denominator. We see that $p \in \mathfrak{p}_{p}$ and $v_{p}(p)=1$, so the nonzero ideals of \mathcal{O}_{p} are of the form

$$
p^{n} \mathcal{O}_{p}
$$

Lemma 11. $\mathcal{O}_{p} / \mathfrak{p}_{p} \cong \mathbb{Z} / p \mathbb{Z}$.

$6 \quad p$-adic absolute values and metrics

We define $|\cdot|_{p}: \mathbb{Q} \rightarrow \mathbb{R}_{\geq 0}$ by $|a|_{p}=p^{-v_{p}(n)}$ for $a \neq 0$ and $|0|_{p}=0$. This is a non-Archimedean absolute value on \mathbb{Q}, which we call the p-adic absolute value.

Example 12. For $p=3$ and $a=-\frac{57}{10}$, we have $n=1, r=-19, s=10$. Thus $\left|-\frac{57}{10}\right|_{3}=3^{-1}$.

For $p=5$ and $a=\frac{28}{75}$, we have $n=-2, r=28, s=3$. Thus $\left|\frac{28}{75}\right|_{5}=5^{2}$.
We define $d_{p}(x, y)=|x-y|_{p}$. The sequences $x_{l}=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+$ $a_{l-1} p^{l-1}$ constructed when applying Hensel's lemma satisfy, for $m<n$,

$$
x_{n}-x_{m}=a_{m} p^{m}+a_{m+1} p^{m+1}+\cdots+a_{n-1} p^{n-1} \equiv 0 \quad\left(\bmod p^{m}\right)
$$

so

$$
\left|x_{n}-x_{m}\right|_{p} \leq p^{-m}
$$

and

$$
f\left(x_{n}\right) \equiv 0 \quad\left(\bmod p^{n}\right)
$$

so

$$
\left|f\left(x_{n}\right)\right|_{p} \leq p^{-n}
$$

Thus, x_{n} is a Cauchy sequence in the p-adic metric $d_{p}(x, y)=|x-y|_{p}$, and $f\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 13. If x_{n} and y_{n} are Cauchy sequences in $\left(\mathbb{Q}, d_{p}\right)$, then $x_{n}+y_{n}$ and $x_{n} \cdot y_{n}$ are Cauchy sequences in $\left(\mathbb{Q}, d_{p}\right)$.

Proof. The claim follows from

$$
\left|x_{n}+y_{n}-\left(x_{m}+y_{m}\right)\right|_{p} \leq\left|x_{n}-x_{m}\right|_{p}+\left|y_{n}-y_{m}\right|_{p}
$$

and

$$
\begin{aligned}
\left|x_{n} \cdot y_{n}-x_{m} \cdot y_{m}\right|_{p} & =\left|x_{n} \cdot y_{n}-x_{m} \cdot y_{n}+x_{m} \cdot y_{n}-x_{m} \cdot y_{m}\right|_{p} \\
& \leq\left|x_{n}-x_{m}\right|_{p}\left|y_{n}\right|_{p}+\left|x_{m}\right|_{p}\left|y_{n}-y_{m}\right|_{p}
\end{aligned}
$$

and the fact that x_{n}, y_{n} being Cauchy implies that $\left|x_{n}\right|_{p},\left|y_{n}\right|_{p}$ are bounded.

7 Completions of metric spaces

If (X, d) is a metric space, a completion of X is a complete metric space (Y, ρ) and an isometry $i: X \rightarrow Y$ such that for every metric space (Z, r) and isometry $j: X \rightarrow Z$, there is a unique isometry $J: Y \rightarrow Z$ such that $J \circ i=j$. It is a fact that any metric space has a completion, and that if $\left(Y_{1}, \rho_{1}\right)$ and $\left(Y_{2}, \rho_{2}\right)$ are completions then there is a unique isometric isomorphism $f: Y_{1} \rightarrow Y_{2}$.

