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1 Introduction

In this note, any statement we make about filtrations and martingales is about
filtrations and martingales indexed by the positive integers, rather than the
nonnegative real numbers.

We take
inf ∅ = ∞,

and for m > n, we take
n∑

k=m

= 0.

(Defined rightly, these are not merely convenient ad hoc definitions.)

2 Conditional expectation

Let (Ω,A , P ) be a probability space and let B be a sub-σ-algebra of A . For
each f ∈ L1(Ω,A , P ), there is some g : Ω → R such that (i) g is B-measurable
and (ii) for each B ∈ B,

∫
B
gdP =

∫
B
fdP , and if h : Ω → R satisfies (i) and (ii)

then h(ω) = g(ω) for almost all ω ∈ Ω.1 We denote some g : Ω → R satisfying
(i) and (ii) by E(f |B), called the conditional expectation of f with respect
to B. In other words, E(f |B) is the unique element of L1(Ω,B, P ) such that
for each B ∈ B, ∫

B

E(f |B)dP =

∫
B

fdP.

The map f 7→ E(f |B) satisfies the following:

1. f 7→ E(f |B) is positive linear operator L1(Ω,A , P ) → L1(Ω,B, P ) with
norm 1.

1Manfred Einsiedler and Thomas Ward, Ergodic Theory: with a view towards Number
Theory, p. 121, Theorem 5.1.
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2. If f ∈ L1(Ω,A , P ) and g ∈ L∞(Ω,B, P ), then for almost all ω ∈ Ω,

E(gf |B)(ω) = g(ω)E(f |B)(ω).

3. If C is a sub-σ-algebra of B, then for almost all ω ∈ Ω,

E(E(f |B)|C )(ω) = E(f |C )(ω).

4. If f ∈ L1(Ω,B, P ) then for almost all ω ∈ Ω,

E(f |B)(ω) = f(ω).

5. If f ∈ L1(Ω,A , P ), then for almost all ω ∈ Ω,

|E(f |B)(ω)| ≤ E(|f ||B)(ω).

6. If f ∈ L1(Ω,A , P ) is independent of B, then for almost all ω ∈ Ω,

E(f |B)(ω) = E(f).

3 Filtrations

A filtration of a σ-algebra A is a sequence Fn, n ≥ 1, of sub-σ-algebras of A
such that Fm ⊂ Fn if m ≤ n. We set F0 = {∅,Ω}.

A sequence of random variables ξn : (Ω,A , P ) → R is said to be adapted
to the filtration Fn if for each n, ξn is Fn-measurable.

Let ξn : (Ω,A , P ) → R, n ≥ 1, be a sequence of random variables. The
natural filtration of A corresponding to ξn is

Fn = σ(ξ1, . . . , ξn).

It is apparent that Fn is a filtration and that the sequence ξn is adapted to Fn.

4 Martingales

Let Fn be a filtration of a σ-algebra A and let ξn : (Ω,A , P ) → R be a sequence
of random variables. We say that ξn is a martingale with respect to Fn if
(i) the sequence ξn is adapted to the filtration Fn, (ii) for each n, ξn ∈ L1(P ),
and (iii) for each n, for almost all ω ∈ Ω,

E(ξn+1|Fn)(ω) = ξn(ω).

In particular,
E(ξ1) = E(ξ2) = · · · ,

i.e.
E(ξm) = E(ξn), m ≤ n.
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We say that ξn is a submartingale with respect to Fn if (i) and (ii)
above are true, and if for each n, for almost all ω ∈ Ω,

E(ξn+1|Fn)(ω) ≥ ξn(ω).

In particular,
E(ξ1) ≤ E(ξ2) ≤ · · · ,

i.e.
E(ξm) ≤ E(ξn), m ≤ n.

We say that ξn is a supermartingale with respect to Fn if (i) and (ii)
above are true, and if for each n, for almost all ω ∈ Ω,

ξn(ω) ≥ E(ξn+1|Fn)(ω).

In particular,
E(ξ1) ≥ E(ξ2) ≥ · · · ,

i.e.
E(ξm) ≥ E(ξn), m ≤ n.

If we speak about a martingale without specifying a filtration, we mean a
martingale with respect to the natural filtration corresponding to the sequence
of random variables.

5 Stopping times

Let Fn be a filtration of a σ-algebra A . A stopping time with respect to
Fn is a function τ : Ω → {1, 2, . . .} ∪ {∞} such that for each n ≥ 1,

{ω ∈ Ω : τ(ω) = n} ∈ Fn.

It is straightforward to check that a function τ : Ω → {1, 2, . . .} ∪ {∞} is a
stopping time with respect to Fn if and only if for each n ≥ 1,

{ω ∈ Ω : τ(ω) ≤ n} ∈ Fn.

The following lemma shows that the time of first entry into a Borel subset of
R of a sequence of random variables adapted to a filtration is a stopping time.2

Lemma 1. Let ξn be a sequence of random variables adapted to a filtration Fn

and let B ∈ BR. Then

τ(ω) = inf{n ≥ 1 : ξn(ω) ∈ B}

is a stopping time with respect to Fn.

2Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 55, Exercise
3.9.
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Proof. Let n ≥ 1. Then

{ω ∈ Ω : τ(ω) = n} =

(
n−1⋂
k=1

{ω ∈ Ω : ξk(ω) ̸∈ B}

)
∩ {ω ∈ Ω : ξn(ω) ∈ B}

=

(
n−1⋂
k=1

Ac
k

)
∩An,

where
Ak = {ω ∈ Ω : ξk(ω) ∈ B}.

