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1 Hensel’s lemma

Let p be prime and f(x) ∈ Z[x].1 Suppose that 0 ≤ a0 < p, satisfies

f(a0) ≡ 0 (mod p)

and
f ′(a0) ̸≡ 0 (mod p).

Using the power series expansion

f(a0 + h) = f(a0) + f ′(a0)h+
f ′′(a0)

2
h2 + · · · ,

for any y ∈ Z we have

f(a0 + py) = f(a0) + f ′(a0)py +
f ′′(a0)

2
p2y2 + · · ·

so
f(a0 + py)

p
=

f(a0)

p
+ f ′(a0)y +

f ′′(a0)

2
py2 + · · · .

Because f(a0) ≡ 0 (mod p), each term on the right-hand side is an integer.
Then, f(a0 + py) ≡ 0 (mod p2) is equivalent to

f(a0)

p
+ f ′(a0)y +

f ′′(a0)

2
py2 + · · · ≡ 0 (mod p),

i.e.,

f ′(a0)y ≡ −f(a0)

p
(mod p).

Because f ′(a0) ̸≡ 0 (mod p), there is a unique y (mod p) that solves the above
congruence, so there is a unique y (mod p) that solves f(a0+py) ≡ 0 (mod p2).
This y is

y ≡ −f(a0)

p
(f ′(a0))

−1 (mod p).

1Hua Loo Keng, Introduction to Number Theory, Chapter 15, “p-adic numbers”.
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Let 0 ≤ a1 < p be a1 ≡ y (mod p).
Suppose that

x = a0 + a1p+ a2p
2 + · · ·+ al−2p

l−2, 0 ≤ aj < p,

satisfies
f(x) ≡ 0 (mod pl−1)

and
f ′(x) ̸≡ 0 (mod p).

Using the power series expansion

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 + · · · ,

for any y ∈ Z we have

f(x+ pl−1y) = f(x) + f ′(x)pl−1y +
f ′′(x)

2
p2l−2y2 + · · · ,

i.e.
f(x+ pl−1y)

pl−1
=

f(x)

pl−1
+ f ′(x)y +

f ′′(x)

2
pl−1y2 + · · · .

Because f(x) ≡ 0 (mod pl−1), each term on the right-hand side is an integer.
Then, f(x+ pl−1y) ≡ 0 (mod pl) is equivalent to

f(x)

pl−1
+ f ′(x)y +

f ′′(x)

2
pl−1y2 + · · · ≡ 0 (mod p),

i.e.,

f ′(x)y ≡ −f(x)

pl−1
(mod p).

Because f ′(x) ̸≡ 0 (mod p), there is a unique y (mod p) that solves the above
congruence, so there is a unique y (mod p) that solves f(x+pl−1y) ≡ 0 (mod pl).
This y is

y ≡ −f(x)

pl−1
(f ′(x))−1 (mod p).

Let 0 ≤ al−1 < p be al−1 ≡ y (mod p).
We have thus inductively defined a sequence a0, a1, a2, . . ., with 0 ≤ aj < p,

such that for any l,

f(a0 + a1p+ · · ·+ al−1p
l−1) ≡ 0 (mod pl).

We wish to make sense of the infinite expression

a0 + a1p+ a2p
2 + a3p

3 + · · ·

Calling this x, it ought to be the case that f(x) ≡ 0 (mod p), f(x) ≡ 0
(mod p2), f(x) ≡ 0 (mod p3), etc.

2



Example 1. Take p = 3 and f(x) = x2 − 7, f ′(x) = 2x. The two conditions
f(x) ≡ 0 (mod p) and f ′(x) ̸≡ 0 (mod p) are satisfied both by a0 = 1 and
a0 = 2. Take a0 = 1. Then

a1 ≡ −f(1)

3
(f ′(1))−1 ≡ −−6

3
(2)−1 ≡ 1 (mod 3).

So a1 = 1. Then,

a2 ≡ −f(1 + 1 · 3)
32

(f ′(1 + 1 · 3))−1 ≡ −9

9
(8)−1 ≡ −2 ≡ 1 (mod 3).