For p prime, let $\left(\mathbb{Q}_{p}, d_{p}\right)$ be the completion of $\left(\mathbb{Q}, d_{p}\right)$. Elements of \mathbb{Q}_{p} are called p-adic numbers. For $x, y \in \mathbb{Q}_{p}$, there are Cauchy sequences x_{n}, y_{n} in $\left(\mathbb{Q}, d_{p}\right)$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in $\left(\mathbb{Q}_{p}, d_{p}\right)$. We define addition and multiplication on the set \mathbb{Q}_{p} by

$$
x+y=\lim \left(x_{n}+y_{n}\right), \quad x \cdot y=\lim \left(x_{n} \cdot y_{n}\right)
$$

that these limits exists follows from Lemma 13. If $x \in \mathbb{Q}_{p}, x \neq 0$, then there is a sequence $x_{n} \in \mathbb{Q}$, each term of which is $\neq 0$, such that $x_{n} \rightarrow x$ in $\left(\mathbb{Q}_{p}, d_{p}\right)$. Then x_{n}^{-1} is a Cauchy sequence in $\left(\mathbb{Q}, d_{p}\right)$ hence converges to some $y \in \mathbb{Q}_{p}$ which satisfies $x \cdot y=1$. Therefore \mathbb{Q}_{p} is a field.

We define $v_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{R} \cup\{\infty\}$

$$
v_{p}(x)=\lim v_{p}\left(x_{n}\right), \quad x_{n} \rightarrow x
$$

One proves that v_{p} is a normalized valuation on the field $\mathbb{Q}_{p} \cdot{ }^{3}$ We then define $|\cdot|_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{R}_{\geq 0}$ by $|x|_{p}=p^{-v_{p}(x)}$ for $x \neq 0$ and $|0|_{p}=\infty$.

8 The exponential function

Lemma 14. For $a_{1}, \ldots, a_{r} \in \mathbb{Q}_{p}$,

$$
\left|a_{1}+\cdots+a_{r}\right|_{p} \leq \max \left\{\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right\}
$$

[^2]Lemma 15. A sequence $a_{i} \in \mathbb{Q}_{p}$ is Cauchy if and only if $a_{i+1}-a_{i} \rightarrow 0$ as $i \rightarrow \infty$.

Proof. Assume that $a_{i+1}-a_{i} \rightarrow 0$ and let $\epsilon>0$. Then there is some i_{0} such that $i \geq i_{0}$ implies $\left|a_{i+1}-a_{i}\right|_{p}<\epsilon$. For $i_{0} \leq i<j$,

$$
\begin{aligned}
\left|a_{j}-a_{i}\right|_{p} & =\left|a_{j}-a_{j-1}+a_{j-1}+\cdots-a_{i+1}+a_{i+1}-a_{i}\right|_{p} \\
& =\left|\left(a_{j}-a_{j-1}\right)+\cdots+\left(a_{i+1}-a_{i}\right)\right|_{p} \\
& \leq \max \left\{\left|a_{j}-a_{j-1}\right|, \ldots,\left|a_{i+1}-a_{i}\right|\right\} \\
& <\epsilon .
\end{aligned}
$$

The above shows that if $a_{i} \rightarrow 0$ in $\left(\mathbb{Q}_{p}, d_{p}\right)$ then the series $\sum a_{i}$ converges in $\left(\mathbb{Q}_{p}, d_{p}\right)$.

Lemma 16 (Exponential power series). If $v_{p}(x)>\frac{1}{p-1}$, then

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges in $\left(\mathbb{Q}_{p}, d_{p}\right)$.
Proof.

$$
v_{p}(n!)=\sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right] \leq \sum_{j=1}^{\infty} \frac{n}{p^{j}}=\frac{1}{n p} \frac{1}{1-\frac{1}{p}}=\frac{n}{p-1} .
$$

Then

$$
v_{p}\left(\frac{x^{n}}{n!}\right)=n v_{p}(x)-v_{p}(n!) \geq n v_{p}(x)-\frac{n}{p-1}=n\left(v_{p}(x)-\frac{1}{p-1}\right) .
$$

