Markov kernels, convolution semigroups, and projective families of probability measures

Jordan Bell

June 12, 2015

1 Transition kernels

For a measurable space (E, \mathscr{E}), we denote by \mathscr{E}_{+}the set of functions $E \rightarrow[0, \infty]$ that are $\mathscr{E} \rightarrow \mathscr{B}_{[0, \infty]}$ measurable. It can be proved that if $I: \mathscr{E}_{+} \rightarrow[0, \infty]$ is a function such that (i) $f=0$ implies that $I(f)=0$, (ii) if $f, g \in \mathscr{E}_{+}$and $a, b \geq 0$ then $I(a f+b g)=a I(f)+b I(g)$, and (iii) if f_{n} is a sequence in \mathscr{E}_{+}that increases pointwise to an element f of \mathscr{E}_{+}then $I\left(f_{n}\right)$ increases to $I(f)$, then there a unique measure μ on \mathscr{E} such that $I(f)=\mu f$ for each $f \in \mathscr{E}_{+} .{ }^{1}$

Let (E, \mathscr{E}) and (F, \mathscr{F}) be a measurable space. A transition kernel is a function

$$
K: E \times \mathscr{F} \rightarrow[0, \infty]
$$

such that (i) for each $x \in E$, the function $K_{x}: \mathscr{F} \rightarrow[0, \infty]$ defined by

$$
B \mapsto K(x, B)
$$

is a measure on \mathscr{F}, and (ii) for each $B \in \mathscr{F}$, the map

$$
x \mapsto K(x, B)
$$

is measurable $\mathscr{E} \rightarrow \mathscr{B}_{[0, \infty]}$.
If μ is a measure on \mathscr{E}, define

$$
\left(K_{*} \mu\right)(B)=\int_{E} K(x, B) d \mu(x), \quad B \in \mathscr{F} .
$$

If B_{n} are pairwise disjoint elements of \mathscr{F}, then using that $B \mapsto K(x, B)$ is a

[^0]measure and the monotone convergence theorem,
\[

$$
\begin{aligned}
\left(K_{*} \mu\right)\left(\bigcup_{n} B_{n}\right) & =\int_{E} K\left(x, \bigcup_{n} B_{n}\right) d \mu(x) \\
& =\int_{E} \sum_{n} K\left(x, B_{n}\right) d \mu(x) \\
& =\sum_{n} \int_{E} K\left(x, B_{n}\right) d \mu(x) \\
& =\sum_{n}\left(K_{*} \mu\right)\left(B_{n}\right)
\end{aligned}
$$
\]

showing that $K_{*} \mu$ is a measure on \mathscr{F}.
If $f \in \mathscr{F}_{+}$, define $K^{*} f: E \rightarrow[0, \infty]$ by

$$
\begin{equation*}
\left(K^{*} f\right)(x)=\int_{F} f(y) d K_{x}(y), \quad x \in E \tag{1}
\end{equation*}
$$

For $\phi=\sum_{j=1}^{k} b_{j} 1_{B_{j}}$ with $b_{j} \geq 0$ and $B_{j} \in \mathscr{F}$, because $x \mapsto K\left(x, B_{j}\right)$ is measurable $\mathscr{E} \rightarrow \mathscr{B}_{[0, \infty]}$ for each j,

$$
\left(K^{*} \phi\right)(x)=\int_{F} \sum_{j=1}^{k} b_{j} 1_{B_{j}}(y) d K_{x}(y)=\sum_{j=1}^{k} b_{j} K_{x}\left(B_{j}\right)=\sum_{j=1} b_{j} K\left(x, B_{j}\right),
$$

is measurable $\mathscr{E} \rightarrow \mathscr{B}_{[0, \infty]}$. For $f \in \mathscr{F}_{+}$, there is a sequence of simple functions ϕ_{n} with $0 \leq \phi_{1} \leq \phi_{2} \leq \cdots$ that converges pointwise to $f,{ }^{2}$ and then by the monotone convergence theorem, for each $x \in E$ we have

$$
\left(K^{*} \phi_{n}\right)(x)=\int_{F} \phi_{n}(y) d K_{x}(y) \rightarrow \int_{F} f(y) d K_{x}(y)=\left(K^{*} f\right)(x)
$$

showing $K^{*} \phi_{n}$ converges pointwise to $K^{*} f$, and because each $K^{*} \phi_{n}$ is measurable $\mathscr{E} \rightarrow \mathscr{B}_{[0, \infty]}, K^{*} f$ is measurable $\mathscr{E} \rightarrow \mathscr{B}_{[0, \infty]} \cdot{ }^{3}$ Therefore, if $f \in \mathscr{F}+$ then $K^{*} f \in \mathscr{E}_{+}$. In particular, if K is a transition kernel from (E, \mathscr{E}) to (F, \mathscr{F}),

$$
\begin{equation*}
\left(K^{*} 1_{B}\right)(x)=\int_{F} 1_{B}(y) d K_{x}(y)=K_{x}(B)=K(x, B), \quad x \in E, \quad B \in \mathscr{F} \tag{2}
\end{equation*}
$$

The following gives conditions under which (2) defines a transition kernel. ${ }^{4}$
Lemma 1. Suppose that $N: \mathscr{F}_{+} \rightarrow \mathscr{E}_{+}$satisfies the following properties:

1. $N(0)=0$.

