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1 Introduction

In this note we talk about the total variation metric and the narrow topology
(also called the weak-* topology) on the set of Borel probability measures on a
metrizable topological space. In the course of the note we define all the terms
used in the previous sentence.

The reason for talking about metrizable spaces rather than metric spaces
in this note is to make explicit that the objects we define do not depend on a
metric but only on the topological properties of a space. On the other hand,
the Prokhorov metric, which we do not talk about in this note, depends on the
metric, not merely on the fact that a topological space is metrizable.

2 Preliminaries

IfM is a σ-algebra on a setX, a positive measure is a function µ : M → [0,∞]
such that {Ai} being a countable subset of M with pairwise disjoint members
implies that

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

A positive measure µ is called finite if X has finite measure, a probability
measure if µ(X) = 1, and σ-finite if there is a countable collection {Ei} ⊂ M
each member of which has finite measure and that satisfies X =

⋃∞
i=1 Ei.

Suppose that M is a σ-algebra on a set and that E ∈ M. A countable
collection {Ei} ⊂ M whose members are pairwise disjoint and that satisfies
E =

⋃∞
i=1 Ei is called a partition of E. A signed measure is a function

µ : M → R such that if E ∈ M, then

µ(E) =

∞∑
i=1

µ(Ei) (1)

for every partition {Ei} of E.
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Any statement we make about a measure on a σ-algebra without specifying
whether it is a positive measure or a signed measure applies to both classes.

3 Total variation

If M is a σ-algebra on a set X and µ is a signed measure on M, for E ∈ M we
define

|µ|(E) = sup

{ ∞∑
i=1

|µ(Ei)| : {Ei} is a partition of E

}
.

We call |µ| the total variation of µ. One proves that if µ is a signed measure
on M, then the total variation |µ| is a finite positive measure on M.1

If M is a σ-algebra on a set, we denote by ca(M) the set of signed measures
on M; the notation ca stands for “countably additive”. For µ, λ ∈ ca(M) and
c ∈ R, we define

(aµ+ λ)(E) = aµ(E) + λ(E), E ∈ M.

It is straightforward to check that aµ + λ ∈ ca(M), so that ca(M) is a vector
space. We check that

∥µ∥ = |µ|(X),

is a norm ca(M), called the total variation norm.

Theorem 1. Suppose that M is a σ-algebra on a set. Then ca(M) is a real
Banach space with the total variation norm.

Suppose that µ is a positive measure on a σ-algebra M and that λ is a
measure on M. We say that λ absolutely continuous with respect to µ,
denoted

λ ≪ µ,

if E ∈ M and µ(E) = 0 imply that λ(E) = 0.
If A ∈ M and λ(E) = λ(A ∩E) for every E ∈ M, we say that λ is concen-

trated on A. If λ1, λ2 are measures onM and there are disjoint sets A1, A2 ∈ M
such that λ1 is concentrated on A1 and λ2 is concentrated on A2, we say that
λ1 and λ2 are mutually singular and write

λ1 ⊥ λ2.

The following theorem states both the Lebesgue decomposition and the
Radon-Nikodym theorem.2

Theorem 2 (The Lebesgue decomposition and the Radon-Nikodym thoerem).
Suppose that M is a σ-algebra on a set X and that µ is a σ-finite positive
measure on M. If λ ∈ ca(M), then:

1Walter Rudin, Real and Complex Analysis, third ed., pp. 117-118, Theorem 6.2 and
Theorem 6.4.

2Walter Rudin, Real and Complex Analysis, third ed., p. 121, Theorem 6.10.
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1. There is a unique pair (λa, λs) of elements of ca(M) such that

λ = λa + λs, λa ≪ µ, λs ⊥ µ.

If λ is a finite positive measure, then so are λa and λs.

2. There is a unique h ∈ L1(µ) such that

λa(E) =

∫
E

hdµ, E ∈ M.

The function h ∈ L1(µ) in the above theorem is called theRadon-Nikodym
derivative of λ with respect to µ, and we write

dλ = hdµ.

Suppose that µ is a signed measure on a σ-algebra M. Then |µ| is a finite
positive measure on M. For any E ∈ M, |µ|(E) ≥ |µ(E)|, so µ is absolutely
continuous with respect to |µ| and by the Radon-Nikodym theorem there is
some h ∈ L1(|µ|) such that

dµ = hd|µ|.

