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1 Oscillatory integrals

Suppose that Φ ∈ C∞(Rd), ψ ∈ D(Rd), and that Φ is real-valued. Define
I : (0,∞) → C by

I(λ) =

∫
Rd

eiλΦ(x)ψ(x)dx, λ > 0.

We call Φ a phase and ψ an amplitude, and I(λ) an oscillatory integral.
The following proof follows Stein and Shakarchi.1

Theorem 1. If there is some c > 0 such that |(∇Φ)(x)| ≥ c for all x ∈ suppψ,
then for each nonnegative integer N there is some cN ≥ 0 such that

|I(λ)| ≤ cNλ
−N , λ > 0.

Proof. There is some h ∈ D(Rd), h ≥ 0, such that h(x) = 1 for x ∈ suppψ.2

Define a : Rd → Rd by

a = h
∇Φ

|∇Φ|2
,

whose entries each belong to D(Rd), and define L : C∞(Rd) → D(Rd) by

Lf =
1

iλ

d∑
k=1

ak∂kf =
1

iλ
(a · ∇)f.

L satisfies, doing integration by parts and using the fact that a has compact
support,∫

Rd

(Lf)gdx =
1

iλ

d∑
k=1

∫
Rd

ak(∂kf)gdx =
1

iλ

d∑
k=1

−
∫
Rd

f∂k(ga)dx.

Thus the transpose of L is

Ltg = − 1

iλ

d∑
k=1

∂k(ga) = − 1

iλ
∇ · (ga).

1Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 325, Proposition 2.1.
2Walter Rudin, Functional Analysis, second ed., p. 162, Theorem 6.20.
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Furthermore, in suppψ,

L(eiλΦ) = eiλΦ
d∑
k=1

ak(∂kΦ)

= eiλΦ
d∑
k=1

∂kΦ

|∇Φ|2
∂kΦ

= eiλΦ.

Thus for any positive integer N and for x ∈ suppψ, L(eiλΦ)(x) = eiλΦ(x), hence

I(λ) =

∫
Rd

LN (eiλΦ)ψdx =

∫
Rd

eiλΦ(Lt)Nψdx.

But ∫
Rd

|(Lt)Nψ|dx =

∫
Rd

|λ−NAN |dx,

where A1 = ∇ · (ψa) and An = ∇ · (An−1a). With

cN =

∫
Rd

|AN |dx <∞,

we obtain

|I(λ)| =
∣∣∣∣∫

Rd

eiλΦ(Lt)Nψdx

∣∣∣∣ ≤ ∫
Rd

|(Lt)Nψ|dx = cNλ
−N ,

completing the proof.

The following is an estimate for a one-dimensional oscillatory integral with-
out an amplitude term.3

Lemma 2. Let a < b, and suppose that Φ ∈ C2(R) is real-valued, that either
Φ′′(x) ≥ 0 for all x ∈ [a, b] or Φ′′(x) ≤ 0 for all x ∈ [a, b], and that Φ′(x) ≥ 1 for
all x ∈ [a, b]. Then ∣∣∣∣∣

∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤ 3λ−1, λ > 0.

Proof. Write

L =
1

iλΦ′
d

dx
,

which satisfies∫ b

a

(Lf)gdx =

∫ b

a

1

iλΦ′ f
′gdx =

1

iλΦ′ fg

∣∣∣∣b
a

−
∫ b

a

f
( g

iλΦ′

)′
dx.

3Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 326, Proposition 2.2.
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With f = eiλΦ and g = 1, we have Lf = eiλΦ and hence∫ b

a

eiλΦdx =
eiλΦ

iλΦ′

∣∣∣∣b
a

−
∫ b

a

eiλΦ
(

1

iλΦ′

)′

dx

=
eiλΦ

iλΦ′

∣∣∣∣b
a

+
1

iλ

∫ b

a

eiλΦ(Φ′)−2Φ′′dx.