Because the sequence ξk is adapated to the filtration Fk, A
c
k ∈ Fk and An ∈ Fn,

and because Fk is a filtration, the right-hand side of the above belongs to
Fn.

If ξn is a sequence of random variables adapted to a filtration Fn and a
stopping time τ with respect to Fn, for n ≥ 1 we define ξτ∧n : Ω → R by

ξτ∧n(ω) = ξτ(ω)∧n(ω), ω ∈ Ω.

ξτ∧n is called the sequence ξn stopped at τ .3

Lemma 2. ξτ∧n : (Ω,A , P ) → R is a sequence of random variables adapted to
the filtration Fn.

Proof. Let n ≥ 1 and let B ∈ BR. Because

{ω : ξτ∧n(ω) ∈ B, τ(ω) > n} = {ω : ξn(ω) ∈ B, τ(ω) > n}

and for any k,

{ω : ξτ∧n(ω) ∈ B, τ(ω) = k} = {ω : ξk ∈ B, τ(ω) = k},

we get

{ω : ξτ∧n(ω) ∈ B} = {ω : ξn(ω) ∈ B, τ(ω) > n}∪
n⋃

k=1

{ω : ξk(ω) ∈ B, τ(ω) = k}.

But
{ξn ∈ B, τ > n} = {ξn ∈ B} ∩ {τ > n} ∈ Fn

and
{ξk ∈ B, τ = k} = {ξk ∈ B} ∩ {τ = k} ∈ Fk,

and therefore
{ξτ∧n ∈ B} ∈ Fn.

In particular, {ξτ∧n ∈ B} ∈ A , namely, ξτ∧n is a random variable, and the
above shows that this sequence is adapted to the filtration Fn.

3Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 55, Exercise
3.10.
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We now prove that a stopped martingale is itself a martingale with respect
to the same filtration.4

Theorem 3. Let Fn be a filtration of a σ-algebra A and let τ be a stopping
time with respect to Fn.

1. If ξn is a submartingale with respect to Fn then so is ξτ∧n.

2. If ξn is a supermartingale with respect to Fn then so is ξτ∧n.

3. If ξn is a martingale with respect to Fn then so is ξτ∧n.

Proof. For n ≥ 1, define

αn(ω) =

{
1 τ(ω) ≥ n

0 τ(ω) < n;

we remark that τ(ω) ≥ n if and only if τ(ω) > n− 1 and τ(ω) < n if and only
if τ(ω) ≤ n− 1. For B ∈ BR, (i) if 0, 1 ̸∈ B then

{ω ∈ Ω : αn(ω) ∈ B} = ∅ ∈ Fn−1,

(ii) if 0, 1 ∈ B then

{ω ∈ Ω : αn(ω) ∈ B} = Ω ∈ Fn−1,

(iii) if 0 ∈ B and 1 ̸∈ B then

{ω ∈ Ω : αn(ω) ∈ B} = {ω ∈ Ω : αn(ω) = 0} = {ω ∈ Ω : τ(ω) ≤ n−1} ∈ Fn−1,

and (iv) if 1 ∈ B and 0 ̸∈ B then

{ω ∈ Ω : αn(ω) ∈ B} = {ω ∈ Ω : αn(ω) = 1} = {ω ∈ Ω : τ(ω) > n−1} ∈ Fn−1,

Therefore {αn ∈ B} ∈ Fn−1.
Set ξ0 = 0, and we check that

ξτ∧n =

n∑
k=1

αk(ξk − ξk−1).

It is apparent from this expression that if ξn is adapted to Fn then ξτ∧n is
adapted to Fn, and that if each ξn belongs to L1(P ) then each ξτ∧n belongs to
L1(P ). As each of α1, . . . , αn+1 is Fn-measurable and is bounded,

E(ξτ∧(n+1)|Fn) =

n+1∑
k=1

E(αk(ξk − ξk−1)|Fn) =

n+1∑
k=1

αkE(ξk − ξk−1|Fn). (1)

4Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 56, Proposi-
tion 3.2.
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Suppose that ξn is a submartingale. By (1),

E(ξτ∧(n+1)|Fn) =

n∑
k=1

αk(ξk − ξk−1) + αn+1E(ξn+1|Fn)− αn+1ξn

≥ ξτ∧n + αn+1ξn − αn+1ξn

= ξτ∧n,

which shows that ξτ∧n is a submartingale; the statement that E(ξτ∧(n+1)|Fn) ≥
ξτ∧n means that E(ξτ∧(n+1)|Fn)(ω) ≥ ξτ∧n(ω) for almost all ω ∈ Ω.

We now prove the optional stopping theorem.5

Theorem 4 (Optional stopping theorem). Let Fn be a filtration of a σ-algebra
A , let ξn be a martingale with respect to Fn, and let τ be a stopping time with
respect to Fn. Suppose that:

1. For almost all ω ∈ Ω, τ(ω) < ∞.

2. ξτ ∈ L1(Ω,A , P ).

3. E(ξn1{τ>n}) → 0 as n → ∞.

Then
E(ξτ ) = E(ξ1).

Proof. For each n, Ω = {τ ≤ n} ∪ {τ > n}, and therefore

ξτ = ξτ∧n + ξτ1{τ>n} − ξn1{τ>n} = ξτ∧n +

∞∑
k=n+1

ξk1{τ=k} − ξn1{τ>n}.