One proves3 that |h| = 1, that is, that for |µ|-almost all x, h(x) ∈ {−1, 1}.
Using this function h, we define∫

fdµ =

∫
fhd|µ|.

The right-hand side is the integral of a real valued function with respect to a
finite positive measure.

If one wishes to speak only about probability measures rather than signed
measures, one might choose to use the expression in the following lemma to
define a metric on the set of probability measures.

Lemma 3. If µ and ν are probability measures on a σ-algebra M on a set X,
then

∥µ− ν∥ = 2 sup
E∈M

|µ(E)− ν(E)|.

Proof. Let m = µ + ν. Then µ and ν are each absolutely continuous with
respect to m, so by the Radon-Nikodym theorem there are f, g ∈ L1(m) such
that dµ = fdm and dν = gdm. Let λ = µ− ν, which satisfies dλ = (f − g)dm,
and write h = f − g. For any E ∈ M we have

λ(E) + λ(X \ E) = λ(X) = µ(X)− ν(X) = 0,

3Walter Rudin, Real and Complex Analysis, third ed., p. 124, Theorem 6.12.
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hence |λ(E)| = |λ(X \ E)| and therefore

|λ(E)| =
1

2
(|λ(E)|+ |λ(X \ E)|)

=
1

2

(∣∣∣∣∫
E

hdm

∣∣∣∣+
∣∣∣∣∣
∫
X\E

hdm

∣∣∣∣∣
)

≤ 1

2

(∫
E

|h|dm+

∫
X\E

|h|dm

)

=
1

2

∫
X

|h|dm.

This shows that

sup
E∈M

|λ(E)| ≤ 1

2

∫
X

|h|dm.

Let E = {x ∈ X : h(x) > 0} ∈ M. For this set E,

|λ(E)| =
1

2

(∣∣∣∣∫
E

hdm

∣∣∣∣+
∣∣∣∣∣
∫
X\E

hdm

∣∣∣∣∣
)

=
1

2

(∫
E

hdm−
∫
X\E

hdm

)

=
1

2

(∫
E

|h|dm+

∫
X\E

|h|dm

)

=
1

2

∫
X

|h|dm.

Therefore the previous inequality is in fact an equality:

sup
E∈M

|λ(E)| = 1

2

∫
X

|h|dm.

But dλ = hdm implies that

∥λ∥ =

∫
X

|h|dm;

this is proved in Rudin.4 Therefore

∥µ− ν∥ = ∥λ∥ = 2 sup
E∈M

|λ(E)| = 2 sup
E∈M

|µ(E)− ν(E)|.

4Walter Rudin, Real and Complex Analysis, third ed., p. 125, Theorem 6.13.
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4 Borel measures

Suppose that X is a topological space. The smallest σ-algebra containing the
topology of X is called the Borel σ-algebra of X. The Borel σ-algebra of X
is denoted BX and elements of BX are called Borel sets. A measure on BX

is called a Borel measure on X.
Suppose that µ is a positive Borel measure on X. We say that µ is inner

regular if for every Borel set E we have

µ(E) = sup{µ(C) : C ⊂ E and C is closed}

and outer regular if for every Borel set E we have

µ(E) = inf{µ(V ) : E ⊂ V and V is open}.

If X is Hausdorff, we say that µ is tight if for every ϵ > 0 there is some compact
subset K of X such that µ(X \ K) < ϵ. It is straightforward to check that a
finite positive Borel measure is tight if and only if for every Borel set E,

µ(E) = sup{µ(K) : K ⊂ E and K is compact}.

We specify that X be Hausdorff to ensure that any compact subset of X is
closed and hence a Borel set.

It can be proved that if X is a metrizable space, then any finite positive
Borel measure on X is inner regular and outer regular,5 and that if X is a
Polish space then any finite positive Borel measure on X is tight.6 (A Polish
space is a separable topological space whose topology is induced by a complete
metric.)

For a topological space X, we define C(X) to be the set of continuous func-
tions X → R and Cb(X) to be the set of bounded continuous functions X → R.
One checks that Cb(X) with the supremum norm is a Banach space. We remind
ourselves that if X is compact then C(X) = Cb(X).