For λ > 0, using that Φ′(x) ≥ 1 for all x ∈ [a, b] the boundary terms have
absolute value ∣∣∣∣ eiλΦ(b)

iλΦ′(b)
− eiλΦ(a)

iλΦ′(a)

∣∣∣∣ ≤ 1

λ|Φ′(b)|
+

1

λ|Φ′(a)|
≤ 2

λ
.

Because Φ′′ ≥ 0 or Φ′′ ≤ 0 on [a, b],

1

λ

∣∣∣∣∣
∫ b

a

eiλΦ(Φ′)−2Φ′′dx

∣∣∣∣∣ ≤ 1

λ

∫ b

a

|(Φ′)−2Φ′′|dx

=
1

λ

∣∣∣∣∣
∫ b

a

(Φ′)−2Φ′′dx

∣∣∣∣∣
=

1

λ

∣∣∣∣ 1

Φ′(a)
− 1

Φ′(b)

∣∣∣∣
≤ 1

λ
;

the final inequality uses the fact that the two terms inside the absolute value are
both ≥ 1, and thus the absolute value can be bounded by the larger of them.
Putting together the two inequalities,∣∣∣∣∣

∫ b

a

eiλΦdx

∣∣∣∣∣ ≤ 2

λ
+

3

λ
= 3λ−1, λ > 0,

proving the claim.

Lemma 3. Let a < b, and suppose that Φ ∈ C2(R) is real-valued, that either
Φ′′(x) ≥ 0 for all x ∈ [a, b] or Φ′′(x) ≤ 0 for all x ∈ [a, b], and that there is some
µ > 0 such that |Φ′(x)| ≥ µ for all x ∈ [a, b]. Then∣∣∣∣∣

∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤ 3µ−1λ−1, λ > 0.

Proof. Φ′ is continuous on [a, b], so, by the intermediate value theorem, either
Φ′(x) ≥ µ for all x ∈ [a, b] or Φ′(x) ≤ −µ for all x ∈ [a, b]. Let ϵ = 1 in the
first case and ϵ = −1 in the second case, and define Φ0 = ϵΦµ . Then applying
Lemma 2, for λ > 0 we have, writing λ0 = µλ,∣∣∣∣∣

∫ b

a

eiλ0Φ0(x)dx

∣∣∣∣∣ ≤ 3λ−1
0 ,
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i.e. ∣∣∣∣∣
∫ b

a

eiϵλΦ(x)dx

∣∣∣∣∣ ≤ 3(µλ)−1.

If ϵ = 1 this is the claim. If ϵ = −1, then the above integral is the complex
conjugate of the integral in the claim, and these have the same absolute values.

Theorem 4. Let a < b, and suppose that Φ ∈ C2(R) is real-valued, that either
Φ′′(x) ≥ 0 for all x ∈ [a, b] or Φ′′(x) ≤ 0 for all x ∈ [a, b], and there is some
µ > 0 such that |Φ′(x)| ≥ µ for all x ∈ [a, b]. Suppose also that ψ ∈ C1(R).
Then with

cψ = 3

(
|ψ(b)|+

∫ b

a

|ψ′(x)|dx

)
,

we have ∣∣∣∣∣
∫ b

a

eiλΦ(x)ψ(x)dx

∣∣∣∣∣ ≤ cψµ
−1λ−1.

Proof. Define J : [a, b] → C by

J(x) =

∫ x

a

eiλΦ(u)du,

which satisfies J ′(x) = eiλΦ(x). Integrating by parts,∫ b

a

eiλΦ(x)ψ(x)dx =

∫ b

a

J ′(x)ψ(x)dx = J(x)ψ(x)

∣∣∣∣b
a

−
∫ b

a

J(x)ψ′(x)dx,

and as J(a) = 0 this is equal to

J(b)ψ(b)−
∫ b

a

J(x)ψ′(x)dx.

Lemma 3 tells us that |J(x)| ≤ 3µ−1λ−1 for all x ∈ [a, b], so∣∣∣∣∣J(b)ψ(b)−
∫ b

a

J(x)ψ′(x)dx

∣∣∣∣∣ ≤ 3µ−1λ−1|ψ(b)|+ 3µ−1λ−1

∫ b

a

|ψ′(x)|dx,

proving the claim.