Theorem 3 tells us that ξτ∧n is a martingale with respect to to Fn, and hence

E(ξτ∧n) = E(ξτ∧1) = E(ξ1),

so

E(ξτ ) = E(ξ1) +

∞∑
k=n+1

E(ξk1{τ=k})− E(ξn1{τ>n}). (2)

But as ξτ ∈ L1(P ),∫
Ω

(ξτ )(ω)dP (ω) =

∞∑
k=1

∫
{τ=k}

ξk(ω)dP (ω) =

∞∑
k=1

E(ξk1{τ=k}),

and the fact that this series converges means that
∑∞

k=n+1 E(ξk1{τ=k}) → 0.
With the hypothesis E(ξn1{τ>n}) → 0, as n → ∞ we have

E(ξ1) +

∞∑
k=n+1

E(ξk1{τ=k})− E(ξn1{τ>n}) → E(ξ1).

But (2) is true for each n, so we get E(ξτ ) = E(ξ1), proving the claim.

5Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 58, Theorem
3.1.
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Suppose that ηn is a sequence of independent random variables each with
the Rademacher distribution:

P (ηn = 1) =
1

2
, P (ηn = −1) =

1

2
.

Let ξn =
∑n

k=1 ηk and let Fn = σ(η1, . . . , ηn). Because

ξ2n+1 = (ξn + ηn+1)
2 = η2n+1 + 2ηn+1ξn + ξ2n,

we have, as ξn is Fn-measurable and belongs to L∞(P ) and as ηn+1 is indepen-
dent of the σ-algebra Fn,

E(ξ2n+1 − (n+ 1)|Fn) = E(η2n+1 + 2ηn+1ξn + ξ2n − (n+ 1)|Fn)

= E(η2n+1) + 2ξnE(ηn+1) + ξ2n − (n+ 1)

= 1 + 0 + ξ2n − (n+ 1)

= ξ2n − n.

Therefore, ξ2n − n is a martingale with respect to Fn.
Let K be a positive integer and let

τ = inf{n ≥ 1 : |ξn| = K}.

Namely, τ is the time of first entry in the Borel subset {−K,K} of R, hence
by Lemma 1 is a stopping time with respect to the filtration Fn. With some
work,6 one shows that (i) P (τ > 2Kn) → 0 as n → ∞, (ii) E(|ξ2τ − τ |) < ∞,
and (iii) E((ξ2n − n)1{τ>n}) → 0 as n → ∞. Then we can apply the optional
stopping theorem to the martingale ξ2n − n: we get that

E(ξ2τ − τ) = E(ξ21 − 1) = E(ξ21)− 1 = E(η21)− 1 = 0.

Hence
E(τ) = E(ξ2τ ).

But |ξτ | = K, so ξ2τ = K2, hence

E(τ) = E(K2) = K2.

6 Maximal inequalities

We now prove Doob’s maximal inequality.7

6Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 59, Example
3.7.

7Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 68, Proposi-
tion 4.1.
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Theorem 5 (Doob’s maximal inequality). Suppose that Fn is a filtration of a
σ-algebra A , that ξn is a submartingale with respect to Fn, and that for each
n, ξn ≥ 0. Then for each n ≥ 1 and λ > 0,

λP

(
max

1≤k≤n
ξk ≥ λ

)
≤ E

(
ξn1{max1≤k≤n ξk≥λ}

)
.

Proof. Define ζn(ω) = max1≤k≤n ξk(ω), which is Fn-measurable, and define
τ : Ω → {1, . . . , n} by

τ(ω) = min{1 ≤ k ≤ n : ξk(ω) ≥ λ}

if there is some 1 ≤ k ≤ n for which ξk(ω) ≥ λ, and τ(ω) = n otherwise. For
1 ≤ k ≤ n,

{τ = k} =

k−1⋂
j=1

{ξk < λ}

 ∩ {ξk ≥ λ} ∈ Fk,

and for k > n,
{τ = k} = ∅ ∈ Fk,

showing that τ is a stopping time with respect to the filtration Fk.
For k ≥ 1,

ξk+1 − ξτ∧(k+1) =

k∑
j=1

1{τ=j}(ξk+1 − ξτ∧(k+1)) =

k∑
j=1

1{τ=j}(ξk+1 − ξj),

hence, because τ is a stopping time with respect to the filtration Fk and because
ξk is a submartingale with respect to this filtration,

E(ξk+1 − ξτ∧(k+1)|Fk) =

k∑
j=1

1{τ=j}E((ξk+1 − ξj)|Fk)

=

k∑
j=1

1{τ=j}(E(ξk+1|Fk)− ξj)

≥
k∑

j=1

1{τ=j}(ξk − ξj)

=

k−1∑
j=1

1{τ=j}(ξk − ξj)

= ξk − ξτ∧k,

from which we have that the sequence ξk− ξτ∧k is a submartingale with respect
to the filtration Fk. Therefore

E(ξk − ξτ∧k) ≥ E(ξ1 − ξτ∧1) = E(ξ1)− E(ξτ∧1) = E(ξ1)− E(ξ1) = 0,
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and so E(ξτ∧k) ≤ E(ξk). Because τ ∧ n = τ , this yields

E(ξτ ) ≤ E(ξn).

We have
E(ξτ ) = E(ξτ1{ζn≥λ}) + E(ξτ1{ζn<λ}).

If ω ∈ {ζn ≥ λ} then (ξτ )(ω) ≥ λ, and if ω ∈ {ζn < λ} then τ(ω) = n and so
(ξτ )(ω) = ξn(ω). Therefore

E(ξτ ) ≥ E(λ · 1{ζn≥λ}) + E(ξn1{ζn<λ}) = λP (ζn ≥ λ) + E(ξn1{ζn<λ}).

