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The following is often useful.1

Theorem 1. If (X,µ) is a measure space, 1 ≤ p ≤ ∞, and fn ∈ Lp(µ) is a
sequence that converges in Lp(µ) to some f ∈ Lp(µ), then there is a subsequence
of fn that converges pointwise almost everywhere to f .

Proof. Assume that 1 ≤ p < ∞. For each n there is some an such that

∥fan − f∥p < 2−n.

Then
∞∑

n=1

∥fan
− f∥pp <

∞∑
n=1

2−np =
2−p

1− 2−p
< ∞.

Let ϵ > 0. We have{
x ∈ X : lim sup

n→∞
|fan

(x)− f(x)| > ϵ

}
⊂

∞⋂
N=1

∞⋃
n=N

{x ∈ X : |fan
(x)− f(x)| > ϵ} .

For any N , this gives, using Chebyshev’s inequality,

µ

({
x ∈ X : lim sup

n→∞
|fan

(x)− f(x)| > ϵ

})
≤

∞∑
n=N

µ ({x ∈ X : |fan
(x)− f(x)| > ϵ})

≤ϵ−p
∞∑

n=N

∥fan
− f∥pp .

Because
∑∞

n=1 ∥fan − f∥pp < ∞, we have
∑∞

n=N ∥fan − f∥pp → 0 as N → ∞,
which implies that

µ

({
x ∈ X : lim sup

n→∞
|fan

(x)− f(x)| > ϵ

})
= 0.

1Walter Rudin, Real and Complex Analysis, third ed., p. 68, Theorem 3.12.
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This is true for each ϵ > 0, hence

µ

({
x ∈ X : lim sup

n→∞
|fan(x)− f(x)| > 0

})
= 0,

which means that for almost all x ∈ X,

lim
n→∞

|fan
(x)− f(x)| = 0.

Assume that p = ∞. Let

Ek = {x ∈ X : |fk(x)| > ∥fk∥∞}.
The measure of each of these sets is 0, so for

E =
⋃
k

Ek

we have µ(E) = 0. For x ̸∈ E,

|f(x)− fk(x)| ≤ ∥f − fk∥∞ → 0, k → ∞,

showing that for almost all x ∈ X, fk(x) → f(x).

The following results are in the pattern of A being a strict subset of X
implying that A is meager in X.

We first work out two proofs of the following theorem.

Theorem 2. For 1 < p ≤ ∞, Lp(T) is a meager subset of L1(T).
Proof. For n ≥ 1, let

Cn =
{
f ∈ L1(T) : ∥f∥p ≤ n

}
.

Let n ≥ 1. If a sequence fk ∈ Cn converges in L1(T) to some f ∈ L1(T), then
there is a subsequence fak

of fk such that for almost all x ∈ T, fak
(x) → f(x),

and so fak
(x)p → f(x)p. Applying the dominated convergence theorem gives

1

2π

∫
T
|f(x)|pdx = lim

k→∞

1

2π

∫
T
|fak

(x)|pdx = lim
k→∞

∥fak
∥pp ≤ np,

hence ∥f∥p ≤ n, showing that f ∈ Cn. Therefore, Cn is a closed subset of L1(T)
On the other hand, let f ∈ Cn and let g ∈ L1(T) \ Lp(T). Then f + 1

kg → f
in L1(T), and for each k we have f + 1

kg ̸∈ Cn, as that would imply g ∈ Lp(T).
This shows that f does not belong to the interior of Cn. Because Cn is closed
and has empty interior, it is nowhere dense. Therefore

Lp(T) =
∞⋃

n=1

{
f ∈ L1(T) : ∥f∥p ≤ n

}
is meager in L1(T).

Proof. The open mapping theorem tells us that if X is an F -space, Y is a
topological vector space, Λ : X → Y is continuous and linear, and Λ(X) is not
meager in Y , then Λ(X) = Y , Λ is an open mapping, and Y is an F -space.2

2Walter Rudin, Functional Analysis, second ed., p. 48, Theorem 2.11.
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Let j : Lp(T) → L1(T) be the inclusion map. For f ∈ Lp(T),

∥j(f)∥1 = ∥f∥1 ≤ ∥f∥p ,

showing that the inclusion map is continuous. On the other hand, j is not
onto, so the open mapping theorem tells us that j(Lp(T)) = Lp(T) is meager in
L1(T).

Suppose that X is a topological vector space, that Y is an F -space, and that
Λn is a sequence of continuous linear maps X → Y . Let L be the set of those
x ∈ X such that

Λx = lim
n→∞

Λnx

exists. It is a consequence of the uniform boundedness principle that if L is not
meager in X, then L = X and Λ : X → Y is continuous.3

For n ≥ 1, define Λn : L2(T) → C by

Λnf =
∑
|k|≤n

f̂(k), f ∈ L1(T).

Define
L =

{
f ∈ L2(T) : lim

n→∞
Λnf exists

}
.

The sequence t 7→
∑n

k=1
eikt

k is a Cauchy sequence in L2(T), hence converges to
some f ∈ L2(T), which satisfies

f̂(k) =

{
1
k k ≥ 1

0 k ≤ 0.

Then

Λnf =

n∑
k=1

1

k
→ ∞, n → ∞,

meaning that f ∈ L2(T) \ L. This shows that L ̸= L2(T). Therefore, the above
consequence of the uniform boundedness principle tells us that L is meager.

3Walter Rudin, Functional Analysis, second ed., p. 45, Theorem 2.7.
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