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1 Introduction

The pentagonal number theorem is the identity

∞∏
n=1

(1− xn) =

∞∑
n=−∞

(−1)nx
n(3n−1)

2 .

Euler discovered the pentagonal number theorem in 1740, and finally proved
the theorem in 1750 [1]. Euler’s proof is the following. Let

SN =

∞∑
n=1

xN(n−1)(1− xN ) · · · (1− xn+N−1).

Euler uses the identity
∏∞

n=1(1−an) = 1−a1−
∑∞

n=2 an(1−a1) · · · (1−an−1) to
get

∏∞
n=1(1−xn) = 1−x−

∑∞
n=2 x

n(1−x) · · · (1−xn−1) and so
∏∞

n=1(1−xn) =
1−x−x2S1. Euler proves that SN = 1−x2N+1−x3N+2SN+1, and then iterates
this to obtain the pentagonal number theorem.

In [4], Euler uses Newton’s identities together with the pentagonal number
theorem to prove identities for divergent series. Euler says that all the roots of
unity of each power will be roots of the equation

0 = 1− x1 − x2 + x5 + x7 − x12 − x15 + x22 + x26 − etc.,

and so if we denote the roots by α, β, γ, δ, etc. then

1

α
+

1

β
+

1

γ
+

1

δ
+ etc. = 1.

By applying Newton’s identities, Euler gets

1

α2
+

1

β2
+

1

γ2
+

1

δ2
+ etc. = 3,

and likewise formulas for the sums of the higher powers of the roots. Rademacher
[5] clarifies these statements.
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Euler uses Newton’s identities in his discovery of the values of ζ(2n). Gen-
erally, Euler uses Newton’s identities to relate expressions for the same thing as
sums and products, such as the representations of Bessel functions as infinite
series and infinite products (cf. [6, pp. 497–503]).

We denote by σ(n) the sum of the positive divisors of n. In 1747, Euler
discovered the following recurrence relation for σ(n) [1, pp. 345–356]. Let

ωj =
j(3j−1)

2 , the jth pentagonal number. For n ̸= m(3m−1)
2 ,

σ(n) =

∞∑
j=1

(−1)j−1(σ(n− ωj) + σ(n− ω−j)),

and for n = m(3m−1)
2 ,

σ(n) = (−1)m−1n+

∞∑
j=1

(−1)j−1(σ(n− ωj) + σ(n− ω−j)).

In this note we give a proof of Euler’s pentagonal number theorem using New-
ton’s identities and Euler’s recurrence relation for the sum of divisors function
σ. This proof draws attention to the connection between the product

∏
(1−xn)

and roots of unity.

2 Results

Let
∏n

k=1(1 + XkT ) =
∑n

k=0 skT
k. For d ≥ 1, let pd =

∑n
k=1 X

d
k . Newton’s

identities [2, IV.65] are

pd =

d−1∑
k=1

(−1)k−1skpd−k + (−1)d+1dsd, d ≥ 1. (1)

Now we shall present a proof of the pentagonal number theorem using New-

ton’s identities and Euler’s recurrence relation for σ(n). Let ek(j) = e
2πij
k .

Then

1− tk =

k∏
j=1

(1− ek(j)t).

Let N(n) = n(n+1)
2 .

Define sk,n by

n∏
k=1

k∏
j=1

(1− ek(j)t) =

N(n)∑
k=0

(−1)ksk,nt
k.

On the one hand,

n+1∏
k=1

(1− tk) = (1− tn+1)
n∏

k=1

(1− tk) = (1− tn+1)

N(n)∑
k=0

(−1)ksk,nt
k.
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On the other hand,

n+1∏
k=1

(1− tk) =

N(n+1)∑
k=0

(−1)ksk,n+1t
k.

Hence for k ≤ n, sk,n = sk,n+1.
Define sk by

(−1)ksk =

{
0, k ̸= j(3j−1)

2 ,

(−1)j , k = j(3j−1)
2 .

We want to show that sn,n = sn for all n ≥ 1.
First, 1− t = s0,1 − s1,1t and so s1,1 = 1. By its definition, s1 = 1. Assume

now tha sn,n = sn, and thus that sk,n = sn for all k ≤ n.
By Newton’s identities (1),

pn+1,n+1 = (−1)n+2(n+ 1)sn+1,n+1 +

n∑
k=1

(−1)k−1sk,n+1pn+1−k,n+1.

We note the following.

pd,n =

n∑
k=1

k∑
j=1

ek(j)
d

=

n∑
k=1

{
k, k|d,
0, otherwise.

Hence pd,n = σ(d) if d ≤ n. Euler studies exponential sums in [3].
We use the fact that pk,n = σ(k) if k ≤ n to get

σ(n+ 1) = (−1)n+2(n+ 1)sn+1,n+1 +

n∑
k=1

(−1)k−1sk,n+1σ(n+ 1− k).

But furthermore, by assumption sk,n+1 = sk for k ≤ n, so

σ(n+ 1) = (−1)n+2(n+ 1)sn+1,n+1 +

n∑
k=1

(−1)k−1skσ(n+ 1− k).

Either n+1 ̸= m(3m−1)
2 or n+1 = m(3m−1)

2 . In the first case, the recurrence
relation for σ(n+ 1) is

σ(n+ 1) =

∞∑
j=1

(−1)j−1(σ(n+ 1− ωj) + σ(n+ 1− ω−j)).

This implies that sn+1,n+1 = 0. But sn+1 = 0 also, so sn+1,n+1 = sn+1.
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In the second case, the recurrence relation for σ(n+ 1) is

σ(n+ 1) = (−1)m−1(n+ 1) +

∞∑
j=1

(−1)j−1(σ(n+ 1− ωj) + σ(n+ 1− ω−j)).

This implies that (−1)m−1(n+1) = (−1)n+2(n+1)sn+1,n+1, and hence (−1)n+1sn+1,n+1 =
(−1)m. But (−1)n+1sn+1 = (−1)m, so sn+1,n+1 = sn+1.

This completes the proof by induction that sn,n = sn for all n ≥ 1.
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