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1 Introduction

In this note, any statement we make about filtrations and martingales is about
filtrations and martingales indexed by the positive integers, rather than the

nonnegative real numbers.
We take
inf ) = oo,

and for m > n, we take
n

> =o.

k=m

(Defined rightly, these are not merely convenient ad hoc definitions.)

2 Conditional expectation

Let (€2, <7, P) be a probability space and let Z be a sub-c-algebra of o/. For
each f € LY(Q, o, P), there is some g : Q — R such that (i) g is #-measurable
and (ii) for each B € B, [ gdP = [ fdP, and if h : Q — R satisfies (i) and (ii)
then h(w) = g(w) for almost all w € QH We denote some g : Q — R satisfying
(i) and (ii) by E(f|%), called the conditional expectation of f with respect
to %. In other words, F(f|%) is the unique element of L'(Q, %, P) such that

for each B € 4,
/EM%M:/MP
B B

The map f — E(f| %) satisfies the following:

1. f~ E(f|9) is positive linear operator L(Q, o7, P) — L*(Q, %, P) with
norm 1.

IManfred Einsiedler and Thomas Ward, Ergodic Theory: with a view towards Number
Theory, p. 121, Theorem 5.1.



2. If f € LY(Q, o/, P) and g € L>(Q, %, P), then for almost all w € ),
E(gf|#)(w) = g(w)E(f|#)(w).
3. If ¥ is a sub-o-algebra of 4, then for almost all w € (2,
E(E(f|2)|%)(w) = E(f|%)(w).
4. If f € LY(Q), A, P) then for almost all w € €,
E(f|#)(w) = f(w).
5. If f € LY(Q, .o/, P), then for almost all w € €,
|E(f|%)w)| < E(|f]|2)(w).
6. If f € LY(Q, .o, P) is independent of 4, then for almost all w € Q,

E(f|#)(w) = E(f)-

3 Filtrations

A filtration of a o-algebra 7 is a sequence .%,,, n > 1, of sub-g-algebras of &/
such that %, C %, if m < n. We set Zo = {0,Q}.

A sequence of random variables &, : (2,47, P) — R is said to be adapted
to the filtration .%, if for each n, &, is %, -measurable.

Let &, : (Q,27,P) — R, n > 1, be a sequence of random variables. The
natural filtration of &/ corresponding to &, is

ynza(fla"'vfn)‘

It is apparent that .%, is a filtration and that the sequence &, is adapted to .%,,.

4 Martingales

Let %, be a filtration of a o-algebra & and let £, : (Q, &7, P) — R be a sequence
of random variables. We say that £, is a martingale with respect to .%, if
(i) the sequence &, is adapted to the filtration .%,, (ii) for each n, &, € L'(P),
and (iil) for each n, for almost all w € Q,

E(ni1|Fn) (W) = &nlw).
In particular,
E(&)=E(&)="",

i.e.



We say that &, is a submartingale with respect to .%, if (i) and (ii)
above are true, and if for each n, for almost all w € ,

E(ni1|Fn) (W) = &nlw).

In particular,

E)<E() <,
B B(€n) < E(€),  m<n.

We say that &, is a supermartingale with respect to .%, if (i) and (ii)
above are true, and if for each n, for almost all w € Q,

En(w) > E(§nt1]Fn) (w).

In particular,
E&) > E(&) >,

i.e.
E(&m) > E(&n), m < n.

If we speak about a martingale without specifying a filtration, we mean a
martingale with respect to the natural filtration corresponding to the sequence
of random variables.

5 Stopping times

Let .%,, be a filtration of a c-algebra &/. A stopping time with respect to
Fn, is a function 7: Q — {1,2,...} U {oco} such that for each n > 1,

{weN:7(w) =n} € .Z,.

It is straightforward to check that a function 7: Q@ — {1,2,...} U {oo} is a
stopping time with respect to .%, if and only if for each n > 1,

{weQ:7(w) <n} e F,.

The following lemma shows that the time of first entry into a Borel subset of
R of a sequence of random variables adapted to a filtration is a stopping timeE|

Lemma 1. Let &, be a sequence of random variables adapted to a filtration %,
and let B € $Br. Then

T(w) =inf{n > 1:¢,(w) € B}

is a stopping time with respect to F,.

27dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 55, Exercise
3.9.



Proof. Let n > 1. Then

n—1

{wEQ:T(w):n}:(ﬂ{weﬂ:fk(w)¢3}>ﬂ{weQ:fn(w)eB}

k=1
n—1

= <m Ai) N Ay,
k=1

where
AkZ{OJEQZSk(w) EB}

Because the sequence &, is adapated to the filtration 7y, A} € F#, and A4,, € F,,
and because % is a filtration, the right-hand side of the above belongs to
T O

If &, is a sequence of random variables adapted to a filtration .%, and a
stopping time 7 with respect to .%,, for n > 1 we define {5, : 2 — R by

fq—/\n(W) = gT(w)/\n(UJ), w € Q.
&-nn 1s called the sequence ¢, stopped at TE|

Lemma 2. &py : (2,4, P) — R is a sequence of random variables adapted to
the filtration F,,.

Proof. Let n > 1 and let B € %g. Because
{w:&ran(w) € B, 7(w) > n} ={w: &(w) € B, 7(w) >n}
and for any F,
{w:éran(w) € B, 7(w) =k} ={w: & € B, 7(w) =k},

we get
{w:&an(w) € B ={w: &, (w) € B,7(w) >n}U U{w & (w) € B, 7(w) = k}.
k=1

But
{anBaT>n}:{§nEB}Q{T>TL}6357L

and
{gkEBaT:k}:{SkEB}O{T:k}EJJle
and therefore
{g'r/\n S B} S j\n

In particular, {&;nn € B} € &, namely, {-an is a random variable, and the
above shows that this sequence is adapted to the filtration .%,,. O

37dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 55, Exercise
3.10.



We now prove that a stopped martingale is itself a martingale with respect
to the same filtration [

Theorem 3. Let %, be a filtration of a o-algebra </ and let T be a stopping
time with respect to F,.

1. If &, is a submartingale with respect to %, then so is &Erpn-
2. If &, is a supermartingale with respect to F, then $0 is Erpn.-

8. If &, is a martingale with respect to F,, then 50 is Expp-

Proof. For n > 1, define

0 7(w)<mn;

we remark that 7(w) > n if and only if 7(w) > n — 1 and 7(w) < n if and only
if 7(w) <n—1. For B € %, (i) if 0,1 € B then

{we:ay(w)e B} =0¢€ F,_1,
(ii) if 0,1 € B then

{we:ay(w)eB}=Q¢€ %1,
(iii) if 0 € B and 1 ¢ B then
{we:ap(w)eB={weQ:ay(w) =0} ={we:7(w) <n-—-1} € F,_1,
and (iv) if 1 € B and 0 ¢ B then
{weQ:iay(w)eB={weQ:apw)=1}={weQ:7(w) >n—1} € F,_1,
Therefore {a,, € B} € %,_1.

Set &y = 0, and we check that

g'r/\n = Z ak(&k - £k71)~
k=1

It is apparent from this expression that if &, is adapted to %, then & p, is
adapted to .%,, and that if each &, belongs to L*(P) then each &, 5, belongs to

LY(P). As each of ay,...,a,41 is Z,-measurable and is bounded,
n+1 n+1
E(&r )| Fn) = Z E(on (& — Ek—1)|Fn) = Z arB(&k — &—1|Fn). (1)
k=1 k=1

47dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 56, Proposi-
tion 3.2.



Suppose that &, is a submartingale. By ,

E(f‘r/\(n+1)|y’n> = Z ak(gk - €k—1) + an-‘rlE(gn-&-l‘yn) - an+1§n
k=1

> &ran + Oén+1£n - an+1€n

= ET/\TL,

Eran means that E(&ami1)|-Fn) (W) > Eran(w) for almost all w € Q. O

which shows that &, 1, is a submartingale; the statement that E (&, x(n41)|-Fn) >

We now prove the optional stopping theoremﬂ

Theorem 4 (Optional stopping theorem). Let %, be a filtration of a o-algebra
o, let &, be a martingale with respect to F,,, and let T be a stopping time with
respect to %,. Suppose that:

1. For almost all w € Q, 7(w) < 00.
2. ¢ € LN, o, P).
3. E(€nl{r>ny) = 0 as n — oo.

Then
E(&) = E(&).