So a2 = 1. Then,

a3 ≡ −f(1 + 1 · 3 + 1 · 32)
33

(f ′(1 + 1 · 3 + 1 · 32))−1 ≡ −6 · 2 ≡ 0 (mod 3).

So, a3 = 0. Then,

a4 ≡ −f(1 + 1 · 3 + 1 · 32 + 0 · 33)
34

(f ′(1+1·3+1·32+0·33))−1 ≡ −2·2 ≡ 2 (mod 3).

So, a4 = 2, etc.

2 Absolute values on fields

If K is a field, an absolute value on K is a map | · | : K → R≥0 such that
|x| = 0 if and only if x = 0, |xy| = |x||y|, and |x + y| ≤ |x| + |y|. The trivial
absolute value on K is |0| = 0 and |x| = 1 for all nonzero x ∈ K.

If | · | is an absolute value on K, then d(x, y) = |x− y| is a metric on K. The
trivial absolute value yields the discrete metric. Two absolute values | · |1, | · |2
on K are said to be equivalent if they induce the same topology on K.

The following theorem characterizes equivalent absolute values.2

Theorem 2. Two nontrivial absolute values | · |1, | · |2 are equivalent if and only
if there is some real s > 0 such that

|x|1 = |x|s2, x ∈ K.

Proof. Suppose that s > 0 and that |x|1 = |x|s2 for all x ∈ K. Then

Bd1(x, r) = {y ∈ K : |y − x|1 < r}
= {y ∈ K : |y − x|s2 < r}
= {y ∈ K : |y − x|2 < r1/s}
= Bd2(x, r

1/s).

2Absolute values, valuations and completion, https://www.math.ethz.ch/education/

bachelor/seminars/fs2008/algebra/Crivelli.pdf
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Since the collection of open balls for d1 is equal to the collection of open balls
for d2, the absolute values | · |1, | · |2 induce the same topology on K.

Suppose that | · |1, | · |2 are equivalent. If |x|1 < 1 then d1(x
n, 0) = |xn|1 =

|x|n1 → 0 as n → ∞. Thus xn → 0 in d1 and hence, because the topologies
induced by |·|1 and |·|2 are equal, xn → 0 in d2, i.e. |x|n2 = |xn|2 = d2(x

n, 0) → 0.
Therefore |x|2 < 1. Thus, |x|1 < 1 if and only if |x|2 < 1.

Let y ∈ K such that |y|1 > 1 (there is such an element because | · |1 is
nontrivial and |y−1|1 = |y|−1

1 ) and let x ∈ K with |x|1 ̸= 0, 1. There is some
nonzero α ∈ R such that |x|1 = |y|α1 . Let mi

ni
∈ Q all be greater than α and

converge to α. Then, because |y|1 > 1, we have |x|1 = |y|α1 < |y|
mi
ni
1 , hence

|x|ni
1 < |y|mi

1 , hence |xni |1
|ymi |1 < 1, hence∣∣∣∣ xni

ymi

∣∣∣∣
1

< 1.

Because | · |1 and | · |2 are equivalent,

|x|ni
2

|y|mi
2

=

∣∣∣∣ xni

ymi

∣∣∣∣
2

< 1,

so |x|2 < |y|
mi
ni
2 . Taking i → ∞ gives

|x|2 ≤ |y|α2 .

Similarly, we check that
|x|2 ≥ |y|α2 .

Therefore,
|x|2 = |y|α2 .

Using this and |x|1 = |y|α1 , we have

log |x|1 = α log |y|1, log |x|2 = α log |y|2,

and so, as α ̸= 0,
log |x|1
log |x|2

=
log |y|1
log |y|2

.

This is true for any x ∈ K with |x|1 ̸= 0, 1. We define s ∈ R to be this common
value. The fact that |y|1 > 1 implies, because | · |1 and | · |2 are equivalent, that
|y|2 > 1, and so s > 0.