Therefore
λP (ζn ≥ λ) + E(ξn1{ζn<λ}) ≤ E(ξn).

But ξn = ξn1ζn<λ + ξn1ζn≥λ, hence

λP (ζn ≥ λ) ≤ E(ξn1{ζn≥λ}),

which proves the claim.

The following is Doob’s L2 maximal inequality, which we prove using
Doob’s maximal inequality.8

Theorem 6 (Doob’s L2 maximal inequality). Suppose that Fn is a filtration
of a σ-algebra A and that ξn is a submartingale with respect to Fn such that
for each n ≥ 1, ξn ≥ 0 and ξn ∈ L2(P ). Then for each n ≥ 1,

E

(∣∣∣∣ max
1≤k≤n

ξk

∣∣∣∣2
)

≤ 4E(ξ2n).

Proof. Define ζn(ω) = max1≤k≤n ξk(ω). It is a fact that if η ∈ L2(P ) and η ≥ 0
then

E(η2) = 2

∫ ∞

0

tP (η ≥ t)dt.

Using this, Doob’s maximal inequality, Fubini’s theorem, and the Cauchy-

8Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 68, Theorem
4.1.
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Schwarz inequality,

E(ζ2n) = 2

∫ ∞

0

tP (ζn > t)dt

≤ 2

∫ ∞

0

E(ξn1{ζn≥t}dt

= 2

∫ ∞

0

(∫
{ζn≥t}

ξn(ω)dP (ω)

)
dt

= 2

∫
Ω

(∫ ζn(ω)

0

dt

)
ξn(ω)dP (ω)

= 2

∫
Ω

ζn(ω)ξn(ω)dP (ω)

≤ 2(E(ζ2n))
1/2(E(ξ2n))

1/2.

If E(ζ2n) = 0 the claim is immediate. Otherwise, we divide this inequality by
(E(ζ2n))

1/2 and obtain

(E(ζ2n))
1/2 ≤ 2(E(ξ2n))

1/2,

and so
E(ζ2n) ≤ 4E(ξ2n),

proving the claim.

7 Upcrossings

Suppose that ξn is a sequence of random variables that is adapted to a filtration
Fn and let a < b be real numbers. Define

τ0 = 0,

and by induction for m ≥ 1,

σm(ω) = inf{k ≥ τm−1(ω) : ξk(ω) ≤ a}

and
τm(ω) = inf{k ≥ σm(ω) : ξk(ω) ≥ b},

where inf ∅ = ∞. For each m, τm and σm are each stopping times with respect
to the filtration Fk. For n ≥ 0 we define

Un[a, b](ω) = sup{m ≥ 0 : τm(ω) ≤ n}.

For x ∈ R, we write

x− = max{0,−x} = −min{0, x}.

namely, the negative part of x.
We now prove the upcrossings inequality.
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Theorem 7 (Upcrossings inequality). If ξn, n ≥ 1, is a supermartingale with
respect to a filtration Fn and a < b, then for each n ≥ 1,

(b− a)E(Un[a, b]) ≤ E((ξn − a)−).

Proof. For n ≥ 1 and ω ∈ Ω, and writing N = Un[a, b](ω), for which N ≤ n, we
have

n∑
m=1

(ξτm∧n(ω)− ξσm∧n(ω))

=

N∑
m=1

(ξτm∧n(ω)− ξσm∧n(ω)) + ξτN+1∧n(ω)− ξσN+1∧n(ω)

+

n∑
m=N+2

(ξτm∧n(ω)− ξσm∧n(ω))

=

N∑
m=1

(ξτm(ω)− ξσm
(ω)) + ξn(ω)− ξσN+1∧n(ω) +

n∑
m=N+1

(ξn(ω)− ξn(ω))

=

N∑
m=1

(ξτm(ω)− ξσm
(ω)) + 1{σN+1≤n}(ω)(ξn(ω)− ξσN+1

(ω))

≥
N∑

m=1

(b− a) + 1{σN+1≤n}(ω)(ξn(ω)− ξσN+1
(ω)).

Because ξσN+1
(ω) ≤ a, we have

(b− a)N ≤ 1{σN+1≤n}(ω)(a− ξn(ω)) +

n∑
m=1

(ξτm∧n(ω)− ξσm∧n(ω)).

One proves that9

1{σN+1≤n}(ω)(a− ξn(ω)) ≤ min{0, a− ξn(ω)} = (ξn(ω)− a)−.

Thus

(b− a)E(Un[a, b]) ≤ E((ξn − a)−) +

n∑
m=1

E(ξτm∧n − ξσm∧n).

Using that ξn is a supermartingale, for each 1 ≤ m ≤ n,

E(ξτm∧n − ξσm∧n) ≤ 0.

Therefore
(b− a)E(Un[a, b]) ≤ E((ξn − a)−).

9I am not this “one”. I have not sorted out why this inequality is true. In every proof
of the upcrossings inequality I have seen there are pictures and things like this are asserted
to be obvious. I am not satisfied with that reasoning; one should not have to interpret an
inequality visually to prove it.
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8 Doob’s martingale convergence theorem

We now use the uprossings inequality to prove Doob’s martingale conver-
gence theorem.10

Theorem 8 (Doob’s martingale convergence theorem). Suppose that ξn, n ≥ 1,
is a supermartingale with respect to a filtration Fn and that

M = sup
n

E(|ξn|) < ∞.