Proof. For each n, Q = {7 <n}U {7 > n}, and therefore

)
fT = §T/\7l + 57'1{7->n} - §n1{7>n} = 57’/\71 + Z gkl{T:k} - £7L1{T>n}'
k=n-+1

Theorem [3] tells us that &, A, is a martingale with respect to to .%,,, and hence

E(ST/\YL) = E(fT/\l) = E(ﬁl),

SO
e}

E(f-,—) = E(fl) + Z E(&kl{-r:k}) - E(£n1{7>n})' (2)

k=n-+1
But as & € LY(P),

L& Z / [ S0P =3 Blet o)

and the fact that this series converges means that > 7 | E(&l{;=x}) — 0.
With the hypothesis E(,1{;5n}) — 0, as n — oo we have

(oo}

E(€)+ Y Ell=r) — E(al{rsny) = E(&).
k=n-+1
But (2)) is true for each n, so we get E(&;) = F(&1), proving the claim. O

57dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 58, Theorem
3.1.



Suppose that 7, is a sequence of independent random variables each with
the Rademacher distribution:

’ P(Un:*l):

N

P(nnzl):

Let &, =Y p_; m and let .7, =

—~

M,-..,Mn). Because

5721+1 = (§n + nn+1)2 = 7772L+1 + 2nn11&n + 5727,7

we have, as , is .%,-measurable and belongs to L>(P) and as 7,11 is indepen-
dent of the o-algebra %,

E(é’i—i—l - (n + 1)"@.’”) = E(n721+1 =+ 2777L+1€n + 5721 - (7’L + 1)|yn)
= E(ﬂiﬂ) + 260 E(Nny1) + €r2L —(n+1)
=1+0+& —(n+1)

2
=&, —n.

Therefore, £2 — n is a martingale with respect to .%,,.
Let K be a positive integer and let

T=inf{n >1:(¢,| = K}.

Namely, 7 is the time of first entry in the Borel subset {—K, K} of R, hence
by Lemma [1] is a stopping time with respect to the filtration .%,,. With some
Workﬁ one shows that (i) P(t > 2Kn) — 0 as n — oo, (ii) E(|¢2 — 7]) < oo,
and (iii) E((£2 — n)l{;>ny) — 0 as n — oco. Then we can apply the optional
stopping theorem to the martingale £2 — n: we get that

B(& —-1)=EB( -1)=EB(&)-1=E@)-1=0.

Hence
B(r) = B(&).
But |£,| = K, so €2 = K2, hence

E(r) = E(K?) = K*.

6 Maximal inequalities

We now prove Doob’s maximal inequalitym

67dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 59, Example
3.7.

"Zdzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 68, Proposi-
tion 4.1.



Theorem 5 (Doob’s maximal inequality). Suppose that %, is a filtration of a
o-algebra f | that &, is a submartingale with respect to #,, and that for each
n, & > 0. Then for each n > 1 and A > 0,

AP (1211?571 & > )\> <FE (fnl{maxlgksngkzx}) .

Proof. Define (,(w) = maxi<g<n&k(w), which is .#,-measurable, and define
T:Q—={l,...,n} by

T(w) =min{l <k <n:&(w) > A}

if there is some 1 < k < n for which & (w) > A, and 7(w) = n otherwise. For
1<k<n,
k—1

{r=k}=[ & <A} | n{& = )} € i,

j=1
and for k > n,
{T = k} =0e Fre,

showing that 7 is a stopping time with respect to the filtration .Z.
For k> 1,

k

k
St — Erntert) = O Lrmp (o1 — Erngern) = O Lirmgp (Ger1 — &),

Jj=1 Jj=1

hence, because 7 is a stopping time with respect to the filtration .%;, and because
&k is a submartingale with respect to this filtration,

k
E(&1 — Eniean) [ Fr) = Y 1y E((Ghr — §)|-F)
j=1

[
™=

L=y (BE(Sk+1]Fk) — &)

j=1
k

> ) 1= (& — &)
j=1
k—1

=) 1p=j& —&)
j=1

= gk - g‘r/\kv

from which we have that the sequence £ — & Ak is a submartingale with respect
to the filtration .%;. Therefore