For a topological space X, we write ca(X) = ca(BX). For a compact metriz-
able space, the Riesz representation theorem states that Λ : ca(X) →
C(X)∗ defined by

Λµf =

∫
X

fdµ, µ ∈ ca(X), f ∈ C(X),

is an isomorphism of real Banach spaces, where C(X)∗ has the operator norm.7

5 The narrow topology on P(X)

Suppose that X is a topological space. The narrow topology on ca(X) is
the coarsest topology such that for each f ∈ Cb(X), the map µ 7→

∫
X
fdµ

5Alexander S. Kechris, Classical Descriptive Set Theory, p. 107, Theorem 17.10.
6Alexander S. Kechris, Classical Descriptive Set Theory, p. 107, Theorem 17.11.
7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 498, Corollary 14.15.
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is continuous ca(X) → R. The narrow topology is also called the weak-*
topology.

Suppose that X is a metrizable topological space. We denote by P(X) the
set of Borel probability measures on X. P(X) is a convex subset of ca(X).
We shall be interested in the narrow topology on P(X). This is the coarsest
topology such that for each f ∈ Cb(X), the map µ 7→

∫
X
fdµ is continuous

P(X) → R, or equivalently, the subspace topology on P(X) inherited from
ca(X) with the narrow topology.

Lemma 4. Suppose that X is a metrizable topological space. Then P(X) is
a closed subset of ca(X) with the narrow topology.

It is a fact that if µ, ν are Borel probability measures on a metrizable topo-
logical space X, then µ = ν if and only if

∫
X
fdµ =

∫
X
fdν for all f ∈ Cb(X).8

Thus, the map P(X) → RCb(X) defined by µ 7→ (f 7→
∫
X
fdµ) is one-to-one.

A useful characterization of the narrow topology on P(X) is the following,
called the portmanteau theorem.9

Theorem 5. Suppose that X is a metrizable topological space, that µ ∈ P(X),
and that µi is a net in P(X). The net µi narrowly converges to µ if and only
if for every closed set C in X, lim supi µi(C) ≤ µ(C).

For x ∈ X, define δx on BX by

δx(E) =

{
1 x ∈ E

0 x ̸∈ E,
E ∈ BX .

Then δx ∈ P(X). We prove that the mapping x 7→ δx is an embedding of X
into P(X) with the narrow topology, and that if X is separable then its image
is closed.10

Theorem 6. Suppose thatX is a metrizable topological space and assign P(X)
the narrow topology. Then x 7→ δx is a homeomorphism onto its image, and if
X is separable then the image is a closed subset of P(X).

Proof. It is a fact that because X is metrizable, a net xi converges to x if and
only if f(xi) → f(x) for every f ∈ Cb(X); for these to be equivalent, it suffices
thatX be a completely regular topological space.11 f(xi) → f(x) can be written∫

X

fdδxi →
∫
X

fdδx.

8Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 506, Theorem 15.1.

9Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 508, Theorem 15.3.

10Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 512, Theorem 15.8.

11Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 50, Corollary 2.57. A topological space is called completely
regular if any closed set and any point not in this closed set can be separated by a continu-
ous function.
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This being true for all f ∈ Cb(X) means that δxi → δx. This shows that x 7→ δx
is a homeomorphism between X and {δx : x ∈ X}.

We remind ourselves that the support of a positive Borel measure µ on
a topological space (Y, τ) is the set of all y ∈ Y such that if N is an open
neighborhood of y then µ(N) > 0. The support of µ is denoted suppµ, and can
be written

suppµ = X \
⋃

V ∈τ,µ(V )=0

V,

which makes it apparent that suppµ is a closed set. One checks that G ∈ τ
and G ∩ suppµ ̸= ∅ imply that µ(G ∩ suppµ) > 0; suppµ is in fact the largest
closed set with this property. One can prove that if Y is second-countable, then
µ(X \ suppµ) = 0.12

Suppose that X is separable and suppose that δxi → µ in P(X). Since
X is separable and metrizable it is second-countable, so µ(X \ suppµ) = 0,
which because µ is a finite measure can be written µ(suppµ) = µ(X) = 1. Let
x ∈ suppµ and let N be an open neighborhood of x. A metrizable space is
completely regular, so there is some continuous function f : X → [0, 1] such
that f(x) = 1 and f(y) = 0 for all y ∈ X \N . This function f belongs to Cb(X)
as its range is contained in [0, 1]. Let G = {w ∈ X : f(w) > 1

2}, which is an
open set containing x and hence µ(G) > 0. Then,∫

X

fdµ ≥
∫
G

fdµ ≥ 1

2

∫
G

dµ =
1

2
µ(G) > 0.