Then there is some ξ ∈ L1(Ω,A , P ) such that for almost all ω ∈ Ω,

lim
n→∞

ξn(ω) = ξ(ω)

and with E(|ξ|) ≤ M .

Proof. For any a < b and n ≥ 1, the upcrossings inequality tells us that

E(Un[a, b]) ≤
E(ξn − a)−)

b− a
≤ E(|ξn − a|)

b− a
≤ E(|ξn|+ |a|)

b− a
≤ M + |a|

b− a
.

For each ω ∈ Ω, the sequence Un[a, b](ω) ∈ [0,∞) is nondecreasing, so by the
monotone convergence theorem,

E
(
lim
n→∞

Un[a, b]
)
= lim

n→∞
E(Un[a, b]) ≤

M + |a|
b− a

.

This implies that

P
(
ω ∈ Ω : lim

n→∞
Un[a, b](ω) < ∞

)
= 1.

Let
A =

⋂
a,b∈Q,a<b

{
ω ∈ Ω : lim

n→∞
Un[a, b](ω) < ∞

}
.

This is an intersection of countably many sets each with measure 1, so P (A) = 1.
Let

B = {ω ∈ Ω : lim inf
n

ξn(ω) < lim sup
n

ξn(ω)}.

If ω ∈ B, then there are a, b ∈ Q, a < b, such that

lim inf
n

ξn(ω) < a < b < lim sup
n

ξn(ω).

It follows from this limn→∞ Un[a, b](ω) = ∞. Thus ω ̸∈ A, so B ∩ A = ∅, and
because P (A) = 1 we get P (B) = 0.

10Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 71, Theorem
4.2.
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We define ξ : Ω → R by

ξ(ω) =

{
limn→∞ ξn(ω) ω ̸∈ B

0 ω ∈ B,

which is Borel measurable. Furthermore, since |ξ| = lim infn |ξn| almost every-
where, by Fatou’s lemma we obtain

E(|ξ|) = E(lim inf
n

|ξn|)

≤ lim inf
n

E(|ξn|)

≤ sup
n

E(|ξn|)

= M.

9 Uniform integrability

Let ξ : (Ω,A , P ) → R be a random variable. It is a fact11 that ξ ∈ L1 if and
only if for each ϵ > 0 there is some M such that∫

{|ξ|>M}
|ξ|dP < ϵ.

(One’s instinct might be to try to use the Cauchy-Schwarz inequality to prove
this. This doesn’t work.) Thus, if ξn is a sequence in L1(Ω,A , P ) then for each
ϵ > 0 there are Mn such that, for each n,∫

{|ξn|>Mn}
|ξn|dP < ϵ.

A sequence of random variables ξn is said to be uniformly integrable if
for each ϵ > 0 there is some M such that, for each n,∫

{|ξn|>M}
|ξn|dP < ϵ.

If a sequence ξn is uniformly integrable, then there is some M such that for each
n, ∫

{|ξn|>M}
|ξn|dP < 1,

and so

E(|ξn|) =
∫
{|ξn|≤M}

|ξn|dP +

∫
{|ξn|>M}

|ξn|dP <

∫
{|ξn|≤M}

MdP + 1 ≤ M + 1.

11Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 73, Exercise
4.3.
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The following lemma states that the conditional expectations of an integrable
random variable with respect to a filtration is a uniformly integrable martingale
with respect to that filtration.12

Lemma 9. Suppose that ξ ∈ L1(Ω,A , P ) and that Fn is a filtration of A .
Then E(ξ|Fn) is a martingale with respect to Fn and is uniformly integrable.

We now prove that a uniformly integrable supermartingale converges in L1.13

Theorem 10. Suppose that ξn is a supermartingale with respect to a filtration
Fn, and that the sequence ξn is uniformly integrable. Then there is some ξ ∈
L1(Ω,A , P ) such that ξn → ξ in L1.

Proof. Because the sequence ξn is uniformly integrable, there is some M such
that for each n ≥ 1,

E(|ξn|) ≤ M + 1.

Thus, because ξn is a supermartingale, Doob’s martingale convergence theorem
tells us that there is some ξ ∈ L1(Ω,A , P ) such that for almost all ω ∈ Ω,

lim
n→∞

ξn(ω) = ξ(ω).

Because ξn is uniformly integrable and converges almost surely to ξ, the Vitali
convergence theorem14 tells us that ξn → ξ in L1.

The above theorem shows in particular that a uniformly integrable mar-
tingale converges to some limit in L1. The following theorem shows that the
terms of the sequence are equal to the conditional expectations of this limit with
respect to the natural filtration.15

Theorem 11. Suppose that a sequence of random variables ξn is uniformly
integrable and is a martingale with respect to its natural filtration

Fn = σ(ξ1, . . . , ξn).

Then there is some ξ ∈ L1(Ω,A , P ) such that ξn → ξ in L1 and such that for
each n ≥ 1, for almost all ω ∈ Ω,

ξn(ω) = E(ξ|Fn)(ω).

12Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 75, Exercise
4.5.

13Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 76, Theorem
4.3.

14V. I. Bogachev, Measure Theory, volume I, p. 268, Theorem 4.5.4; http://individual.
utoronto.ca/jordanbell/notes/L0.pdf, p. 8, Theorem 9.