E(& = &nk) 2 E(& — &ra1) = E(&1) — E(&rn1) = E(61) — E(&1) =0,



and 80 E(&rnr) < E(&). Because 7 An = 7, this yields

E(&r) < E(&n)

‘We have
E(&) = E(&- 1, >x)) + E(6r ¢, <a})-

If w e {Cn Z )\} then (57—)(&}) 2 )‘a and lf w € {Cn < >\} then ’T(w) =N and SO
(&) (w) = & (w). Therefore

E(&r) > E(\ Ly, >a1) + E(€alic,<ay) = AP(Co > A) + E(§nlic, <y)-

Therefore
AP(Cn 2 A) + E(§nlic, <ay) < E(&n)

But &, = &nle,<x +&nle, >, hence
AP((n > A) < E(&nlic,>a1)

which proves the claim. O

The following is Doob’s L? maximal inequality, which we prove using
Doob’s maximal inequality[]

Theorem 6 (Doob’s L? maximal inequality). Suppose that %, is a filtration
of a o-algebra </ and that &, is a submartingale with respect to %, such that
for eachn > 1, &, >0 and &, € L*(P). Then for each n > 1,

d

Proof. Define (,(w) = maxi<g<n & (w). It is a fact that if n € L?(P) and n > 0
then

max ¢k
1gk§n€

2
)Swﬁy

En?) = 2/000 tP(n > t)dt.

Using this, Doob’s maximal inequality, Fubini’s theorem, and the Cauchy-

87dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 68, Theorem
4.1.



Schwarz inequality,

—2 /Q C(@)En (@) dP(w)
< 9(B(C2))2(B(E)) V2,

n n

If E(¢2) = 0 the claim is immediate. Otherwise, we divide this inequality by
(E(¢?))'/? and obtain

(B(G)Y? < 2BE)Y?,

and so
E(¢r) <4E(E)),

proving the claim. O

7 Upcrossings

Suppose that £, is a sequence of random variables that is adapted to a filtration
Z,, and let a < b be real numbers. Define

To = 07
and by induction for m > 1,
Om(w) =nf{k > 71 (w) : &k(w) < a}

and
Tm (W) = inf{k > o, (w) : &p(w) > b},

where inf ) = co. For each m, 7,, and o,, are each stopping times with respect
to the filtration .%;. For n > 0 we define

U,la,b](w) =sup{m > 0 : 7, (w) < n}.
For x € R, we write
x~ = max{0, —z} = —min{0, z}.

namely, the negative part of x.
We now prove the upcrossings inequality.

10



Theorem 7 (Upcrossings inequality). If &,, n > 1, is a supermartingale with
respect to a filtration %, and a < b, then for eachmn > 1,

(b= a)E(Un[a,b]) < E((§n — a)7).

Proof. For n > 1 and w € , and writing N = U,a, b](w), for which N < n, we
have

M:

(€Tm An (w) - fam An (W))

3
Il

I
M=

(ngAn(W) —&omAn (w)) + gTN+1/\" (w) — £O'N+1 An(w)

3
I

n

> (Ern(@) = Eopnn(w))

m=N+2

+

n

(Ern (@) = €0, (W) + €0 (@) = Eonrinn(@) + Y (€nlw) = Enl(w))

m=N+1

I
] =

3
Il

I
] =

(me (w) - gUm (w)) + 1{UN+1§n}(w)<£n(w) - 50N+1 (W))

3
ﬂ‘

] =

(b - a) + 1{GN+1S7L} (w)(én(w) - €0N+1 (w))

3
Il

Because &5, ., (w) < a, we have

(b - G)N < 1{0N+1§n}( ) a— gn + Z ng/\n gom/\n(w))'
m=1

One proves thaﬂ

Lonpi<nt(w)(a@ = &(w)) < min{0,a — & (w)} = (§n(w) —a)™.
Thus

(b—a)E(Upn[a,b]) < E((§n — Z ((rnn — Eomnn)-

m=1

Using that &, is a supermartingale, for each 1 <m <n

E(g‘rm/\n - é-a'm/\n) S 0.