δxi
→ µ implies

f(xi) =

∫
X

fdδxi →
∫
X

fdµ.

Thus f(xi) has a positive limit, and so there is some i0 such that i ≥ i0 implies
that f(xi) > 0. But from the definition of f , if y ∈ X \ N then f(y) = 0, so
f(y) > 0 implies that y ∈ N . Thus xi ∈ N for i ≥ i0. This shows that for
every open neighborhood N of x there is some i0 such that i ≥ i0 implies that
xi ∈ N , which is what it means to say that xi → x. Hence, if x ∈ suppµ then
the net xi converges to x. But X is Hausdorff and we know that suppµ ̸= ∅,
so suppµ has exactly one element. Write suppµ = {x}, and check that µ = δx,
which completes the proof.

One can further prove that if X is a separable metrizable topological space,
then13

extP(X) = {δx : x ∈ X}.

We remind ourselves that if C is a subset of a vector space V then x ∈ V is
called an extreme point of C if x = (1− t)y + tz with 0 < t < 1 implies that

12Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 442, Theorem 12.14.

13Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 512, Theorem 15.19.
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y = x and z = x, and extC denotes the set of extreme points of C. Here the
vector space is ca(X), of which P(X) is a convex subset.

We only speak about P(X) when X is a metrizable topological space, but
P(X) need not itself be metrizable. However, the following theorem shows that
X is compact if and only if P(X) is both compact and metrizable.14

Theorem 7. Suppose that X is a metrizable topological space. Then X is com-
pact if and only if P(X) with the narrow topology is compact and metrizable.

Proof. Suppose that X is compact. Then C(X) is a separable Banach space.
Denote the closed unit ball in C(X)∗ by B and assign B the subspace topology
inherited from C(X)∗ with the weak-* topology. Because C(X) is a normed
space the Banach-Alaoglu theorem tells us that B is compact, and because
C(X) is a separable normed space, B is metrizable.15 Earlier in this note we
gave a statement of the Riesz representation theorem for the case of compact
metrizable topological spaces: the map Λ : ca(X) → C(X)∗ defined by

Λµf =

∫
X

fdµ, µ ∈ ca(X), f ∈ C(X),

is an isomorphism of real Banach spaces. Check that ΛP(X) is a closed subset
of B and hence is compact, and therefore is a weak-* compact subset of C(X)∗.
Because B is metrizable and ΛP(X) is a subset of B, the subspace topology
on ΛP(X) inherited from B is metrizable, and this topology is the same as the
subspace topology on ΛP(X) inherited from C(X)∗ with the weak-* topology.
Check that Λ is a homeomorphism when ca(X) has the narrow topology and
C(X)∗ has the weak-* topology. Then, because the subspace topology ΛP(X)
inherited from C(X)∗ with the weak-* topology is compact and metrizable, the
subspace topology on P(X) inherited from ca(X) with the narrow topology is
compact and metrizable.

Suppose that P(X) with the narrow topology is compact and metrizable.
Because P(X) is compact and metrizable it is separable (any compact metriz-
able topological space is separable), and so {δx : x ∈ X} with the subspace
topology inherited from P(X) is separable. But Theorem 6 tells us that there
is a homeomorphism between X and {δx : x ∈ X}, so X is separable too. We
now know that X is a separable metrizable space, so by Theorem 6 we get that
{δx : x ∈ X} is a closed subset of P(X), and is therefore compact. Finally,
again using that X and {δx : x ∈ X} are homeomorphic, we get that X is
compact.

The following theorem shows the same type of result as above for separable
spaces.16

14Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 513, Theorem 15.11.

15Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 239, Theorem 6.30.

16Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 513, Theorem 15.12.
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Theorem 8. Suppose that X is a metrizable topological space. Then X is
separable if and only if P(X) with the narrow topology is both separable and
metrizable.