15Zdzis law Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes, p. 77, Theorem
4.4.
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Proof. By Theorem 10, there is some ξ ∈ L1(Ω,A , P ) such that ξn → ξ in L1.
The hypothesis that the sequence ξn is a martingale with respect to Fn tells us
that for that for n ≥ 1 and for any m ≥ n,

E(ξm|Fn) = ξn,

and so for A ∈ Fn,∫
A

ξmdP =

∫
A

E(ξm|Fn)dP =

∫
A

ξndP.

Thus ∣∣∣∣∫
A

(ξn − ξ)dP

∣∣∣∣ = ∣∣∣∣∫
A

(ξm − ξ)dP

∣∣∣∣
≤
∫
A

|ξm − ξ|dP

≤ E(|ξm − ξ|).

But E(|ξm− ξ|) → 0 as m → ∞. Since m does not appear in the left-hand side,
we have ∣∣∣∣∫

A

(ξn − ξ)dP

∣∣∣∣ = 0,

and thus ∫
A

ξndP =

∫
A

ξdP.

But E(f |Fn) is the unique element of L1(Ω,Fn, P ) such that for each A ∈ Fn,∫
A

E(f |Fn)dP =

∫
A

fdP,

and because ξn satisfies this, we get that ξn = E(f |Fn) in L1, i.e., for almost
all ω ∈ Ω,

ξn(ω) = E(f |Fn)(ω),

proving the claim.

10 Lévy’s continuity theorem

For a metrizable topological space X, we denote by P(X) the set of Borel
probability measures on X. The narrow topology on P(X) is the coarsest
topology such that for each f ∈ Cb(X), the map

µ 7→
∫
X

fdµ

is continuous P(X) → C.

15



A subset H of P(X) is called tight if for each ϵ > 0 there is a compact
subset Kϵ of X such that if µ ∈ H then µ(X \Kϵ) < ϵ, i.e. µ(Kϵ) > 1− ϵ. (An
element µ of P(X) is called tight when {µ} is a tight subset of P(X).)

For a Borel probability measure µ on Rd, we define its characteristic func-
tion µ̃ : Rd → C by

µ̃(u) =

∫
Rd

eix·udµ(x), u ∈ Rd.

µ̃ is bounded by 1 and is uniformly continuous. Because µ(Rd) = 1,

µ̃(0) = 1.

Lemma 12. Let µ ∈ P(R). For δ > 0,

µ

({
x ∈ R : |x| ≥ 2

δ

})
≤ 1

δ

∫ δ

−δ

(1− µ̃(u))du;

in particular, the right-hand side of this inequality is real.

Proof. Using Fubini’s theorem and the fact that all real t, 1− sin t
t ≥ 0,∫ δ

−δ

(1− µ̃(u))du =

∫ δ

−δ

(∫
R
(1− eixu)dµ(x)

)
du

=

∫
R

(∫ δ

−δ

1− eiuxdu

)
dµ(x)

=

∫
R

(
u− eiux

ix

)δ

−δ

dµ(x)

=

∫
R

(
2δ − eiδx

ix
+

e−iδx

ix

)
dµ(x)

= 2δ

∫
R

(
1− sin(δx)

δx

)
dµ(x)

≥ 2δ

∫
|δx|≥2

(
1− sin(δx)

δx

)
dµ(x)

≥ 2δ

∫
|δx|≥2

(
1− 1

|δx|

)
dµ(x)

≥ 2δ

∫
|δx|≥2

1

2
dµ(x)

= δµ({x ∈ R : |δx| ≥ 2}).

The following lemma gives a condition on the characteristic functions of a
sequence of Borel probability measures on R under which the sequence is tight.16

16Krishna B. Athreya and Soumendra N. Lahiri, Measure Theory and Probability Theory,
p. 329, Lemma 10.3.3.

16



Lemma 13. Suppose that µn ∈ P(R) and that µ̃n converges pointwise to a
function ϕ : R → C that is continuous at 0. Then the sequence µn is tight.

Proof. Write ϕn = µ̃n. Because |ϕn| ≤ 1, for each δ > 0, by the dominated
convergence theorem we have

1

δ

∫ δ

−δ

(1− ϕn(t))dt →
1

δ

∫ δ

−δ

(1− ϕ(t))dt.

On the other hand, that ϕ is continuous at 0 implies that for any ϵ > 0 there is
some η > 0 such that when |t| < η, |ϕ(t)− 1| < ϵ, and hence for δ < η,

1

δ

∫ δ

−δ

(1− ϕ(t))dt ≤ 2 sup
|t|≤δ

|1− ϕ(t)| ≤ 2ϵ,

thus
1

δ

∫ δ

−δ

(1− ϕ(t))dt → 0, δ → 0.

Let ϵ > 0. There is some δ > 0 for which∣∣∣∣∣1δ
∫ δ

−δ

(1− ϕ(t))dt

∣∣∣∣∣ < ϵ.

Then there is some nδ such that when n ≥ nδ,∣∣∣∣∣1δ
∫ δ

−δ

(1− ϕn(t))dt−
1

δ

∫ δ

−δ

(1− ϕ(t))dt

∣∣∣∣∣ < ϵ,

whence ∣∣∣∣∣1δ
∫ δ

−δ

(1− ϕn(t))dt

∣∣∣∣∣ < 2ϵ.

Lemma 12 then says

µn

({
x ∈ R : |x| ≥ 2

δ

})
≤ 1

δ

∫ δ

−δ

(1− ϕn(t))dt < 2ϵ.