[^1]2. $N(a f+b g)=a N(f)+b N(g)$ for $f, g \in \mathscr{F}_{+}$and $a, b \geq 0$.
3. If f_{n} is a sequence in \mathscr{F}_{+}increasing to $f \in \mathscr{F}_{+}$, then $N\left(f_{n}\right) \uparrow N(f)$.

Then

$$
K(x, B)=\left(N\left(1_{B}\right)\right)(x), \quad x \in E, \quad B \in \mathscr{F},
$$

is a transition kernel from (E, \mathscr{E}) to (F, \mathscr{F}). K is the unique transition kernel satisfying

$$
K^{*} f=N(f), \quad f \in \mathscr{F}+
$$

If K is a transition kernel from (E, \mathscr{E}) to (F, \mathscr{F}) and L is a transition kernel from (F, \mathscr{F}) to (G, \mathscr{G}), the function $K^{*} \circ L^{*}: \mathscr{G}_{+} \rightarrow \mathscr{E}_{+}$satisfies (i) $\left(K^{*} \circ L^{*}\right)(0)=$ $K^{*}(0)=0$, (ii) if $f, g \in \mathscr{G}_{+}$and $a, b \geq 0$,

$$
\begin{aligned}
\left(K^{*} \circ L^{*}\right)(a f+b g) & =K^{*}\left(a L^{*}(f)+b L^{*}(g)\right) \\
& =a K^{*}\left(L^{*}(f)\right)+K^{*}\left(L^{*}(g)\right) \\
& =a\left(K^{*} \circ L^{*}\right)(f)+b\left(K^{*} \circ L^{*}\right)(g)
\end{aligned}
$$

and (iii) if $f_{n} \uparrow f$ in \mathscr{G}_{+}, then by the monotone convergence theorem, $L^{*}\left(f_{n}\right) \uparrow$ $L^{*}(f)$, and then again applying the monotone convergence theorem, $K^{*}\left(L^{*}\left(f_{n}\right)\right) \uparrow$ $K^{*}\left(L^{*}(f)\right)$, i.e.

$$
\left(K^{*} \circ L^{*}\right)\left(f_{n}\right) \uparrow\left(K^{*} \circ L^{*}\right)(f)
$$

Therefore, from Lemma 1 we get that there is a unique transition kernel from (E, \mathscr{E}) to (G, \mathscr{G}), denoted $K L$ and called the product of K and L, such that

$$
(K L)^{*} f=\left(K^{*} \circ L^{*}\right)(f), \quad f \in \mathscr{G}_{+} .
$$

For $f \in \mathscr{G}_{+}$and $x \in E$,

$$
\begin{aligned}
(K L)^{*}(f)(x) & =\left(K^{*}\left(L^{*} f\right)\right)(x) \\
& =\int_{F}\left(L^{*} f\right)(y) d K_{x}(y) \\
& =\int_{F}\left(\int_{G} f(z) d L_{y}(z)\right) d K_{x}(y)
\end{aligned}
$$

In particular, for $C \in \mathscr{G}$,

$$
\begin{equation*}
(K L)^{*}\left(1_{C}\right)(x)=\int_{F} L_{y}(C) d K_{x}(y)=\int_{F} L(y, C) d K_{x}(y) \tag{3}
\end{equation*}
$$

2 Markov kernels

A Markov kernel from (E, \mathscr{E}) to (F, \mathscr{F}) is a transition kernel K such that for each $x \in E, K_{x}$ is a probability measure on \mathscr{F}. The unit kernel from (E, \mathscr{E}) to (E, \mathscr{E}) is

$$
\begin{equation*}
I(x, A)=\delta_{x}(A) \tag{4}
\end{equation*}
$$

It is apparent that the unit kernel is a Markov kernel.
If K is a Markov kernel from (E, \mathscr{E}) to (F, \mathscr{F}) and L is a Markov kernel from (F, \mathscr{F}) to (G, \mathscr{G}), then for $x \in E$, by (3) we have

$$
(K L)^{*}\left(1_{G}\right)(x)=\int_{F} d K_{x}(y)=K_{x}(F)=K(x, F)=1
$$

and thus by (2),

$$
(K L)_{x}(G)=(K L)(x, G)=1
$$

showing that for each $x \in E,(K L)_{x}$ is a probability measure. Therefore, the product of two Markov kernels is a Markov kernel.