Now take x ∈ K. If x = 0 then |x|1 = 0 = 0s = |x|s2. Because | · |1 and | · |2
are equivalent, |x|2 > 1 implies that |x|1 > 1 and |x|2 < 1 implies that |x|1 < 1,
so if |x|1 = 1 then |x|2 = 1 and hence |x|1 = 1 = 1s = |x|s2. If |x|1 ̸= 0, 1, then
the above shows that

log |x|1
log |x|2

= s,

i.e., |x|1 = |x|s2, proving the claim.
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An absolute value | · | : K → R≥0 is said to be non-Archimedean if

|x+ y| ≤ max{|x|, |y|}, x, y ∈ K.

An absolute value is called Archimedean if it is not non-Archimedean. For
example, the absolute value on the field R is Archimedean, since, for example,
|1 + 1| = 2 > max{|1|, |1|} = 1.

Lemma 3. If |·| is a non-Archimedean absolute value on a field K and |x| ≠ |y|,
then

|x+ y| = max{|x|, |y|}.

3 Valuations

A valuation on a field K is a function v : K → R ∪ {∞} satisfying v(x) = ∞
if and only if x = 0, v(xy) = v(x) + v(y), and

v(x+ y) ≥ min{v(x), v(y)}.

The trivial valuation is v(x) = 0 for x ̸= 0 and v(0) = ∞.

Lemma 4. Let v be a valuation on a field K. If v(x) ̸= v(y), then v(x+ y) =
min{v(x), v(y)}.

Proof. Take v(y) < v(x) ≤ ∞. For x = 0,

v(x+ y) = v(y) = min{∞, v(y)} = min{v(x), v(y)}.

For x ̸= 0, assume by contradiction that min{v(x + y), v(x)} = v(x). Then,
since v(−x) = v(−1 · x) = v(−1) + v(x) = v(x),

v(x) > v(y) = v(x+ y − x) ≥ min{v(x+ y), v(x)} = v(x),

a contradiction. Hence min{v(x+ y), v(x)} = v(x+ y). Then

v(y) = v(x+ y − x)

≥ min{v(x+ y), v(x)}
= v(x+ y)

≥ min{v(x), v(y)}
= v(y).

Hence v(x+ y) = v(y) = min{v(x), v(y)}, completing the proof.

Theorem 5. Let K be a field. If | · | is a non-Archimedean absolute value on
K and s > 0, then vs : K → R ∪ {∞} defined by vs(x) = −s log |x| for x ̸= 0
and vs(0) = ∞ is a valuation on K.

If v is a valuation on K and q > 1, then the function | · |q : K → R≥0 defined
by |x|q = q−v(x) for x ̸= 0 and |0|q = 0 is a non-Archimedean absolute value on
K.
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Proof. Suppose that | · | is a non-Archimedean absolute value on K and that
s > 0. Let x, y ∈ K. If either is 0, then it is immediate that vs(xy) = ∞ =
vs(x) + vs(y). If neither is 0, then

vs(xy) = −s log |xy| = −s log(|x||y|) = −s log |x| − s log |y| = vs(x) + vs(y).

Now, if both x, y are 0 then

vs(x+ y) = vs(0) = ∞ = min{∞,∞} = min{vs(x), vs(y)}.

If x = 0 and y ̸= 0 then

vs(x+ y) = vs(y) = −s log |y| = min{−s log |y|,∞} = min{vs(y), vs(x)}.

If neither x, y is 0 but x = −y, then

vs(x+ y) = vs(0) = ∞ ≥ min{vs(x), vs(y)}.

Finally, if neither x, y is 0 and x ̸= −y, then, because | · | is non-Archimedean,

vs(x+ y) = −s log |x+ y|
≥ −s log(max{|x|, |y|})
= min{−s log |x|,−s log |y|}
= min{vs(x), vs(y)}.

Thus vs is a valuation on K.
Suppose that v is a valuation on K and that q > 1. If x, y are nonzero, then

|xy|q = q−v(xy) = q−v(x)−v(y) = q−v(x)q−v(y) = |x|q|y|q.