As $n \rightarrow \infty$ this tends to $+\infty$, hence

$$
\left|\frac{x^{n}}{n!}\right|_{p}=p^{-v_{p}\left(\frac{x^{n}}{n!}\right)} \rightarrow 0
$$

and thus the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges.
Lemma 17 (Logarithm power series). If $v_{p}(x)>0$, then

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

converges in $\left(\mathbb{Q}_{p}, d_{p}\right)$.
Proof. For n a positive integer we have $v_{p}(n) \leq \log _{p} n$. Then,

$$
v_{p}\left(\frac{x^{n}}{n}\right)=n v_{p}(x)-v_{p}(n) \geq n v_{p}(x)-\log _{p} n .
$$

If $v_{p}(x)>0$ then this tends to $+\infty$ as $n \rightarrow \infty$.

9 Topology

We define \mathbb{Z}_{p} to be the valuation ring of \mathbb{Q}_{p}. Elements of \mathbb{Z}_{p} are called p-adic integers. For $x \in \mathbb{Q}_{p}$ and real $r>0$, write

$$
\bar{B}_{p}(r, x)=\left\{y \in \mathbb{Q}_{p}:|x-y|_{p} \leq r\right\}=\left\{y \in \mathbb{Q}_{p}: v_{p}(x-y) \geq-\log _{p} r\right\}
$$

In particular,

$$
\bar{B}_{p}(0,1)=\mathbb{Z}_{p} .
$$

Because v_{p} is discrete, there is some $\epsilon>0$ such that

$$
\left\{y \in \mathbb{Q}_{p}:|x-y|_{p} \leq r\right\}=\left\{y \in \mathbb{Q}_{p}:|x-y|_{p}<r+\epsilon\right\} .
$$

This shows that $\bar{B}_{p}(x, r)$ is open in the topology induced by v_{p}, and thus is both closed and open. It follows that \mathbb{Q}_{p} is totally disconnected. ${ }^{4}$

Theorem 18. \mathbb{Z}_{p} is totally bounded.
The fact that \mathbb{Z}_{p} is a totally bounded subset of a complete metric space implies that \mathbb{Z}_{p} is compact. Then because

$$
\bar{B}_{d}\left(0, p^{k}\right)=\left\{y \in \mathbb{Q}_{p}:|y|_{p} \leq p^{k}\right\}=\left\{y \in \mathbb{Q}_{p}:\left|p^{k} y\right|_{p} \leq 1\right\}=p^{-k} \mathbb{Z}_{p}
$$

and translation is a homeomorphism, any closed ball in \mathbb{Q}_{p} is compact. Therefore \mathbb{Q}_{p} is locally compact.
\mathbb{Q}_{p} is a locally compact abelian group under addition, and we take Haar measure on it satisfying $\mu\left(\mathbb{Z}_{p}\right)=1$. One can explicitly calculate the characters on $\mathbb{Q}_{p} .{ }^{5}$

[^3]
[^0]: ${ }^{1}$ Hua Loo Keng, Introduction to Number Theory, Chapter 15, "p-adic numbers".

[^1]: ${ }^{2}$ Absolute values, valuations and completion, https://www.math.ethz.ch/education/ bachelor/seminars/fs2008/algebra/Crivelli.pdf

[^2]: ${ }^{3}$ cf. Paul Garrett, Classical definitions of \mathbb{Z}_{p} and \mathbb{A}, http://www.math.umn.edu/~garrett/ m/mfms/notes/05_compare_classical.pdf

[^3]: ${ }^{4}$ Gerald B. Folland, A Course in Abstract Harmonic Analysis, pp. 34-36.
 ${ }^{5}$ Gerald B. Folland, A Course in Abstract Harmonic Analysis, pp. 91-93, 104. Cf. Keith Conrad, The character group of \mathbf{Q}, http://www.math.uconn.edu/~kconrad/blurbs/ gradnumthy/characterQ.pdf