Let (E, \mathscr{E}) be a measurable space and let

$$
B_{b}(\mathscr{E})
$$

be the set of bounded functions $E \rightarrow \mathbb{R}$ that are measurable $\mathscr{E} \rightarrow \mathscr{B}_{\mathbb{R}} . B_{b}(\mathscr{E})$ is a Banach space with the uniform norm

$$
\|f\|_{u}=\sup _{x \in E}|f(x)|
$$

For K a Markov kernel from (E, \mathscr{E}) to (F, \mathscr{F}) and for $f \in B_{b}(\mathscr{F})$, define $K^{*} f$: $E \rightarrow \mathbb{R}$ by

$$
\left(K^{*} f\right)(x)=\int_{F} f(y) d K_{x}(y), \quad x \in E
$$

for which

$$
\left|\left(K^{*} f\right)(x)\right| \leq \int_{F}|f(y)| d K_{x}(y) \leq\|f\|_{u} K_{x}(F)=\|f\|_{u}
$$

showing that $\left\|K^{*} f\right\|_{u} \leq\|f\|_{u}$. Furthermore, there is a sequence of simple functions $\phi_{n} \in B_{b}(\mathscr{F})$ that converges to f in the norm $\|\cdot\|_{u} .{ }^{5}$ For $x \in E$, by the dominated convergence theorem we get that

$$
\left(K^{*} \phi_{n}\right)(x)=\int_{F} \phi_{n}(y) d K_{x}(y) \rightarrow \int_{F} f(y) d K_{x}(y)=\left(K^{*} f\right)(x)
$$

Each $K^{*} \phi_{n}$ is measurable $\mathscr{E} \rightarrow \mathscr{B}_{\mathbb{R}}$, hence $K^{*} f$ is measurable $\mathscr{E} \rightarrow \mathscr{B}_{\mathbb{R}}$ and so belongs to $B_{b}(\mathscr{E})$.

3 Markov semigroups

Let (E, \mathscr{E}) be a measurable space and for each $t \geq 0$, let P_{t} be a Markov kernel from (E, \mathscr{E}) to (E, \mathscr{E}). We say that the family $\left(P_{t}\right)_{t \in \mathbb{R} \geq 0}$ is a Markov semigroup if

$$
P_{s+t}=P_{s} P_{t}, \quad s, t \in \mathbb{R}_{\geq 0}
$$

[^2]For $x \in E$ and $A \in \mathscr{E}$ and for $s, t \geq 0$, by (2) and (3),

$$
\left(P_{s} P_{t}\right)(x, A)=\left(\left(P_{s} P_{t}\right)^{*} 1_{A}\right)(x)=\int_{E} P_{t}(y, A) d\left(P_{s}\right)_{x}(y)
$$

Thus

$$
\begin{equation*}
P_{s+t}(x, A)=\int_{E} P_{t}(y, A) d\left(P_{s}\right)_{x}(y) \tag{5}
\end{equation*}
$$

called the Chapman-Kolmogorov equation.

4 Infinitely divisible distributions

Let $\mathscr{P}\left(\mathbb{R}^{d}\right)$ be the collection of Borel probability measures on \mathbb{R}^{d}. For $\mu \in$ $\mathscr{P}\left(\mathbb{R}^{d}\right)$, its characteristic function $\tilde{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is defined by

$$
\tilde{\mu}(x)=\int_{\mathbb{R}^{d}} e^{i\langle x, y\rangle} d \mu(y) .
$$

$\tilde{\mu}$ is uniformly continuous on \mathbb{R}^{d} and $|\tilde{\mu}(x)| \leq \tilde{\mu}(0)=1$ for all $x \in \mathbb{R}^{d} .{ }^{6}$ For $\mu_{1}, \ldots, \mu_{n} \in \mathscr{P}\left(\mathbb{R}^{d}\right)$, let μ be their convolution:

$$
\mu=\mu_{1} * \cdots * \mu_{n},
$$

which for A a Borel set in \mathbb{R}^{d} is defined by

$$
\mu(A)=\int_{\left(\mathbb{R}^{d}\right)^{n}} 1_{A}\left(x_{1}+\cdots+x_{n}\right) d\left(\mu_{1} \times \cdots \times \mu_{n}\right)\left(x_{1}, \ldots, x_{n}\right)
$$

One computes that ${ }^{7}$

$$
\tilde{\mu}=\tilde{\mu}_{1} \cdots \tilde{\mu}_{n}
$$

An element μ of $\mathscr{P}\left(\mathbb{R}^{d}\right)$ is called infinitely divisible if for each $n \geq 1$, there is some $\mu_{n} \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\mu=\underbrace{\mu_{n} * \cdots * \mu_{n}}_{n} . \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\tilde{\mu}=\left(\tilde{\mu}_{n}\right)^{n} . \tag{7}
\end{equation*}
$$

On the other hand, if $\mu_{n} \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ is such that (7) is true, then because the characteristic function of $\mu_{n} * \cdots * \mu_{n}$ is $\left(\tilde{\mu}_{n}\right)^{n}$ and the characteristic function of μ is $\tilde{\mu}$ and these are equal, it follows that $\mu_{n} * \cdots * \mu_{n}$ and μ are equal.