Let x, y ∈ K. To show that |x + y|q ≤ |x|q + |y|q, it suffices to show that
|x + y|q ≤ max{|x|q, |y|q}; proving this will establish that | · |q is an absolute
value and furthermore that | · |q is non-Archimedean. If x, y are both 0, then
|x + y|q = |0|q = 0 = max{0, 0} = max{|x|q, |y|q}. If x = 0 and y ̸= 0, then
|x+ y|q = |y|q = q−v(y) = max{q−v(y), 0} = max{|y|q, |x|q}. If neither x, y is 0
but x = −y, then

|x+ y|q = |0|q = 0 ≤ max{|x|q, |y|q}.

Finally, if neither x, y is 0 and x ̸= −y, then

|x+ y|q = q−v(x+y)

≤ q−min{v(x),v(y)}

= max{q−v(x), q−v(y)}
= max{|x|q, |y|q}.
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Two valuations v1, v2 on a field K are said to be equivalent if there is some
real s > 0 such that

v1 = sv2.

A valuation v on a field K is said to be discrete if there is some real s > 0
such that

v(K∗) = sZ.

A valuation is said to be normalized if

v(K∗) = Z.

4 Valuation rings

Theorem 6. If K is a field and v is a nontrivial valuation on K, then

Ov = {x ∈ K : v(x) ≥ 0}

is a maximal proper subring of K, and for all x ̸= 0, x ∈ Ov or x−1 ∈ Ov. The
set

{x ∈ K : v(x) = 0}

is the group of invertible elements of Ov, and the set

pv = {x ∈ K : v(x) > 0}

is the unique maximal ideal of Ov.

Proof. It is immediate that 0, 1 ∈ Ov. For x ∈ Ov, v(−x) = v(x) ≥ 0, so
−x ∈ Ov. For x, y ∈ Ov, v(xy) = v(x) + v(y) ≥ 0, so xy ∈ Ov. And v(x+ y) ≥
min{v(x), v(y)} ≥ 0, so x + y ∈ Ov. Thus Ov is a subring of K. For nonzero
x ∈ K, if v(x) ≥ 0 then x ∈ Ov, and if v(x) < 0 then v(x−1) = −v(x) > 0, so
x−1 ∈ Ov.

Since v is nontrivial, there is some x ∈ K with v(x) ̸= 0,∞. If x ∈ Ov

then v(x) > 0 and so v(x−1) = −v(x) < 0, giving x−1 ̸∈ Ov. Hence Ov ̸= K,
showing that Ov is a proper subring of K.

To show that Ov is a maximal proper subring, it suffices to show that if
z ∈ K \ Ov then Ov[z] = K, i.e., that the smallest ring containing Ov and z
is K. As z ̸∈ Ov, v(z) < 0. Let y ∈ K. For any positive integer j we have
v(yz−j) = v(y)− jv(z), and because v(z) < 0, there is some j = j(y) such that
v(yz−j) > 0. For this j, yz−j ∈ Ov. Hence y ∈ Ov[z], and so Ov[z] = K,
showing that Ov is a maximal proper subring.

Suppose that x ∈ Ov and x−1 ∈ Ov. If v(x) > 0, then v(x−1 = −v(x) < 0,
contradicting that x−1 ∈ Ov. Hence v(x) = 0. If v(x) = 0, then, as x−1 ∈ K,
v(x−1) = −v(x) = 0, so x−1 ∈ Ov, hence x is an element of Ov whose inverse is
in Ov.

Let x, y ∈ pv. Then, since v(x) > 0 and v(y) > 0,

v(x− y) ≥ min{v(x), v(−y)} = min{v(x), v(y)} > 0,
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showing that x − y ∈ pv, and thus that pv is an additive subgroup of Ov. Let
x ∈ pv and z ∈ Ov. Then, since v(z) ≥ 0 and v(x) > 0,

v(zx) = v(z) + v(x) ≥ v(x) > 0,

showing that zx ∈ pv. Therefore pv is an ideal in the ring Ov. Since v(1) = 0,
1 ̸∈ pv, so pv is a proper ideal.