Proof. It is a fact that if Y is a separable metrizable topological space then there
is a compatible metric d on Y (a metric on a topological space is called com-
patible when it induces the topology) such that (Y, d) is a totally bounded
metric space: for every ϵ > 0, there are y1, . . . , yn ∈ Y such that for every
y ∈ Y there is some j such that d(y, yj) < ϵ.17

Another fact we shall use is the following. If (Y, d) is a metric space, A is
a nonempty subset of Y , and f : A → R is uniformly continuous, then there is
a unique uniformly continuous f̂ : A → R whose restriction to A is equal to f ,

and this extension satisfies
∥∥∥f̂∥∥∥

∞
= ∥f∥∞, and finally f̂ + g = f̂ + ĝ.18

Suppose thatX is separable, let d be a compatible metric such that (X, d) is a

totally bounded metric space, and let (X̂, d̂) be the completion of (X, d). (X̂, d̂)
is compact because a metric space is totally bounded if and only if its completion
is compact. Let Ud(X) denote the set of bounded uniformly continuous functions
X → R. It is apparent that with the supremum norm Ud(X) is a real normed
space, and one proves that it is a closed subset of Cb(X) and hence itself a

Banach space. Define ϕ : Ud(X) → Ud̂(X̂) = C(X̂) by ϕ(f) = f̂ , where f̂ is

the extension of f to X = X̂ explained in the previous paragraph; the equality
Ud̂(X̂) = C(X̂) is because X̂ is compact. What we have said so far makes it

apparent that ϕ is a linear isometry. Because X̂ is compact, the Banach space
C(X̂) is separable and hence the subspace ϕ(Ud(X)) is separable. Then, because
ϕ is an isometry, Ud(X) is separable, say with a countable dense subset D.

It is a fact that if Y is a set and F is a family of functions Y → R that
separates points in Y (if x ̸= y then there is some f ∈ F such that f(x) ̸=
f(y)) then the initial topology on Y induced by F is equal to the subspace
topology on Y inherited from RF with the product topology.19 One proves
that D being dense in Ud(X) implies that it separates points in P(X),20 and
hence that the initial topology on P(X) induced by D is equal to the subspace
topology on P(X) inherited from RD. But because D is countable and R
is separable and metrizable, RD with the product topology is separable and
metrizable. As RD is a separable metrizable topological space, the subspace
topology on P(X) inherited from RD is separable and metrizable. (If Y is a
metrizable topological space and A is a subset of Y , then the subspace topology
on A inherited from Y is metrizable. If Y is a separable metrizable topological
space and A is a subset of Y , then the subspace topology on A inherited from Y

17Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 91, Corollary 3.41.

18Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 77, Lemma 3.11.

19Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 53, Lemma 2.63.

20Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 506, Theorem 15.1.
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is separable, but this need not be true if Y is not metrizable.) This shows that
the initial topology on P(X) induced by D is separable and metrizable. But
because D is a dense subset of Ud(X), it can be proved that the initial topology
on P(X) induced by D is equal to the initial topology on P(X) induced by
Cb(X),21 and the initial topology on P(X) induced by Cb(X) is precisely the
narrow* topology on P(X). This shows that the narrow topology on P(X) is
separable and metrizable.

Suppose that the narrow topology on P(X) is separable and metrizable.
Then, {δx : x ∈ X} with the subspace topology inherited from P(X) is sepa-
rable, and by Theorem 6 there is a homeomorphism X → {δx : x ∈ X}, so X is
separable too.

The same type of result is true for Polish spaces and Borel spaces: if X is
a metrizable topological space, then X is a Polish space if and only if P(X)
with the narrow topology is a Polish space, and X is a Borel space if and only
if P(X) with the narrow topology is a Borel space.22

Suppose that X is a Hausdorff space and that F is a family of finite positive
Borel measures on X. We say that F is tight if for every ϵ > 0 there is
a compact subset K of X such that each µ ∈ F satisfies µ(X \ K) < ϵ, i.e.
µ(K) > µ(X)−ϵ. We specified that X be Hausdorff to ensure that any compact
subset of X is a Borel set. Earlier in this note we defined the notion of a tight
measure, and saying that a measure µ is tight is equivalent to saying that the
family {µ} is tight.

A subset A of a topological space Y is said to be relatively compact if its
closure is a compact set. We prove in the following theorem that every tight
family of Borel probability measures on a separable metrizable topological space
X is relatively compact in P(X).23

Theorem 9. Suppose that X is a separable metrizable topological space. Then
any tight subset of P(X) is relatively compact.

Proof. The Urysohn metrization theorem states that for a Hausdorff space
Y the following three statements are equivalent: (i) Y is separable and metriz-
able, (ii) Y is second-countable and regular, (iii) Y is a subspace of a topological
space H that is homeomorphic with [0, 1]N. Thus, X is a subspace of a topolog-
ical space H that is homeomorphic with [0, 1]N. Except for the last paragraph
of the proof, this is the only time where we invoke that X is separable. In the
course of the proof we shall use that H is compact and metrizable.