The following theorem is useful for doing calculations with the characteristic function of an infinitely divisible distribution. ${ }^{8}$

[^3]Theorem 2. Suppose that μ is an infinitely divisible distribution on \mathbb{R}^{d}. First,

$$
\tilde{\mu}(x) \neq 0, \quad x \in \mathbb{R}^{d}
$$

Second, there is a unqiue continuous function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ satisfying $\phi(0)=0$ and

$$
\tilde{\mu}=|\tilde{\mu}| e^{i \phi}
$$

Third, for each $n \geq 1$, there is a unique $\mu_{n} \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ for which $\mu=\mu_{n} * \cdots * \mu_{n}$. The characteristic function of this unique μ_{n} is

$$
\tilde{\mu}_{n}=|\tilde{\mu}|^{\frac{1}{n}} e^{i \frac{\phi}{n}} .
$$

A convolution semigroup is a family $\left(\mu_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ of elements of $\mathscr{P}\left(\mathbb{R}^{d}\right)$ such that for $s, t \in \mathbb{R}_{\geq 0}$,

$$
\mu_{s+t}=\mu_{s} * \mu_{t} .
$$

The convolution semigroup is called continuous when $t \mapsto \mu_{t}$ is continuous $\mathbb{R}_{\geq 0} \rightarrow \mathscr{P}\left(\mathbb{R}^{d}\right)$, where $\mathscr{P}\left(\mathbb{R}^{d}\right)$ has the narrow topology.

The following theorem connects convolution semigroups and infinitely divisible distributions. ${ }^{9}$

Theorem 3. If $\left(\mu_{t}\right)_{t \in \mathbb{R} \geq 0}$ is a convolution semigroup on $\mathscr{B}_{\mathbb{R}^{d}}$, then for each t, the measure μ_{t} is infinitely divisible.

If $\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ is infinitely divisible and $t_{0}>0$, then there is a unique continuous convolution semigroup $\left(\mu_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ such that $\mu_{t_{0}}=\mu$.

It follows from the above theorem that for a convolution semigroup $\left(\mu_{t}\right)_{t \in \mathbb{R}>0}$ on $\mathscr{B}_{\mathbb{R}^{d}}, \mu_{1}$ is infinitely divisible and therefore by Theorem $2, \tilde{\mu}_{1}(x) \neq 0$ for all x. But $\mu_{0} * \mu_{1}=\mu_{1}$, so $\tilde{\mu}_{0} \tilde{\mu}_{1}=\tilde{\mu}_{1}$, and $\tilde{\mu}_{0}(x)=1$ for each x. But $\tilde{\delta}_{0}(x)=1$ for all x, so

$$
\begin{equation*}
\mu_{0}=\delta_{0} \tag{8}
\end{equation*}
$$

5 Translation-invariant semigroups

Let $\left(P_{t}\right)_{t \in \mathbb{R}>0}$ be a Markov semigroup on $\left(\mathbb{R}^{d}, \mathscr{B}_{\mathbb{R}^{d}}\right)$. We say that $\left(P_{t}\right)_{t \in \mathbb{R}}$ is translation-invariant if for all $x, y \in \mathbb{R}^{d}, A \in \mathscr{B}_{\mathbb{R}^{d}}$, and $t \in \mathbb{R}_{\geq 0}$,

$$
P_{t}(x, A)=P_{t}(x+y, A+y)
$$

In this case, for $t \geq 0$ and for $A \in \mathscr{B}_{\mathbb{R}^{d}}$, define

$$
\mu_{t}(A)=P_{t}(0, A)
$$

Each μ_{t} is a probability measure on $\mathscr{B}_{\mathbb{R}^{d}}$, and

$$
\mu_{t}(A-x)=P_{t}(0, A-x)=P_{t}(x,(A-x)+x)=P_{t}(x, A)
$$

[^4]Using that the Chapman-Kolmogorov equation (5) and as $\left(P_{s}\right)_{0}(B)=P_{s}(0, B)=$ $\mu_{s}(B)$,

$$
\begin{aligned}
\mu_{s+t}(A) & =P_{s+t}(0, A) \\
& =\int_{\mathbb{R}^{d}} P_{t}(y, A) d\left(P_{s}\right)_{0}(y) \\
& =\int_{\mathbb{R}^{d}} \mu_{t}(A-y) d \mu_{s}(y) \\
& =\left(\mu_{t} * \mu_{s}\right)(A)
\end{aligned}
$$

showing that $\left(\mu_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ is a convolution semigroup on $\mathscr{B}_{\mathbb{R}^{d}}$.
On the other hand, if $\left(\mu_{t}\right)_{t \in \mathbb{R} \geq 0}$ is a convolution semigroup of probability measures on $\mathscr{B}_{\mathbb{R}^{d}}$, for $t \geq 0, x \in \mathbb{R}^{d}$, and $A \in \mathscr{B}_{\mathbb{R}^{d}}$ define

$$
P_{t}(x, A)=\mu_{t}(A-x)
$$

Let $t \geq 0$. For $x \in \mathbb{R}^{d}$, the $\operatorname{map} A \mapsto P_{t}(x, A)=\mu_{t}(A-x)$ is a probability measure on $\mathscr{B}_{\mathbb{R}^{d}}$. The map $(x, y) \mapsto x+y$ is continuous $\mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and for $A \in \mathscr{B}_{\mathbb{R}^{d}}$, the map $1_{A}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is measurable $\mathscr{B}_{\mathbb{R}^{d}} \rightarrow \mathscr{B}_{\mathbb{R}}$. Hence, as $\mathscr{B}_{\mathbb{R}^{d} \times \mathbb{R}^{d}}=$ $\mathscr{B}_{\mathbb{R}^{d}} \otimes \mathscr{B}_{\mathbb{R}^{d}}$, the map $(x, y) \mapsto 1_{A}(x+y)$ is measurable $\mathscr{B}_{\mathbb{R}^{d}} \otimes \mathscr{B}_{\mathbb{R}^{d}} \rightarrow \mathscr{B}_{\mathbb{R}}$. Thus by Fubini's theorem,