Therefore
(b—a)E(Uyla,b]) < E((§&n —a)7).
O

9T am not this “one”. I have not sorted out why this inequality is true. In every proof
of the upcrossings inequality I have seen there are pictures and things like this are asserted
to be obvious. I am not satisfied with that reasoning; one should not have to interpret an
inequality visually to prove it.

11



8 Doob’s martingale convergence theorem

We now use the uprossings inequality to prove Doob’s martingale conver-
gence theorem[|

Theorem 8 (Doob’s martingale convergence theorem). Suppose that &,, n > 1,
s a supermartingale with respect to a filtration %, and that

M = sup E(|€,]) < occ.

Then there is some & € LY (2,97, P) such that for almost all w € 2,

lim &, (w) = ¢(w)

n—oo
and with E(|¢]) < M.

Proof. For any a < b and n > 1, the upcrossings inequality tells us that

Blé—a)) _ B —al) _ Bl +la) _ M +a
b—a - b—a b—a = b—a

EUyla,b]) <

For each w € , the sequence U,[a, b](w) € [0,00) is nondecreasing, so by the
monotone convergence theorem,

E ( lim Unfo,8]) = lim E(Uyla,t]) < M + o

n—o00 n—00 ~ b—a '

This implies that
P (w eN: n11_>n010 Unla, b)(w) < oo) =1

Let
A= m {MEQ:nILII;cU”[a’b](w> <oo}.
a,beQ,a<b

This is an intersection of countably many sets each with measure 1, so P(A) = 1.
Let
B ={w € Q:liminf ¢, (w) < limsup &, (w)}.

If w € B, then there are a,b € Q, a < b, such that

liminf &, (w) < a < b < limsup&, (w).
n n

It follows from this lim,, o Uy[a, b](w) = 0co. Thus w € A, so BN A =0, and
because P(A) =1 we get P(B) = 0.

107 dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 71, Theorem
4.2.
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We define £ : 2 — R by

5(W):{o e ZZB

which is Borel measurable. Furthermore, since || = liminf,, |£,| almost every-
where, by Fatou’s lemma we obtain

E(¢]) = E(lim inf [£,[)
< lim inf E([¢n])
< s%pE(lian

=M.

9 Uniform integrability

Let £ : (Q,47,P) — R be a random variable. It is a facﬂ that &€ € L' if and
only if for each € > 0 there is some M such that

/ €]dP < e.
{lel>)

(One’s instinct might be to try to use the Cauchy-Schwarz inequality to prove
this. This doesn’t work.) Thus, if &, is a sequence in L*(£2, .7, P) then for each
€ > 0 there are M, such that, for each n,

/ |€0]dP < €.
{l€n|> My}

A sequence of random variables &, is said to be uniformly integrable if
for each € > 0 there is some M such that, for each n,

/ |En|dP < €.
{1&n|>M}

If a sequence &, is uniformly integrable, then there is some M such that for each

n7
/ €aldP < 1,
{lén|>M}

and so

E(\§n|):/ |§n|dP+/ |§n|dP</ MdP+1<M+1.
{l€nl<M} {ln]>M} {lénl<M}

117dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 73, Exercise
4.3.
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The following lemma states that the conditional expectations of an integrable
random variable with respect to a filtration is a uniformly integrable martingale
with respect to that filtration[’]

Lemma 9. Suppose that ¢ € L*(Q, 4/, P) and that %, is a filtration of <.
Then E(§|F,) is a martingale with respect to %, and is uniformly integrable.

We now prove that a uniformly integrable supermartingale converges in L! E

Theorem 10. Suppose that &, is a supermartingale with respect to a filtration
Fn, and that the sequence &, is uniformly integrable. Then there is some £ €
LY(Q, o/, P) such that &, — & in L'.

Proof. Because the sequence &, is uniformly integrable, there is some M such
that for each n > 1,
B(jén]) < M +1.