The fact that pv is maximal follows from it being the set of noninvertible
elements of Ov. Suppose that B is a maximal ideal B of Ov. Because B is a
proper ideal it contains no invertible elements, and hence is contained in pv,
the set of noninvertible elements of Ov. Since B is maximal, it must be that
B = pv. Therefore, any maximal ideal of Ov is pv, showing that pv is the unique
maximal ideal of Ov.

The above ring Ov is called the valuation ring. Generally, a ring that has a
unique maximal ideal is called a local ring, and thus the above theorem shows
that the valuation ring is a local ring. We call the quotient Ov/pv the residue
field of Ov.

Lemma 7. If v is a normalized valuation on a field K then for all nonzero
x ∈ K and t ∈ pv, v(t) = 1, there is some u ∈ O∗

v such that

x = utn, n = v(x).

Proof. Since x ̸= 0, v(x) = n ∈ Z. Hence v(xt−n) = v(x)−nv(t) = v(x)−n = 0,
and therefore u = xt−n ∈ O∗. Then x = utn, completing the proof.

Theorem 8. If v is a normalized valuation on a field K, then Ov is a principal
ideal domain. If A is a nonzero ideal of Ov, then there is some t ∈ p, v(t) = 1
and n ≥ 0 such that

A = tnOv = {x ∈ K : v(x) ≥ n} = pnv ,

and
pnv/p

n+1
v

∼= Ov/pv,

as Ov/pv-linear vector spaces.

Proof. Let A ̸= {0} be an ideal of Ov. For any y ∈ A, v(y) ≥ 0, and we take
x ∈ A such that

v(x) = min{v(y) : y ∈ A}. (1)

Since v(K∗) = Z, there is some t ∈ K with v(t) = 1, and because v(t) > 0,
t ∈ pv. By Lemma 7, there is some u ∈ O∗ such that x = utn, n = v(x). For
any z ∈ O, xz ∈ A and so tnz ∈ A. Thus tnOv ⊂ A. On the other hand,
let y ∈ A. Then also by Lemma 7 there is some w ∈ O∗

v such that y = wtm,
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m = v(y). By (1), m = v(y) ≥ v(x) = n, so v(tm−n) = (m−n)v(t) = m−n ≥ 0
so tm−n ∈ Ov, giving

y = wtm = tn(wtm−n) ∈ tnOv.

Therefore A ⊂ tnOv, and so A = tnOv. That is, A is the principal ideal
generated by tn, which shows that Ov is a principal ideal domain.

Let t ∈ pv with v(t) = 1, and define ϕ : pnv → Ov/pv by v(atn) = a + p, for
a ∈ Ov.

Lemma 9. If v1, v2 are discrete valuations on a field K such that Ov1
= Ov2 ,

then v1 and v2 are equivalent.

5 p-adic valuations

Fix a prime number p. For nonzero a ∈ Q, there are unique integers n, r, s
satisfying

a =
r

s
pn,

where r, s are coprime, s > 0, and p ∤ rs. We define vp(a) = n. Furthermore,
we define vp(0) = ∞.

Theorem 10. vp : Q → R ∪ {∞} is a normalized valuation.

Proof. For nonzero a, b ∈ Q, write

a =
r1
s1

pm, b =
r2
s2

pn,

where gcd(r1, s1) = gcd(r2, s2) = 1, s1, s2 > 0, and p ∤ r1s1, p ∤ r2s2. Then,

ab =
r1r2
s1s2

pm+n,

where p ∤ r1s1r2s2; the fraction r1r2
s1s2

need not be in lowest terms. So vp(ab) =
m+ n = vp(a) + vp(n).

Suppose that vp(a) ≤ vp(b). Then

a+ b =
r1
s1

pm +
r2
s2

pn =

(
r1
s1

+
r2
s2

pn−m

)
pm =

r1s2 + r2s1p
n−m

s1s2
pm.