$$
x \mapsto \int_{\mathbb{R}^{d}} 1_{A}(x+y) d \mu_{t}(y)=\int_{\mathbb{R}^{d}} 1_{A-x}(y) d \mu_{t}(y)=\mu_{t}(A-x)
$$

is measurable $\mathscr{B}_{\mathbb{R}^{d}} \rightarrow \mathscr{B}_{\mathbb{R}}$. Hence P_{t} is a Markov kernel, and thus $\left(P_{t}\right)_{t \in \mathbb{R} \geq 0}$ is a translation-invariant Markov semigroup.

Define $S: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by $S(x)=-x$. For $\mu, \nu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
S_{*}(\mu * \nu)(A) & =(\mu * \nu)(-A) \\
& =\int_{\mathbb{R}^{d}} \mu(-A-y) d \nu(y) \\
& =\int_{\mathbb{R}^{d}} \mu(-A+y) d \bar{\nu}(y) \\
& =\int_{\mathbb{R}^{d}} \bar{\mu}(A-y) d \bar{\nu}(y) \\
& =(\bar{\mu} * \bar{\nu})(A),
\end{aligned}
$$

thus

$$
\begin{equation*}
S_{*}(\mu * \nu)=\left(S_{*} \mu\right) *\left(S_{*} \nu\right) \tag{9}
\end{equation*}
$$

For $\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$, write

$$
\bar{\mu}=S_{*} \mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)
$$

i.e.,

$$
\bar{\mu}(A)=\mu\left(S^{-1}(A)\right)=\mu(S(A))=\mu(-A)
$$

We calculate

$$
\left(P_{t}^{*} 1_{A}\right)(x)=P_{t}(x, A)=\mu_{t}(A-x)=\int_{\mathbb{R}^{d}} 1_{A}(x+y) d \mu_{t}(y)
$$

Then if f is a simple function, $f=\sum_{k} a_{k} 1_{A_{k}}$,

$$
\left(P_{t}^{*} f\right)(x)=\sum_{k} a_{k} \int_{\mathbb{R}^{d}} 1_{A_{k}}(x+y) d \mu_{t}(y)=\int_{\mathbb{R}^{d}} f(x+y) d \mu_{t}(y)
$$

For $f \in B_{b}\left(\mathscr{B}_{\mathbb{R}^{d}}\right)$, there is a sequence of simple functions f_{n} that converge to f in the uniform norm, and then by the dominated convergence theorem we get

$$
\left(P_{t}^{*} f\right)(x)=\int_{\mathbb{R}^{d}} f(x+y) d \mu_{t}(y) .
$$

But

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} f(x+y) d \mu_{t}(y) & =\int_{\mathbb{R}^{d}} f(x+S(S(y))) d \mu_{t}(y) \\
& =\int_{\mathbb{R}^{d}} f(x+S(y)) d\left(S_{*} \mu_{t}\right)(y) \\
& =\int_{\mathbb{R}^{d}} f(x-y) d \bar{\mu}_{t}(y) \\
& =\left(f * \bar{\mu}_{t}\right)(x)
\end{aligned}
$$

Therefore for $t \geq 0$ and $f \in B_{b}\left(\mathscr{B}_{\mathbb{R}^{d}}\right)$,

$$
\begin{equation*}
P_{t}^{*} f=f * \bar{\mu}_{t} \tag{10}
\end{equation*}
$$

For $s, t \geq 0$ and $f \in B_{b}\left(\mathscr{B}_{\mathbb{R}^{d}}\right)$, by (10), the fact that $\left(\mu_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ is a convolution semigroup, and (9), we get

$$
\begin{aligned}
P_{s+t}^{*} f & =f *\left(S_{*} \mu_{s+t}\right) \\
& =f *\left(S_{*}\left(\mu_{s} * \mu_{t}\right)\right) \\
& =f *\left(\left(S_{*} \mu_{s}\right) *\left(S_{*} \mu_{t}\right)\right) \\
& =\left(f *\left(S_{*} \mu_{s}\right)\right) *\left(S_{*} \mu_{t}\right) \\
& =\left(P_{s}^{*} f\right) *\left(S_{*} \mu_{t}\right) \\
& =P_{t}^{*}\left(P_{s}^{*} f\right) .
\end{aligned}
$$

This shows that $\left(P_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ is a Markov semigroup. Moreover, by (8) it holds that $\mu_{0}=\delta_{0}$, and hence

$$
P_{0}(x, A)=\mu_{0}(A-x)=\delta_{0}(A-x)=\delta_{x}(A)
$$

Namely, P_{0} is the unit kernel (4).