The following is van der Corput’s lemma.4

Lemma 5 (van der Corput’s lemma). Let a < b and suppose that Φ ∈ C2(R)
is real-valued and satisfies Φ′′(x) ≥ 1 for all x ∈ [a, b]. Then∣∣∣∣∣

∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤ 8λ−1/2, λ > 0.

4Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 328, Proposition 2.3.
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Proof. Because Φ′ is strictly increasing on [a, b], Φ′ has at most one zero in this
interval. If Φ′(x0) = 0, then for x ≥ x0 + λ−1/2 we have Φ′(x) ≥ λ−1/2, and
applying Lemma 3 with µ = λ−1/2,∣∣∣∣∣

∫
[x0+λ−1/2,b]

eiλΦ(x)dx

∣∣∣∣∣ ≤ 3µ−1λ−1 = 3λ−1/2.

For x ≤ x0 − λ−1/2 we have Φ′(x) ≤ −λ−1/2, and applying Lemma 3 with
µ = λ−1/2, ∣∣∣∣∣

∫
[a,x0−λ−1/2]

eiλΦ(x)dx

∣∣∣∣∣ ≤ 3µ−1λ−1 = 3λ−1/2.

But∣∣∣∣∣
∫
[x0−λ−1/2,x0+λ−1/2]∩[a,b]

eiλΦ(x)dx

∣∣∣∣∣ ≤
∫
[x0−λ−1/2,x0+λ−1/2]∩[a,b]

dx ≤ 2λ−1/2,

and ∫ b

a

=

∫
[a,x0−λ−1/2]

+

∫
[x0−λ−1/2,x0+λ−1/2]∩[a,b]

+

∫
[x0+λ−1/2,b]

,

so ∣∣∣∣∣
∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤ 3λ−1/2 + 2λ−1/2 + 3λ−1/2 = 8λ−1/2.

If there is no x0 ∈ [a, b] such that Φ′(x0) = 0, then either Φ′ > 0 on [a, b]
or Φ′ < 0 on [a, b]. In the first case, because Φ′ is strictly increasing on [a, b],
Φ′(x) > λ−1/2 for x ∈ [a + λ−1/2, b], and applying Lemma 3 with µ = λ−1/2

gives∣∣∣∣∣
∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤

∣∣∣∣∣
∫
[a,a+λ−1/2]∩[a,b]

eiλΦ(x)dx

∣∣∣∣∣+
∣∣∣∣∣
∫
[a+λ−1/2,b]

eiλΦ(x)dx

∣∣∣∣∣
≤ λ−1/2 + 3µ−1λ−1

= 4λ−1/2.

In the second case, Φ′(x) < −λ−1/2 for x ∈ [a, b− λ−1/2], and applying Lemma
3 with µ = λ−1/2 also gives∣∣∣∣∣

∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤ 4λ−1/2.

Therefore, if Φ′ does not have a zero on [a, b] then∣∣∣∣∣
∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤ 4λ−1/2 < 8λ−1/2.
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Lemma 6. Let a < b and suppose that Φ ∈ C2(R) is real-valued and that there
is some µ > 0 such that |Φ′′(x)| ≥ µ for all x ∈ [a, b]. Then∣∣∣∣∣

∫ b

a

eiλΦ(x)dx

∣∣∣∣∣ ≤ 8µ−1/2λ−1/2, λ > 0.

Proof. Φ′′ is continuous on [a, b], so by the intermediate value theorem either
Φ′′(x) ≥ µ for all x ∈ [a, b] or Φ′′(x) ≤ −µ for all x ∈ [a, b]. Let ϵ = 1 in the
first case and ϵ = −1 in the second case, and define Φ0 = ϵΦµ . Then Φ′′

0(x) ≥ 1

for all x ∈ [a, b], and applying Lemma 5,∣∣∣∣∣
∫ b

a

eiµλΦ0(x)dx

∣∣∣∣∣ ≤ 8(µλ)−1/2, λ > 0,

i.e. ∣∣∣∣∣
∫ b

a

eiϵλΦ(x)dx

∣∣∣∣∣ ≤ 8(µλ)−1/2, λ > 0.