Furthermore, any Borel probability measure on a Polish space is tight (Ulam’s
theorem).17 Thus, for each 1 ≤ n < nδ, there is a compact set Kn for which
µn(R \Kn) < ϵ. Let

Kϵ = K1 ∪ · · · ∪Knδ−1 ∪
{
x ∈ R : |x| ≤ 2

δ

}
,

which is a compact set, and for any n ≥ 1,

µn(R \Kϵ) < 2ϵ,

showing that the sequence µn is tight.

17Alexander S. Kechris, Classical Descriptive Set Theory, p. 107, Theorem 17.11.
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For metrizable spaces X1, . . . , Xd, let X =
∏d

i=1 Xi and let πi : X → Xi

be the projection map. We establish that if H is a subset of P(X) such that
for each 1 ≤ i ≤ d the family of ith marginals of H is tight, then H itself is
tight.18

Lemma 14. Let X1, . . . , Xd be metrizable topological spaces, let X =
∏d

i=1 Xi,
and let H ⊂ P(X). Suppose that for each 1 ≤ i ≤ d,

Hi = {πi∗µ : µ ∈ H }

is a tight set in P(Xi). Then H is a tight set in P(X).

Proof. For µ ∈ H , write µi = πi∗µ. Let ϵ > 0 and take 1 ≤ i ≤ d. Because Hi

is tight, there is a compact subset Ki of Xi such that for all µi ∈ Hi,

µi(Xi \Ki) <
ϵ

d
.

Let

K =

d∏
i=1

Ki =

d⋂
i=1

π−1
i (Ki).

Then for any µ ∈ H ,

µ(X \K) = µ

(
X \

d⋂
i=1

π−1
i (Ki)

)

= µ

(
d⋃

i=1

π−1
i (Ki)

c

)

= µ

(
d⋃

i=1

π−1
i (Xi \Ki)

)

≤
d∑

i=1

µ(π−1
i (Xi \Ki))

=

d∑
i=1

µi(Xi \Ki)

<

d∑
i=1

ϵ

d

= ϵ,

which shows that H is tight.

18Luigi Ambrosio, Nicola Gigli, and Giuseppe Savare, Gradient Flows: In Metric Spaces
and in the Space of Probability Measures, p. 119, Lemma 5.2.2; V. I. Bogachev, Measure
Theory, volume II, p. 94, Lemma 7.6.6.
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We now prove Lévy’s continuity theorem, which we shall use to prove
the martingale central limit theorem.19

Theorem 15 (Lévy’s continuity theorem). Suppose that µn ∈ P(Rd), n ≥ 1.

1. If µ ∈ P(Rd) and µn → µ narrowly, then for any u ∈ Rd,

µ̃n(u) → µ̃(u), n → ∞.

2. If there is some ϕ : Rd → C to which µ̃n converges pointwise and ϕ is
continuous at 0, then there is some µ ∈ P(Rd) such that ϕ = µ̃ and such
that µn → µ narrowly.

Proof. Suppose that µn → µ narrowly. For each u ∈ Rd, the function x 7→ eix·u

is continuous Rd → C and is bounded, so

µ̃n(u) =

∫
Rd

eix·udµn(x) →
∫
Rd

eix·udµ(x) = µ̃(u).

Suppose that µ̃n converges pointwise to ϕ and that ϕ is continuous at 0. For
1 ≤ i ≤ d, let πi : Rd → R be the projection map and define ιi : R → Rd by
taking the ith entry of ιi(t) to be t and the other entries to be 0. Fix 1 ≤ i ≤ d
and write νn = πi∗µn ∈ P(R), and for t ∈ R we calculate

ν̃n(t) =

∫
R
eistdνn(s)

=

∫
Rd

eiπi(x)tdµn(x)

=

∫
Rd

eix·ιi(t)dµn(x)

= µ̃n(ιi(t)),

so ν̃n = µ̃n ◦ ιi. By hypothesis, ν̃n converges pointwise to ϕ ◦ ιi. Because ϕ is
continuous at 0 ∈ Rd, the function ϕ ◦ ιi is continuous at 0 ∈ R. Then Lemma
13 tells us that the sequence νn is tight. That is, for each 1 ≤ i ≤ d, the set

{πi∗µn : n ≥ 1}

is tight in P(R). Thus Lemma 14 tells us that the set

{µn : n ≥ 1}

is tight in P(Rd).
Prokhorov’s theorem20 states that ifX is a Polish space, then a subset H

of P(X) is tight if and only if each sequence of elements of H has a subsequence

19cf. Jean Jacod and Philip Protter, Probability Essentials, second ed., p. 167, Theorem
19.1.

20V. I. Bogachev, Measure Theory, volume II, p. 202, Theorem 8.6.2.

19



that converges narrowly to some element of P(X). Thus, there is a subsequence
µa(n) of µn and some µ ∈ P(Rd) such that µa(n) converges narrowly to µ. By
the first part of the theorem, we get that µ̃a(n) converges pointwise to µ̃. But
by hypothesis µ̃n converges pointwise to ϕ, so ϕ = µ̃.

Finally we prove that µn → µ narrowly. Let µb(n) be a subsequence of µn.
Because {µn : n ≥ 1} is tight, Prokhorov’s theorem tells us that there is a
subsequence µc(n) of µb(n) that converges narrowly to some λ ∈ P(Rd). By

the first part of the theorem, µ̃c(n) converges pointwise to λ̃. By hypothesis

µ̃c(n) converges pointwise to ϕ, so λ̃ = ϕ = µ̃. Then λ = µ. That is, any
subsequence of µn itself has a subsequence that converges narrowly to µ, which
implies that the sequence µn converges narrowly to µ. (For a sequence xn in a
topological space X and x ∈ X, xn → x if and only if each subsequence of xn

has a subsequence that converges to x.)