If $\left(\mu_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ is a convolution semigroup and some μ_{t} has density q_{t} with respect to Lebesgue measure λ_{d} on \mathbb{R}^{d},

$$
\mu_{t}=q_{t} \lambda_{d},
$$

then writing $\bar{q}_{t}(x)=q_{t}(-x)$, for $f \in B_{b}\left(\mathscr{B}_{\mathbb{R}^{d}}\right)$ by (10) we have

$$
\left(P_{t}^{*} f\right)(x)=\left(f * \bar{\mu}_{t}\right)(x)=\int_{\mathbb{R}^{d}} f(x-y) d \bar{\mu}_{t}(y)=\int_{\mathbb{R}^{d}} f(x+y) q_{t}(y) d \lambda_{d}(y)
$$

so

$$
\begin{equation*}
P_{t} * f=f * \bar{q}_{t} . \tag{11}
\end{equation*}
$$

6 The Brownian semigroup

For $a \in \mathbb{R}$ and $\sigma>0$, let $\gamma_{a, \sigma^{2}}$ be the Gaussian measure on \mathbb{R}, the probability measure on \mathbb{R} whose density with respect to Lebesgue measure is

$$
p\left(x, a, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right) .
$$

For $\sigma=0$, let

$$
\gamma_{a, 0}=\delta_{a}
$$

Define for $t \in \mathbb{R}_{\geq 0}$,

$$
\mu_{t}=\prod_{k=1}^{d} \gamma_{0, t}
$$

which is an element of $\mathscr{P}\left(\mathbb{R}^{d}\right)$. For $s, t \in \mathbb{R}_{\geq 0}$, we calculate

$$
\mu_{s} * \mu_{t}=\left(\prod_{k=1}^{d} \gamma_{0, s}\right) *\left(\prod_{k=1}^{d} \gamma_{0, t}\right)=\prod_{k=1}^{d}\left(\gamma_{0, s} * \gamma_{0, t}\right)=\prod_{k=1}^{d} \gamma_{0, s+t}=\mu_{s+t}
$$

Lévy's continuity theorem states that if ν_{n} is a sequence in $\mathscr{P}\left(\mathbb{R}^{d}\right)$ and there is some $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ that is continuous at 0 and to which $\tilde{\nu}_{n}$ converges pointwise, then there is some $\nu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ such that $\phi=\tilde{\nu}$ and such that $\nu_{n} \rightarrow \nu$ narrowly. But for $t \in \mathbb{R}_{\geq 0}$ and $x \in \mathbb{R}^{d}$, we calculate

$$
\begin{equation*}
\tilde{\mu}_{t}(x)=\int_{\mathbb{R}^{d}} e^{i\langle x, y\rangle} d \mu_{t}(y)=\exp \left(-\frac{t|x|^{2}}{2}\right) . \tag{12}
\end{equation*}
$$

Let $\phi(x)=1$ for all x, for which $\tilde{\delta}_{0}=\phi$. For $t_{n} \in \mathbb{R}_{\geq 0}$ tending to 0 , let $\nu_{n}=\mu_{t_{n}}$. Then by (12), $\tilde{\nu}_{n}$ converges pointwise to ϕ, so by Lévy's continuity theorem, ν_{n} converges narrowly to δ_{0}. Moreover, because \mathbb{R}^{d} is a Polish space, $\mathscr{P}\left(\mathbb{R}^{d}\right)$ is a Polish space, and in particular is metrizable. It thus follows that μ_{t} converges narrowly to δ_{0} as $t \rightarrow 0$. It then follows that $t \mapsto \mu_{t}$ is continuous $\mathbb{R}_{\geq 0} \rightarrow \mathscr{P}\left(\mathbb{R}^{d}\right)$. Summarizing, $\left(\mu_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ is a continuous convolution semigroup.

For $t>0, \mu_{t}$ has density

$$
g_{t}(x)=\prod_{j=1}^{d}(2 \pi t)^{-1 / 2} e^{-\frac{x_{j}^{2}}{2 t}}=(2 \pi t)^{-d / 2} e^{-\frac{|x|^{2}}{2 t}}
$$

with respect to Lebesgue measure λ_{d} on \mathbb{R}^{d}. For $t \geq 0$, let

$$
P_{t}(x, A)=\mu_{t}(A-x)
$$

We have established that $\left(P_{t}\right)_{t \in \mathbb{R} \geq 0}$ is a translation-invariant Markov semigroup for which $P_{0}(x, A)=\delta_{x}(A)$. We call $\left(P_{t}\right)_{t \in \mathbb{R} \geq 0}$ the Brownian semigroup. For $t>0$ and $f \in B_{b}\left(\mathscr{B}_{\mathbb{R}^{d}}\right)$, because $\bar{g}_{t}=g_{t}$ we have by (11),

$$
\left(P_{t} f\right)(x)=\left(f * g_{t}\right)(x)=(2 \pi t)^{-d / 2} \int_{\mathbb{R}^{d}} f(x-y) e^{-\frac{|y|^{2}}{2 t}} d \lambda_{d}(y)
$$

7 Projective families

For a nonempty set I, let $\mathscr{K}(I)$ denote the family of finite nonempty subsets of I. We speak in this section about projective families of probability measures.