Since p ∤ s1 and p ∤ s2, then

vp(a+ b) ≥ m = vp(a) = min{vp(a), vp(b)}.
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We call vp the p-adic valuation. The valuation ring of Q corresponding to
vp is

Op = {x ∈ Q : vp(x) ≥ 0},

in other words, those rational numbers such that in lowest terms, p does not
divide their denominator. For example, 11

169 ,−
9
35 ∈ O3, and 5

3 ̸∈ O3. By
Theorem 6, the group of units of the valuation ring Op is

O∗
p = {x ∈ Q : vp(x) = 0},

in other words, those rational numbers such that in lowest terms, p divides
neither their numerator nor their denominator. As well by Theorem 6, Op is a
local ring whose unique maximal ideal is

pp = {x ∈ Q : vp(x) > 0},

in other words, those rational numbers such that in lowest terms, p divides
their numerator and does not divide their denominator. We see that p ∈ pp and
vp(p) = 1, so the nonzero ideals of Op are of the form

pnOp.

Lemma 11. Op/pp ∼= Z/pZ.

6 p-adic absolute values and metrics

We define | · |p : Q → R≥0 by |a|p = p−vp(n) for a ̸= 0 and |0|p = 0. This is
a non-Archimedean absolute value on Q, which we call the p-adic absolute
value.

Example 12. For p = 3 and a = − 57
10 , we have n = 1, r = −19, s = 10. Thus∣∣− 57

10

∣∣
3
= 3−1.

For p = 5 and a = 28
75 , we have n = −2, r = 28, s = 3. Thus

∣∣ 28
75

∣∣
5
= 52.

We define dp(x, y) = |x − y|p. The sequences xl = a0 + a1p + a2p
2 + · · · +

al−1p
l−1 constructed when applying Hensel’s lemma satisfy, for m < n,

xn − xm = ampm + am+1p
m+1 + · · ·+ an−1p

n−1 ≡ 0 (mod pm),

so
|xn − xm|p ≤ p−m,

and
f(xn) ≡ 0 (mod pn),

so
|f(xn)|p ≤ p−n.

Thus, xn is a Cauchy sequence in the p-adic metric dp(x, y) = |x − y|p, and
f(xn) → 0 as n → ∞.
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Lemma 13. If xn and yn are Cauchy sequences in (Q, dp), then xn + yn and
xn · yn are Cauchy sequences in (Q, dp).

Proof. The claim follows from

|xn + yn − (xm + ym)|p ≤ |xn − xm|p + |yn − ym|p

and

|xn · yn − xm · ym|p = |xn · yn − xm · yn + xm · yn − xm · ym|p
≤ |xn − xm|p|yn|p + |xm|p|yn − ym|p,

and the fact that xn, yn being Cauchy implies that |xn|p, |yn|p are bounded.

7 Completions of metric spaces

If (X, d) is a metric space, a completion of X is a complete metric space (Y, ρ)
and an isometry i : X → Y such that for every metric space (Z, r) and isometry
j : X → Z, there is a unique isometry J : Y → Z such that J ◦ i = j. It is
a fact that any metric space has a completion, and that if (Y1, ρ1) and (Y2, ρ2)
are completions then there is a unique isometric isomorphism f : Y1 → Y2.

For p prime, let (Qp, dp) be the completion of (Q, dp). Elements of Qp are
called p-adic numbers. For x, y ∈ Qp, there are Cauchy sequences xn, yn in
(Q, dp) such that xn → x and yn → y in (Qp, dp). We define addition and
multiplication on the set Qp by

x+ y = lim(xn + yn), x · y = lim(xn · yn);

that these limits exists follows from Lemma 13. If x ∈ Qp, x ̸= 0, then there is
a sequence xn ∈ Q, each term of which is ̸= 0, such that xn → x in (Qp, dp).
Then x−1

n is a Cauchy sequence in (Q, dp) hence converges to some y ∈ Qp which
satisfies x · y = 1. Therefore Qp is a field.

We define vp : Qp → R ∪ {∞}

vp(x) = lim vp(xn), xn → x.