Thus, because &, is a supermartingale, Doob’s martingale convergence theorem
tells us that there is some & € L*(£, .27, P) such that for almost all w € Q,

lim &,(w) = &(w).

n— oo

Because &, is uniformly integrable and converges almost surely to £, the Vitali
convergence theorenﬂ tells us that &, — € in L. O

The above theorem shows in particular that a uniformly integrable mar-
tingale converges to some limit in L'. The following theorem shows that the
terms of the sequence are equal to the conditional expectations of this limit with
respect to the natural ﬁltrationE

Theorem 11. Suppose that a sequence of random wvariables &, is uniformly
integrable and is a martingale with respect to its natural filtration

g\n = U(fl,...,fn).

Then there is some & € LY(Q, o/, P) such that &, — & in L' and such that for
each n > 1, for almost all w € €,

§n(w) = E(E]Fn)(w).

127 dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 75, Exercise
4.5.

137 dzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 76, Theorem
4.3.

14V 1. Bogachev, Measure Theory, volume I, p. 268, Theorem 4.5.4; http://individual.
utoronto.ca/jordanbell/notes/LO.pdf}, p. 8 Theorem 9.

197Zdzistaw Brzezniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 77, Theorem
4.4.
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Proof. By Theorem there is some & € L1(2, o7, P) such that &, — ¢ in L.
The hypothesis that the sequence &, is a martingale with respect to .%,, tells us
that for that for n > 1 and for any m > n,

and so for A € %,

/A EmdP = /A E(¢,|.%,)dP = /A &ndP.

Thus
/A (sn—g)dp‘ [ (6 §>dP‘
/ 6 — €ldP
< E(lém — €)).

But E(|&y, —&|) = 0 as m — co. Since m does not appear in the left-hand side,

we have
[ - 5>dP’ 0,
A

/ £ndP = / ¢dP.

But E(f|-%,) is the unique element of L!(Q,.%,, P) such that for each A € .Z,,,

| Bnzap = [ sar.

and because &, satisfies this, we get that &, = E(f|.%,) in L}, i.e., for almost
all w € Q,

and thus

En(w) = E(f[Fn)(w),

proving the claim. O

10 Lévy’s continuity theorem

For a metrizable topological space X, we denote by Z(X) the set of Borel
probability measures on X. The narrow topology on Z(X) is the coarsest
topology such that for each f € Cy(X), the map

M'—>/de/i

is continuous Z(X) — C.

15



A subset S of Z(X) is called tight if for each € > 0 there is a compact
subset K. of X such that if p € 5 then u(X \ K.) <e, ie. p(K.) >1—e€. (An
element p of 2(X) is called tight when {u} is a tight subset of 2(X).)

For a Borel probability measure 1 on R%, we define its characteristic func-
tion i : R — C by

a(u) = / e du(z), u € R
Rd

fi is bounded by 1 and is uniformly continuous. Because u(R%) = 1,

al0) = 1.
Lemma 12. Let p € Z(R). Ford >0,

p({reril=3}) <5/ i(l — Au))du;

in particular, the right-hand side of this inequality is real.

Proof. Using Fubini’s theorem and the fact that all real ¢, 1 — %nt >0,

| 2(1 - flw)du= [ 2 ( a- e”“mu(w)) du

=ou({z e R: |dz| > 2}).
O

The following lemma gives a condition on the characteristic functions of a
sequence of Borel probability measures on R under which the sequence is tightﬁ

16Krishna B. Athreya and Soumendra N. Lahiri, Measure Theory and Probability Theory,
p. 329, Lemma 10.3.3.
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Lemma 13. Suppose that p, € Z(R) and that fi,, converges pointwise to a
function ¢ : R — C that is continuous at 0. Then the sequence L, is tight.

Proof. Write ¢,, = fi,. Because |¢,| < 1, for each § > 0, by the dominated
convergence theorem we have

b) )
%/—5(1 — ¢p(t))dt — %/_6(1 — o(t))dt.

On the other hand, that ¢ is continuous at 0 implies that for any € > 0 there is
some 1 > 0 such that when [t| < 7, |¢(t) — 1| < ¢, and hence for § < 7,

1 4
5[Jl—wmwszﬂgl—wwsza
thus 5
%/_6(1 o)t >0, 50,

Let € > 0. There is some § > 0 for which

< €.

6
5 [ a-owna

-0

Then there is some ngs such that when n > ng,

< €,

0 6
5 [ a-ounar—35 [ a-oma

s 0 J s

whence

< 2e.