The following theorem shows how to construct a projective family from a Markov semigroup on a measurable space and a probability measure on this measurable space. ${ }^{10}$

Theorem 4. Let $I=\mathbb{R}_{\geq 0}$, let (E, \mathscr{E}) be a measurable space, let $\left(P_{t}\right)_{t \in I}$ be a Markov semigroup on \mathscr{E}, and let μ be a probability measure on \mathscr{E}. For $J \in \mathscr{K}(I)$, with elements $t_{1}<\cdots<t_{n}$, and for $A \in \mathscr{E} J$, let
$P_{J}(A)=\underbrace{\int_{E} \int_{E} \cdots \int_{E}}_{n+1} 1_{A}\left(x_{1}, \ldots, x_{n}\right) d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right)$.
Then $\left(P_{J}\right)_{J \in \mathscr{K}(I)}$ is a projective family of probability measures.
Proof. Let A_{k} be pairwise disjoint elements of \mathscr{E}^{J}, and call their union A. Then $1_{A}=\sum_{k} 1_{A_{k}}$, and applying the monotone convergence theorem $n+1$ times,

$$
\begin{aligned}
& \underbrace{\int_{E} \int_{E} \cdots \int_{E}}_{n+1} 1_{A}\left(x_{1}, \ldots, x_{n}\right) d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) \\
= & \sum_{k} \underbrace{\int_{E} \int_{E} \cdots \int_{E}}_{n+1} 1_{A_{k}}\left(x_{1}, \ldots, x_{n}\right) d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right),
\end{aligned}
$$

i.e.

$$
P_{J}(A)=\sum_{k} P_{J}\left(A_{k}\right)
$$

[^5]Furthermore, because $\left(P_{t}\right)_{x}$ is a probability measure for each t and for each x and μ is a probability measure, we calculate that

$$
P_{J}\left(E^{J}\right)=1
$$

Thus, P_{J} is a probability measure on \mathscr{E}^{J}.
To prove that $\left(P_{J}\right)_{J \in \mathscr{K}(I)}$ is a projective family, it suffices to prove that when $J, K \in \mathscr{K}(I), J \subset K$, and $K \backslash J$ is a singleton, then $\left(\pi_{K, J}\right)_{*} P_{K}=P_{J}$. Moreover, because (i) the product σ-algebra \mathscr{E}^{J} is generated by the collection of cylinder sets, i.e. sets of the form $\prod_{t \in J} A_{t}$ for $A_{t} \in \mathscr{E}$, and (ii) the intersection of finitely many cylinder sets is a cylinder sets, it is proved using the monotone class theorem that if two probability measures on \mathscr{E}^{J} coincide on the cylinder sets, then they are equal. ${ }^{11}$ Let $t_{1}<\cdots<t_{n}$ be the elements of J. To prove that $\left(\pi_{K, J}\right)_{*} P_{K}$ and P_{J} are equal, it suffices to prove that for any $A_{1}, \ldots, A_{n} \in \mathscr{E}$,

$$
\left(\pi_{K, J}\right)_{*} P_{K}\left(\prod_{j=1}^{n} A_{j}\right)=P_{J}\left(\prod_{j=1}^{n} A_{j}\right)
$$

Moreover, for $A=\prod_{j=1}^{n} A_{j}$,

$$
1_{A}=1_{A_{1}} \otimes \cdots \otimes 1_{A_{n}},
$$

thus

$$
\begin{aligned}
& P_{J}\left(\prod_{j=1}^{n} A_{j}\right) \\
= & \underbrace{\int_{E} \int_{E} \cdots \int_{E}}_{n+1} 1_{A_{1}}\left(x_{1}\right) \cdots 1_{A_{n}}\left(x_{n}\right) d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) \\
= & \int_{E} \int_{A_{1}} \cdots \int_{A_{n}} d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) .
\end{aligned}
$$

Let $K \backslash J=\left\{t^{\prime}\right\}$. Either $t^{\prime}<t_{1}$, or $t^{\prime}>t_{n}$, or there is some $1 \leq j \leq n-1$ for which $t_{j}<t^{\prime}<t_{j+1}$. Take the case $t^{\prime}<t_{1}$. Then

$$
\pi_{K, J}^{-1}\left(\prod_{j=1}^{n} A_{j}\right)=\prod_{k=0}^{n} B_{k}
$$

[^6]where $B_{0}=E$ and $B_{j}=A_{j}$ for $1 \leq j \leq n$. Then
\[

$$
\begin{aligned}
& \left(\pi_{K, J}\right)_{*} P_{K}\left(\prod_{j=1}^{n} A_{j}\right) \\
= & P_{K}\left(\prod_{k=0}^{n} B_{k}\right) \\
= & \int_{E} \int_{E} \int_{A_{1}} \cdots \int_{A_{n}} d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{1}-t^{\prime}}\right)_{x^{\prime}}\left(x_{1}\right) d\left(P_{t^{\prime}}\right)_{x_{0}}\left(x^{\prime}\right) d \mu\left(x_{0}\right) \\
= & \int_{E} \int_{E} \int_{A_{1}} f\left(x_{1}\right) d\left(P_{t_{1}-t^{\prime}}\right)_{x^{\prime}}\left(x_{1}\right) d\left(P_{t^{\prime}}\right)_{x_{0}}\left(x^{\prime}\right) d \mu\left(x_{0}\right),
\end{aligned}
$$
\]

for

$$
f\left(x_{1}\right)=\int_{A_{2}} \cdots \int_{A_{n}} d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{2}-t_{1}}\right)_{x_{1}}\left(x_{2}\right)
$$

