Orbital stability for NLS

Jordan Bell

April 3, 2014

Let $n=3$, and take $p<\frac{4}{3}$. Some of the material we will present for general n when it doesn't simplify our work to use $n=3$.

The (defocusing) nonlinear Schrödinger equation is

$$
i \phi_{t}+\Delta \phi+|\phi|^{p-1} \phi=0
$$

$\phi(x, 0)=\phi_{0} \in H^{1}$.
For a function ψ on \mathbb{R}^{n}, the orbit of the function under the symmetries of NLS is

$$
\mathscr{G}_{\psi}=\left\{\psi\left(\cdot+x_{0}\right) e^{i \gamma}:\left(x_{0}, \gamma\right) \in \mathbb{R}^{n} \times \mathbb{T}\right\}
$$

We say that ψ is orbitally stable if initial data being near it implies that the solution of NLS is near it always.

We define

$$
\rho\left(\phi(t), \mathscr{G}_{\psi}\right)=\inf _{\left(x_{0}, \gamma\right) \in \mathbb{R}^{n} \times \mathbb{T}}\left\|\phi\left(\cdot+x_{0}, t\right) e^{i \gamma}-\psi\right\|_{H^{1}}
$$

The ground state equation is

$$
\Delta u-u+|u|^{p-1} u=0 .
$$

The ground state equation comes from the solution $\phi(x, t)=e^{i t} u(x)$ of NLS. It is a fact that there is a positive bounded solution R of the ground state equation, which we call a ground state.

Theorem 1. The ground state R is orbitally stable: for any $\epsilon>0$ there is a $\delta(\epsilon)>0$ such that if

$$
\rho\left(\phi_{0}, \mathscr{G}_{R}\right)<\delta(\epsilon)
$$

then for all $t>0$

$$
\rho\left(\phi(t), \mathscr{G}_{R}\right)<\epsilon .
$$

We define the energy functional \mathscr{E} by

$$
\mathscr{E}[\phi]=\int|\nabla \phi|^{2}+|\phi|^{2}-\frac{2}{p+1}|\phi|^{p+1} d x
$$

so $\mathscr{E}[\phi]$ is a function of time but not of space.

It is a fact that for each t there are $x_{0}=x_{0}(t)$ and $\gamma=\gamma(t)$ such that

$$
\left\|\phi\left(\cdot+x_{0}, t\right) e^{i \gamma}-R\right\|_{H^{1}}=\rho\left(\phi(t), \mathscr{G}_{R}\right) .
$$

Let $w=\phi\left(\cdot+x_{0}, t\right) e^{i \gamma}-R$; so $\|w(t)\|_{H^{1}}=\rho\left(\phi(t), \mathscr{G}_{R}\right)$.
Let $\Delta \mathscr{E}=\mathscr{E}\left[\phi_{0}\right]-\mathscr{E}[R]$. We have

$$
\begin{aligned}
\Delta \mathscr{E} & =\mathscr{E}[\phi(\cdot, t]-\mathscr{E}[R] \\
& =\mathscr{E}\left[\phi\left(\cdot+x_{0}, t\right) e^{i \gamma}\right]-\mathscr{E}[R] \\
& =\mathscr{E}[R+w]-\mathscr{E}[R]
\end{aligned}
$$

We shall express $\mathscr{E}[R+w]$ as a Taylor expansion about R. We compute the first variation as follows:

$$
\begin{aligned}
d \mathscr{E}[R] w & =\int \nabla w \nabla \bar{R}+\nabla R \nabla \bar{w}+w \bar{R}+R \bar{w}-|R|^{p-1}(w \bar{R}+R \bar{w}) \\
& =2 \Re \int \nabla w \nabla R+w R-w|R|^{p-1} R \\
& =2 \Re \int w\left(-\Delta R+R-|R|^{p-1} R\right) \\
& =0,
\end{aligned}
$$

where we used the fact that R is real valued, integration by parts, and the fact that R is a solution of the ground state equation. So the first variation of \mathscr{E} at R is 0 .

We now compute the second variation of \mathscr{E}.

$$
\begin{aligned}
d^{2} \mathscr{E}[R][w]= & 2 \Re \int-w \Delta \bar{w}+|w|^{2}-\frac{p-1}{2} R^{p-1} w^{2}-\frac{p-1}{2} R^{p-1}|w|^{2} \\
& -R^{p-1}|w|^{2} \\
= & 2 \Re \int-w \Delta \bar{w}+|w|^{2}-\frac{p-1}{2} R^{p-1} w^{2}-\frac{p+1}{2} R^{p-1}|w|^{2}
\end{aligned}
$$

Write $w=u+i v$. Then we have

$$
d^{2} \mathscr{E}[R][w]=2 \int-u \Delta u-v \Delta v+u^{2}+v^{2}-R^{p-1}\left(p u^{2}+v^{2}\right)
$$

Define

$$
L_{+}=-\Delta+1-p R^{p-1} \quad L_{-}=-\Delta+1-R^{p-1}
$$

which gives

$$
\left(L_{+} u, u\right)_{L^{2}}=\int-u \Delta u+u^{2}-p u^{2} R^{p-1}
$$

and

$$
\left(L_{-} v, v\right)_{L^{2}}=\int-v \Delta v+v^{2}-v^{2} R^{p-1}
$$

Thus

$$
d^{2} \mathscr{E}[R][w]=2\left(L_{+} u, u\right)_{L^{2}}+2\left(L_{-} v, v\right)_{L^{2}}
$$

And we assert that the remainder term of the Taylor series is $O\left(\int|w|^{3}\right)$, because R is bounded. Therefore

$$
\Delta \mathscr{E}=\left(L_{+} u, u\right)_{L^{2}}+\left(L_{-} v, v\right)_{L^{2}}+O\left(\int|w|^{3}\right)
$$

We can bound $\int|w|^{3}$ using the Gagliardo-Nirenberg inequality, which gives us (for $n=3$)

$$
\|w\|_{L^{3}}^{3} \leq C_{0}\|\nabla w\|_{L^{2}}^{3 / 2}\|w\|_{L^{2}}^{3 / 2} \leq C_{0}\|w\|_{H^{1}}^{3},
$$

for some C_{0} that doesn't depend on w. Therefore

$$
\Delta \mathscr{E}=\left(L_{+} u, u\right)_{L^{2}}+\left(L_{-} v, v\right)_{L^{2}}+O\left(\|w\|_{H^{1}}^{3}\right)
$$

so there is some C such that

$$
\Delta \mathscr{E} \geq\left(L_{+} u, u\right)_{L^{2}}+\left(L_{-} v, v\right)_{L^{2}}-C\|w\|_{H^{1}}^{3}
$$