11 Martingale central limit theorem

Let γd be the standard Gaussian measure on Rd: γd has density

1√
(2π)d

e−
1
2 |x|

2

with respect to Lebesgue measure on Rd.
We now prove the martingale central limit theorem.21

Theorem 16 (Martingale central limit theorem). Suppose Xj is a sequence in
L3(Ω,A , P ) satisfying the following, with Fk = σ(X1, . . . , Xk):

1. E(Xj |Fj−1) = 0.

2. E(X2
j |Fj−1) = 1.

3. There is some K for which E(|Xj |3|Fj−1) ≤ K.

Then Sn√
n

converges in distribution to some random variable Z : Ω → R with

Z∗P = γ1, where

Sn =

n∑
j=1

Xj .

Proof. For positive integers n and j, define

ϕn,j(u) = E(e
iu 1√

n
Xj |Fj−1).

21Jean Jacod and Philip Protter, Probability Essentials, second ed., p. 235, Theorem 27.7.
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For each ω ∈ Ω, by Taylor’s theorem there is some ξn,j(ω) between 0 and Xj(ω)
such that

e
iu 1√

n
Xj(ω)

= 1 + iu
1√
n
Xj(ω)−

u2

2n
Xj(ω)

2 − iu3

6n3/2
ξn,j(ω)

3.

Because f 7→ E(f |Fj−1) is a positive operator and |ξn,j |3 ≤ |Xj |3, we have, by
the last hypothesis of the theorem,

E(|ξn,j |3|Fj−1) ≤ E(|Xj |3|Fj−1) ≤ K (3)

we use this inequality later in the proof. Now, using that E(Xj |Fj−1) = 0 and
E(X2

j |Fj−1) = 1,

ϕn,j(u) = 1 + iu
1√
n
E(Xj |Fj−1)−

u2

2n
E(X2

j |Fj−1)−
iu3

6n3/2
E(ξ3n,j |Fj−1)

= 1− u2

2n
− iu3

6n3/2
E(ξ3n,j |Fj−1).

For p ≥ 1,

E(e
iu 1√

n
Sp) = E(e

iu 1√
n
Sp−1e

iu 1√
n
Xp)

= E(E(e
iu 1√

n
Sp−1e

iu 1√
n
Xp |Fp−1))

= E(e
iu 1√

n
Sp−1E(e

iu 1√
n
Xp |Fp−1))

= E(e
iu 1√

n
Sp−1ϕn,p(u))

= E

(
e
iu 1√

n
Sp−1

(
1− u2

2n
− iu3

6n3/2
E
(
ξ3n,p|Fp−1

)))
,

which we write as

E

(
e
i u√

n
Sp −

(
1− u2

2n

)
e
i u√

n
Sp−1

)
= −E

(
e
i u√

n
Sp−1

iu3

6n3/2
E
(
ξ3n,p|Fp−1

))
.

Now using (3) we get ∣∣∣∣E (ei u√
n
Sp −

(
1− u2

2n

)
e
i u√

n
Sp−1

)∣∣∣∣
≤E

(∣∣∣∣ei u√
n
Sp−1

iu3

6n3/2
E
(
ξ3n,p|Fp−1

)∣∣∣∣)
=E

(
|u|3

6n3/2

∣∣E (ξ3n,p|Fp−1

)∣∣)
≤ |u|3

6n3/2
·K.

Let u ∈ R and let n = n(u) be large enough so that 0 ≤ 1 − u2

2n ≤ 1. For

1 ≤ p ≤ n, multiplying the above inequality by
(
1− u2

2n

)n−p

yields∣∣∣∣∣
(
1− u2

2n

)n−p

E(e
iu 1√

n
Sp)−

(
1− u2

2n

)n−p+1

E(e
iu 1√

n
Sp−1

∣∣∣∣∣ ≤ K
|u|3

6n3/2
. (4)
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Now, because
∑n

p=1(ap − ap−1) = an − a0,

n∑
p=1

((
1− u2

2n

)n−p

E(e
iu 1√

n
Sp)−

(
1− u2

2n

)n−(p−1)

E(e
iu 1√

n
Sp−1)

)

=E(e
iu 1√

n
Sn)−

(
1− u2

2n

)n

E(e
iu 1√

n
S0)

=E(e
iu 1√

n
Sn)−

(
1− u2

2n

)n

.

Using this with (4) gives∣∣∣∣E(e
iu 1√

n
Sn)−

(
1− u2

2n

)n∣∣∣∣ ≤ n ·K |u|3

6n3/2
= K

|u|3

6n1/2
.

But if |an − bn| ≤ cn, cn → 0, and bn → b, then an → b. As

lim
n→∞

(
1− u2

2n

)n

= e−
u2

2

and K |u|3
6n1/2 → 0, we therefore get that

E(e
iu 1√

n
Sn) → e−

u2

2

as n → ∞.
Let µn =

(
Sn√
n

)
∗
P and let ϕ(u) = e−

u2

2 . We have just established that

µ̃n → ϕ pointwise. The function ϕ is continuous at 0, so Lévy’s continuity
theorem tells us that there is a Borel probability measure µ on R such that

ϕ = µ̃ and such that µn converges narrowly to µ. But ϕ(u) = e−
u2

2 is the
characteristic function of γ1, so we have that µn converges narrowly to γ1.
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