8
ﬁ/y—mmw

Lemma [T2] then says

o ({x ER:|z| > ?}) < ;/1(1 — (b))t < 2.

Furthermore, any Borel probability measure on a Polish space is tight (Ulam’s
theorem)m Thus, for each 1 < n < ng, there is a compact set K,, for which
pn(R\ K,,) <e. Let

2
K6:K1U"‘UKnd.1U{.’E€RZ|ZL’|<5},

which is a compact set, and for any n > 1,
n(R\ K¢) < 2e,

showing that the sequence p,, is tight. O

17 Alexander S. Kechris, Classical Descriptive Set Theory, p. 107, Theorem 17.11.
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For metrizable spaces X1,...,Xq4, let X = H?Zl X;,and let m; : X — X
be the projection map. We establish that if ¢ is a subset of Z(X) such that
for each 1 < ¢ < d the family of ith marginals of J# is tight, then ¢ itself is

tightE

Lemma 14. Let X3,..., Xy be metrizable topological spaces, let X = H?Zl X,
and let 7 C P(X). Suppose that for each 1 < i <d,

Hi =A{Tip:p € A}
is a tight set in P(X;). Then J is a tight set in P(X).

Proof. For u € A, write u; = m; . Let € > 0 and take 1 < i < d. Because J¢;
is tight, there is a compact subset K; of X; such that for all u; € 5,

pi(Xi \ Ki) <

Ul

Let

Then for any pu € J2,

which shows that Z is tight. O

18Luigi Ambrosio, Nicola Gigli, and Giuseppe Savare, Gradient Flows: In Metric Spaces
and in the Space of Probability Measures, p. 119, Lemma 5.2.2; V. I. Bogachev, Measure
Theory, volume II, p. 94, Lemma 7.6.6.
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We now prove Lévy’s continuity theorem, which we shall use to prove
the martingale central limit theorem[™]

Theorem 15 (Lévy’s continuity theorem). Suppose that y,, € 2(R%), n > 1.

1. If p € 2R and p, — p narrowly, then for any u € RY,

fin(u) = fiw), - oo.

2. If there is some ¢ : R — C to which fi,, converges pointwise and ¢ is
continuous at 0, then there is some pu € P(R?) such that ¢ = ji and such
that p, — p narrowly.

Proof. Suppose that p, — p narrowly. For each u € R, the function x — e
is continuous RY — C and is bounded, so

Fin (1) = / @) = [ () = ).

Suppose that fi,, converges pointwise to ¢ and that ¢ is continuous at 0. For
1 <i<d, let m : R = R be the projection map and define ¢; : R — R? by
taking the ith entry of ¢;(¢) to be t and the other entries to be 0. Fix 1 <i <d
and write v, = i, pn, € Z(R), and for ¢ € R we calculate

Uy (t) = / e"tdu, (s)
R

[ e ()

Rd

e dp, ()
d
fin (i(t)),
SO Up = fin © t;. By hypothesis, 7, converges pointwise to ¢ o ¢;. Because ¢ is

continuous at 0 € R, the function ¢ o ¢; is continuous at 0 € R. Then Lemma
tells us that the sequence v, is tight. That is, for each 1 < i < d, the set

|
S

{Tistn : > 1}
is tight in Z(R). Thus Lemma tells us that the set
{ttn :n > 1}
is tight in Z(R9).

Prokhorov’s theoremP|states that if X is a Polish space, then a subset /7
of Z(X) is tight if and only if each sequence of elements of 5 has a subsequence

19¢f. Jean Jacod and Philip Protter, Probability Essentials, second ed., p. 167, Theorem
19.1.
20V, 1. Bogachev, Measure Theory, volume II, p. 202, Theorem 8.6.2.
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that converges narrowly to some element of &(X). Thus, there is a subsequence
Ha(n) Of pin and some p € Z(R%) such that Ha(n) converges narrowly to u. By
the first part of the theorem, we get that fig(,) converges pointwise to . But
by hypothesis fi,, converges pointwise to ¢, so ¢ = [i.