If ϵ = 1 this is the inequality in the claim. If ϵ = −1, then the above integral
is the complex conjugate of the integral in the claim, and these have the same
absolute values.

We use the above to prove the following estimate which involves an ampli-
tude.5

Theorem 7. Let a < b and suppose that Φ ∈ C2(R) is real-valued and that
there is some µ > 0 such that |Φ′′(x)| ≥ µ for all x ∈ [a, b]. Suppose also that
ψ ∈ C1(R). Then with

cψ = 8

(
|ψ(b)|+

∫ b

a

|ψ′(x)|dx

)
,

we have ∣∣∣∣∣
∫ b

a

eiλΦ(x)ψ(x)dx

∣∣∣∣∣ ≤ cψµ
−1/2λ−1/2, λ > 0.

Proof. Define J : [a, b] → C by

J(x) =

∫ x

a

eiλΦ(u)du,

which satisfies J ′(x) = eiλΦ(x). Integrating by parts,∫ b

a

eiλΦ(x)ψ(x)dx =

∫ b

a

J ′(x)ψ(x)dx = J(x)ψ(x)

∣∣∣∣b
a

−
∫ b

a

J(x)ψ′(x)dx.

5Elias M. Stein and Rami Shakarchi, Functional Analysis, p. 328, Corollary 2.4.
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and as J(a) = 0 this is equal to

J(b)ψ(b)−
∫ b

a

J(x)ψ′(x)dx.

But for each x ∈ [a, b] we have by Lemma 6 that |J(x)| ≤ 8µ−1/2λ−1/2, so∣∣∣∣∣J(b)ψ(b)−
∫ b

a

J(x)ψ′(x)dx

∣∣∣∣∣ ≤ 8µ−1/2λ−1/2|ψ(b)|+ 8µ−1/2λ−1/2

∫ b

a

|ψ′(x)|dx,

completing the proof.

2 Bessel functions

For n ∈ Z, the nth Bessel function of the first kind Jn : R → R is

Jn(λ) =
1

2π

∫ 2π

0

eiλ sin xe−inxdx, λ ∈ R.

Let

I1 =
[
0,
π

4

]
, I2 =

[
3π

4
, π

]
, I3 =

[
π,

5π

4

]
, I4 =

[
7π

4
, 2π

]
,

on which | cosx| ≥ 1√
2
, and

I5 =

[
π

4
,
3π

4

]
, I6 =

[
5π

4
,
7π

4

]
,

on which | sinx| ≥ 1√
2
. Write Φ(x) = sinx and ψ(x) = e−inx. Φ′(x) = cos(x)

and Φ′′(x) = − sin(x), and for I1, I2, I3, I4 we apply Theorem 4 with µ = 1√
2
.

For each of I1, I2, I3, I4 we compute cψ = 3
(
1 + πn

4

)
, which gives us∣∣∣∣∫

Ik

eiλΦ(x)ψ(x)dx

∣∣∣∣ ≤ cψµ
−1λ−1 = 3

(
1 +

πn

4

)
·
√
2 · λ−1.

For I5 and I6, we apply Theorem 7 with µ = 1√
2
. For each of I5 and I6 we

compute cψ = 8
(
1 + πn

2

)
, which gives us∣∣∣∣∫

Ik

eiλΦ(x)ψ(x)dx

∣∣∣∣ ≤ cψµ
−1/2λ−1/2 = 8

(
1 +

πn

2

)
· 21/4 · λ−1/2.

Therefore

|Jn(λ)| ≤ 4 · 1

2π
· 3
(
1 +

πn

4

)
·
√
2 · λ−1 + 2 · 1

2π
· 8
(
1 +

πn

2

)
· 21/4 · λ−1/2,

which shows that for each n ∈ Z,

Jn(λ) = On(λ
−1/2)

as λ→ ∞.
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