One proves that vp is a normalized valuation on the field Qp.
3 We then define

| · |p : Qp → R≥0 by |x|p = p−vp(x) for x ̸= 0 and |0|p = ∞.

8 The exponential function

Lemma 14. For a1, . . . , ar ∈ Qp,

|a1 + · · ·+ ar|p ≤ max{|a1|, . . . , |ar|}.
3cf. Paul Garrett, Classical definitions of Zp and A, http://www.math.umn.edu/~garrett/

m/mfms/notes/05_compare_classical.pdf
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Lemma 15. A sequence ai ∈ Qp is Cauchy if and only if ai+1 − ai → 0 as
i → ∞.

Proof. Assume that ai+1 − ai → 0 and let ϵ > 0. Then there is some i0 such
that i ≥ i0 implies |ai+1 − ai|p < ϵ. For i0 ≤ i < j,

|aj − ai|p = |aj − aj−1 + aj−1 + · · · − ai+1 + ai+1 − ai|p
= |(aj − aj−1) + · · ·+ (ai+1 − ai)|p
≤ max{|aj − aj−1|, . . . , |ai+1 − ai|}
< ϵ.

The above shows that if ai → 0 in (Qp, dp) then the series
∑

ai converges
in (Qp, dp).

Lemma 16 (Exponential power series). If vp(x) >
1

p−1 , then

∞∑
n=0

xn

n!

converges in (Qp, dp).

Proof.

vp(n!) =

∞∑
j=1

[
n

pj

]
≤

∞∑
j=1

n

pj
=

1

np

1

1− 1
p

=
n

p− 1
.

Then

vp

(
xn

n!

)
= nvp(x)− vp(n!) ≥ nvp(x)−

n

p− 1
= n

(
vp(x)−

1

p− 1

)
.

As n → ∞ this tends to +∞, hence∣∣∣∣xn

n!

∣∣∣∣
p

= p−vp( xn

n! ) → 0,

and thus the series
∑∞

n=0
xn

n! converges.

Lemma 17 (Logarithm power series). If vp(x) > 0, then

∞∑
n=1

(−1)n+1x
n

n

converges in (Qp, dp).

Proof. For n a positive integer we have vp(n) ≤ logp n. Then,

vp

(
xn

n

)
= nvp(x)− vp(n) ≥ nvp(x)− logp n.

If vp(x) > 0 then this tends to +∞ as n → ∞.
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9 Topology

We define Zp to be the valuation ring of Qp. Elements of Zp are called p-adic
integers. For x ∈ Qp and real r > 0, write

Bp(r, x) = {y ∈ Qp : |x− y|p ≤ r} = {y ∈ Qp : vp(x− y) ≥ − logp r}.

In particular,
Bp(0, 1) = Zp.

Because vp is discrete, there is some ϵ > 0 such that

{y ∈ Qp : |x− y|p ≤ r} = {y ∈ Qp : |x− y|p < r + ϵ}.

This shows that Bp(x, r) is open in the topology induced by vp, and thus is both
closed and open. It follows that Qp is totally disconnected.4

Theorem 18. Zp is totally bounded.

The fact that Zp is a totally bounded subset of a complete metric space
implies that Zp is compact. Then because

Bd(0, p
k) = {y ∈ Qp : |y|p ≤ pk} = {y ∈ Qp : |pky|p ≤ 1} = p−kZp

and translation is a homeomorphism, any closed ball in Qp is compact. There-
fore Qp is locally compact.

Qp is a locally compact abelian group under addition, and we take Haar
measure on it satisfying µ(Zp) = 1. One can explicitly calculate the characters
on Qp.

5

4Gerald B. Folland, A Course in Abstract Harmonic Analysis, pp. 34–36.
5Gerald B. Folland, A Course in Abstract Harmonic Analysis, pp. 91–93, 104. Cf.

Keith Conrad, The character group of Q, http://www.math.uconn.edu/~kconrad/blurbs/

gradnumthy/characterQ.pdf
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