Finally we prove that p, — u narrowly. Let p,) be a subsequence of fiy,.
Because {u, : n > 1} is tight, Prokhorov’s theorem tells us that there is a
subsequence fic(n) of juy(ny that converges narrowly to some A\ € ,@(Rd). By
the first part of the theorem, fi.(,) converges pointwise to A By hypothesis
fle(n) converges pointwise to ¢, so A = ¢ = . Then A = p. That is, any
subsequence of p,, itself has a subsequence that converges narrowly to p, which
implies that the sequence pu, converges narrowly to p. (For a sequence z,, in a
topological space X and x € X, z,, — x if and only if each subsequence of x,,
has a subsequence that converges to x.) O

11 Martingale central limit theorem

Let 74 be the standard Gaussian measure on R?: 7, has density

1
(2m)¢

2
o~ %2l

with respect to Lebesgue measure on R<.
We now prove the martingale central limit theorem@

Theorem 16 (Martingale central limit theorem). Suppose X; is a sequence in
L3(Q, .o, P) satisfying the following, with Fy = o(X1,..., Xy):

1. B(X;|.%;_1)=0.
2. E(X7|.7;1) = 1.

3. There is some K for which E(|X;|3|%;_1) < K.

Then ST% converges in distribution to some random variable Z : Q — R with

Z.P =1, where

n

S, = ZXj.

Jj=1

Proof. For positive integers n and j, define

b (1) = B(e™ V5% |.7;_y).

21Jean Jacod and Philip Protter, Probability Essentials, second ed., p. 235, Theorem 27.7.
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For each w € €2, by Taylor’s theorem there is some &, ;(w) between 0 and X;(w)
such that
X Ly X () — “ix-(wﬁ o € i(w)?
vn'? on" 6n3/2°mI N

Because f +— E(f|%;_1) is a positive operator and |&, ;|* < |X;|?, we have, by
the last hypothesis of the theorem,

E(|6n1*|F5-1) < B(X,P175-0) < K (3)

we use this inequality later in the proof. Now, using that E(X;|.%;_1) = 0 and
E(Xf\ﬁj,l) =1,

1 u? 9 iu? 3
Gn,j(u) =1+ Zu%E(Xﬂyjfl) - %E<Xj | F5-1) — WE(fn,j
u? iu? 3

Fj-1)

.3
iu 171 Sp_l uf _ L 3
(smoesen (12 22 (s 15,1,
which we write as

iws, u?\ s, s,y 1u® 3
E(eVi™ —(1— - )e'vr =—E eV 6n3/2E(n}p|yp71) -
Now using we get
. 4 2 )
E(ev% — (1= L) oS
2n
;3
Sp—1 U 3
<E ( ' 6n3/2E (§n7p|gp—1)
_E |U|3 El 3 a
- 6n3/2 | (€n7p|‘/f’—1)|

|ul?
= 6nd/2

Z’L
e v

Let v € R and let n = n(u) be large enough so that 0 < 1 — % < 1. For
n—p
1 < p < n, multiplying the above inequality by (1 — %) yields

2\ N—P ) 2\ n—p+1 ]

Jul?
<Ko= (4)

2n
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Now, because Y, (a — ap-1) = an — ao,

- u\"P iuLl g w2\ iuL g
_ mu =P _ _ mu 7‘L p—1
E <(1 Zn) E(e™veor) (1 2n> E(e™V )

p=1
i u2 " iu— S
-E zuﬁsn_ 1~ Ezuﬁo
sy - (1= 1) B )
o W2\ "
:E(ezuﬁS") B (1 - )
2n
Using this with (4 gives
2\ " 3 3
Oy (12 | <n- = .
‘E(e ) (1 2n) =" K6n3/2 K6n1/2

But if |a,, — by| < ¢p, ¢ — 0, and b, — b, then a, — b. As

2\ " W2
lim (1 — u) =e 7
n—00 2n

3
and K I:Lﬁl 7z — 0, we therefore get that

6

as n — o0. 5

Let p, = (S—\/ﬁ) P and let ¢(u) = e~Z. We have just established that

fin, — ¢ pointwise. The function ¢ is continuous at 0, so Lévy’s continuity
theorem tells us that there is a Borel probability measure p on R such that

u2 .
¢ = [ and such that u, converges narrowly to pu. But ¢(u) = e~z is the
characteristic function of +;, so we have that p, converges narrowly to ;.

O
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