Suppose that F is a tight family of Borel probability measures on X. If
F = ∅ then it is immediate that the claim is true. Otherwise, for each n ∈ N let
µn ∈ F . For each m ∈ N, because F is tight there is a compact subset Km of

21Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 507, Theorem 15.2.

22Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 515, Theorem 15.15 and p. 517, Theorem 15.18. A Borel space
is a topological space that is homeomorphic to a Borel subset of a Polish space.

23Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 518, Lemma 15.21.

10



X such that µn(Km) > 1− 1
m for all n ∈ N. Because Km is a compact subset of

X and X has the subspace topology inherited from H , Km is a compact subset
of H and hence is a Borel set in H . (This is worth pointing out, because X
need not be a Borel set in H .) Let

E =
⋃
m∈N

Km,

which is a Borel set in H . We assign E the subspace topology inherited from
H . For n,m ∈ N, because Km ⊂ E,

1 ≥ µn(E) ≥ µn(Km) > 1− 1

m
.

This is true for all m, so µn(E) = 1, and therefore µn ∈ P(E) for all n ∈ N.
For each n ∈ N, define λn : BH → [0, 1] by

λn(B) = µn(E ∩B), B ∈ BH .

One checks that λn is a positive measure. Because λn(H ) = µn(E) = 1, we
have λn ∈ P(H ). The topological space H is compact and metrizable, so
by Theorem 7, the space P(H ) with the narrow topology is compact and
metrizable, and since λn is a sequence in P(H ), it has a subsequence λa(n)

that converges to some λ ∈ P(H ). For each m ∈ N, Km is a compact subset
of H and hence closed, so using λa(n) → λ in P(H ) we have by Theorem 5
that

λ(E) ≥ λ(Km)

≥ lim sup
n→∞

λa(n)(Km)

= lim sup
n→∞

µa(n)(E ∩Km)

= lim sup
n→∞

µa(n)(Km)

≥ lim sup
n→∞

(
1− 1

m

)
= 1− 1

m
.

This is true for all m, so λ(E) = 1, and therefore λ ∈ P(E).
It is a fact that if Z is a Borel subset of a metrizable topological space Y ,

then the narrow topology on P(Z) is equal to the subspace topology on P(Z)
inherited from P(Y ) with the narrow topology.24 As E is a Borel set in H , the
narrow topology on P(E) is equal to the subspace topology on P(E) inherited
from P(H ) with the narrow topology. We know that λa(n) → λ in P(H ), and
since the members of the sequence and the limit λ belong to P(E), λa(n) → λ

24Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 510, Lemma 15.4.

11



in P(E). (λn ∈ P(E) because λn(E) = 1 for each n.) But as elements of
P(E), λn = µn: for any B ∈ BE , λn(B) = µn(E ∩ B) = µn(B). So µn → λ
in P(E). Because E is a Borel set in X, the narrow topology on P(E) is
equal to the subspace topology on P(E) inherited from P(X) with the narrow
topology. We have established that µn → λ in P(E) with the narrow topology,
and therefore µn → λ in P(X) with the narrow topology. (If A is a subset of a
topological space Y and a sequence converges in A with the subspace topology,
then the sequence converges in Y to the same limit.)

BecauseX is separable, by Theorem 8 we have that P(X) is metrizable (and
separable, but we don’t care about that here). We have established that any
sequence of elements of F has a subsequence that converges to some element of
P(X), and because P(X) this suffices to show that F is relatively compact,
completing the proof.

6 The Prokhorov metric on P(X)

Let (X, d) be a metric space. If A ⊂ X and x ∈ X, we define

d(x,A) = inf
a∈A

d(x, a);

if A = ∅ then d(x,A) = ∞. For A ⊂ X and α > 0, we define

Aα = {x ∈ X : d(x,A) < α}.

One checks that for any A ⊂ X, limϵ→0 Aϵ = A, the closure of A.
For µ, ν ∈ P(X) we define dP (µ, ν) to be

inf{α > 0 : for all E ∈ BX , µ(E) ≤ ν(Eα) + α and ν(E) ≤ µ(Eα) + α}. (2)

One proves that dP is a metric on P(X), called the Prokhorov metric. It is
a bounded metric: for any E ∈ BX , µ(E), ν(E) ≤ 1, so µ(E) ≤ ν(E1) + 1 and
ν(E) ≤ µ(E1) + 1, hence dP (µ, ν) ≤ 1.