By (1) and because $\left(P_{t}\right)_{t \in I}$ is a Markov semigroup,

$$
\begin{aligned}
& \int_{E} \int_{A_{1}} f\left(x_{1}\right) d\left(P_{t_{1}-t^{\prime}}\right)_{x^{\prime}}\left(x_{1}\right) d\left(P_{t^{\prime}}\right)_{x_{0}}\left(x^{\prime}\right) \\
= & \int_{E} \int_{E} f\left(x_{1}\right) 1_{A_{1}}\left(x_{1}\right) d\left(P_{t_{1}-t^{\prime}}\right)_{x^{\prime}}\left(x_{1}\right) d\left(P_{t^{\prime}}\right)_{x_{0}}\left(x^{\prime}\right) \\
= & \int_{E} P_{t_{1}-t^{\prime}}^{*}\left(f 1_{A_{1}}\right)\left(x^{\prime}\right) d\left(P_{t^{\prime}}\right)_{x_{0}}\left(x^{\prime}\right) \\
= & P_{t^{\prime}}^{*}\left(P_{t_{1}-t^{\prime}}^{*}\left(f 1_{A_{1}}\right)\right)\left(x_{0}\right) \\
= & P_{t_{1}}\left(f 1_{A_{1}}\right)\left(x_{0}\right) \\
= & \int_{E} f\left(x_{1}\right) 1_{A_{1}}\left(x_{1}\right) d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) \\
= & \int_{A_{1}} f\left(x_{1}\right) d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) \\
= & \int_{A_{1}} \int_{A_{2}} \cdots \int_{A_{n}} d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{2}-t_{1}}\right)_{x_{1}}\left(x_{2}\right) d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(\pi_{K, J}\right)_{*} P_{K}\left(\prod_{j=1}^{n} A_{j}\right) \\
= & \int_{E} \int_{A_{1}} \int_{A_{2}} \cdots \int_{A_{n}} d\left(P_{t_{n}-t_{n-1}}\right)_{x_{n-1}}\left(x_{n}\right) \cdots d\left(P_{t_{2}-t_{1}}\right)_{x_{1}}\left(x_{2}\right) d\left(P_{t_{1}}\right)_{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) \\
= & P_{J}\left(\prod_{j=1}^{n} A_{j}\right)
\end{aligned}
$$

This shows that the claim is true in the case $t^{\prime}<t_{1}$.

Thus, if E is a Polish space with Borel σ-algebra \mathscr{E}, let $I=\mathbb{R}_{\geq 0}$, let $\left(P_{t}\right)_{t \in I}$ be a Markov semigroup on \mathscr{E}, and let μ be a probability measure on \mathscr{E}. The above theorem tells us that $\left(P_{J}\right)_{\mathscr{K}(I)}$ is a projective family, and then the Kolmogorov extension theorem tells us that there is a probability measure ${ }^{12}$ P^{μ} on \mathscr{E}^{I} such that for any $J \in \mathscr{K}(I), \pi_{J *} P^{\mu}=P_{J}^{\mu}$. This implies that there is a stochastic process $\left(X_{t}\right)_{t \in I}$ whose finite-dimensional distributions are equal to the probability measures P_{J} defined in Theorem 4 using the Markov semigroup $\left(P_{t}\right)_{t \in I}$ and the probability measure μ.

[^7]
[^0]: ${ }^{1}$ Erhan Çinlar, Probability and Stochastics, p. 28, Theorem 4.21.

[^1]: ${ }^{2}$ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 47, Theorem 2.10.
 ${ }^{3}$ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 45, Proposition 2.7.
 ${ }^{4}$ Heinz Bauer, Probability Theory, p. 308, Lemma 36.2.

[^2]: ${ }^{5}$ V. I. Bogachev, Measure Theory, p. 108, Lemma 2.1.8.

[^3]: ${ }^{6}$ Heinz Bauer, Probability Theory, p. 183, Theorem 22.3
 ${ }^{7}$ Heinz Bauer, Probability Theory, p. 184, Theorem 22.4.
 ${ }^{8}$ Heinz Bauer, Probability Theory, p. 246, Theorem 29.2.

[^4]: ${ }^{9}$ Heinz Bauer, Probability Theory, p. 248, Theorem 29.6.

[^5]: ${ }^{10}$ Heinz Bauer, Probability Theory, p. 314, Theorem 36.4.

[^6]: ${ }^{11}$ V. I. Bogachev, Measure Theory, volume I, p. 35, Lemma 1.9.4.

[^7]: ${ }^{12}$ We write P^{μ} to indicate that this measure involves μ; it also involves the Markov semigroup, which we do not indicate.