Theorem 10. If µ, µ1, µ2, . . . ∈ P(X) and dP (µi, µ) → 0, then µi converges
narrowly to µ.

Proof. For each i, dP (µi, µ) is defined in (2) as an infimum. We inductively
define a sequence αi > 0 by taking αi to be (i) an element of the set of which
dP (µi, µ) is the infimum, (ii) αi+1 < αi for each i, and (iii) αi → 0; we can
satisfy (iii) because dP (µi, µ) → 0. Then for any E ∈ BX ,

lim sup
i→∞

µi(E) ≤ lim sup
i→∞

µ(Eαi) + αi

≤ lim sup
i→∞

µ(Eαi
) + lim sup

i→∞
αi

= lim sup
i→∞

µ(Eαi)

= µ(A).
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Hence if C is a closed subset of X, then, as C ∈ BX , the above tells us

lim sup
i→∞

µi(C) ≤ µ(C),

which shows by Theorem 5 that µi converges narrowly to µ.

It follows from the above theorem that the topology on P(X) induced by
the Prokhorov metric is finer than the narrow topology on P(X).

It can be proved that if X is a separable metric space then the Prokhorov
metric on P(X) induces the narrow topology. This is proved in notes by van
Gaans.25 Van Gaans also proves Prokhorov’s theorem in his notes, which
states that if X is a Polish space, then a subset of P(X) is tight if and only
if it is relatively compact. We proved one of these implications in Theorem 9
(which is the implication that takes more work to prove) without needing to
use that X is Polish, but only a separable metrizable space. Another result
proved in those notes is that if X is a separable complete metric space, then so
is P(X) with the Prokhorov metric; it is worth reminding ourselves that this
is not immediate from the fact mentioned earlier that if X if Polish then P(X)
with the narrow topology is Polish, because even though in this case the narrow
topology on P(X) is induced by the Prokhorov metric, it need not be the case
that a metric that induces completely metrizable topology is itself a complete
metric.

7 Supports of positive Borel measures

If X is a topological space and µ is a positive Borel measure on X, the support
of µ is a subset S of X such that (i) S is closed, (ii) µ(X \ S) = 0, and (iii) if
U is an open set with U ∩ S ̸= ∅ then µ(U ∩ S) > 0. It is straightforward to
check that µ has at most one support. We now prove conditions under which a
support exists.26

Theorem 11. Suppose that X is a topological space and that µ is a positive
Borel measure on X. If X is second-countable or µ is a tight measure, then µ
has a support.

Proof. Assume that (X, τ) is second-countable, and let β be a countable base
for X. Let

G =
⋃

V ∈β,µ(V )=0

V.

G is an open set, and because β is countable,

µ(G) ≤
∑
V ∈β

µ(V ) = 0.

25Onno van Gaans, Probability measures on metric spaces, http://www.math.leidenuniv.
nl/~vangaans/jancol1.pdf

26Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 442, Theorem 12.14.
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Let S = X \ G, which is closed and has measure 0. Suppose that U is open,
that U ∩ S ̸= ∅, and that µ(U ∩ S) = 0. Then

µ(U) = µ(U ∩ S) + µ(U ∩G) = µ(U ∩G) ≤ µ(G) = 0.

On the other hand, there are V1, V2, . . . ∈ β such that U =
⋂

i Vi, and thus
for each i, µ(Vi) = 0, which implies that U ⊂ G. But this contradicts that
U ∩ S ̸= ∅, hence µ(U ∩ S) > 0. Therefore S is the support of µ.

Assume that µ is tight and let

G =
⋃

V ∈τ,µ(V )=0

V.

Then G is open and S = X \G is closed. If K is a compact subset of G, there
are V1, . . . , Vn ∈ τ with µ(Vi) = 0 such that K ⊂

⋃n
i=1 Vi, and so µ(K) ≤∑n

i=1 µ(Vi) = 0. Because µ is tight,

µ(X \ S) = µ(G) = sup{µ(K) : K is compact and K ⊂ G},

and this supremum is equal to 0. If U ∈ τ and U ∩ S ̸= ∅, then because U is
not contained in G, µ(U) > 0. This shows that S is the support of µ.
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