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1 Transition kernels

For a measurable space (F, &), we denote by & the set of functions E — [0, 0]
that are & — %[ o) measurable. It can be proved that if I : & — [0,00]
is a function such that (i) f = 0 implies that I(f) = 0, (ii) if f,g € &} and
a,b >0 then I(af +bg) = al(f)+0bI(g), and (iii) if f, is a sequence in & that
increases pointwise to an element f of &4 then I(f,) increases to I(f), then
there a unique measure p on & such that I(f) = uf for each f € &,.1

Let (F,&) and (F,.#) be a measurable space. A transition kernel is a
function

K:Ex.Z —[0,00

such that (i) for each x € E, the function K, : % — [0, 00] defined by
B K(z,B)

is a measure on .#, and (ii) for each B € .%, the map
z+— K(z,B)

is measurable & — %y -
If i is a measure on &, define

(K.p)(B) = /EK(QJ,B)d,u(z)7 Be 7.

If B,, are pairwise disjoint elements of .%, then using that B — K(x, B) is a

IErhan Cinlar, Probability and Stochastics, p. 28, Theorem 4.21.



measure and the monotone convergence theorem,

K1) (Lnj Bn> = /EK (x,LnJBn> dpu(x)
-/ S K (e B
-y /E K (, B,)du(x)
= z::(K*M)(B )

showing that K, u is a measure on .%.
If f e Z,, define K*f : E — [0,00] by

- /F fW)dK,(y), z€E. (1)

For ¢ = Z?Zl bjlp, with b; > 0 and B; € .#, because v — K(z,B;) is
measurable & — H[g o) for each j,

k
(K7 0)(@) = [ 315, K, Zb Kol = S, )
j=1

is measurable & — %[y ]. For f € #,, there is a sequence of simple functions
¢n With 0 < ¢1 < ¢9 < --- that converges pointwise to f,2 and then by the
monotone convergence theorem, for each x € E we have

(5 0)(@) = [ ont)aian) > [ F)AK0) = (5 1)(o)
showing K*¢,, converges pointwise to K* f, and because each K*¢,, is measur-

able & — Po,oc), K* f is measurable & — ,%’[0700].3 Therefore, if f € %, then
K*f € & . In particular, if K is a transition kernel from (E, &) to (F,.%),

(K*15)(z) = /F 1p(y)dK,(y) = K.(B) = K(2,B), w€B, BeZ. (2)

The following gives conditions under which (2) defines a transition kernel.*
Lemma 1. Suppose that N : %, — &, satisfies the following properties:
1. N(0) =0.

2Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 47, Theorem 2.10.

3Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 45, Proposition 2.7.

4Heinz Bauer, Probability Theory, p. 308, Lemma 36.2.



2. N(af +bg) =aN(f)+bN(g) for f,g € #; and a,b > 0.
3. If f,, is a sequence in Z, increasing to f € %, then N(f,) T N(f).
Then
K(z,B) = (N(1p))(z), reE, BeZ,

is a transition kernel from (E, &) to (F,.%#). K is the unique transition kernel
satisfying
K*f=N(f), feZ.

If K is a transition kernel from (E, &) to (F,.#) and L is a transition kernel
from (F, %) to (G,¥), the function K*oL* : 4, — &, satisfies (i) (K*oL*)(0) =
K*(0)=0, (ii) if f,g € 44 and a,b > 0,

(K* o L*)(af +bg) = K*(aL*(f) + bL*(g))
= aK*(L*(f)) + K*(L"(g))
= a(K" o L*)(f) +b(K™ o L")(9g),
and (iii) if f, 1 f in ¢4, then by the monotone convergence theorem, L*(f,) T
L*(f), and then again applying the monotone convergence theorem, K*(L*(f,)) 1
K*(L*(f)), ie.
(Ko L") (fn) T (K™ o L*) ().

Therefore, from Lemma 1 we get that there is a unique transition kernel from
(E,&) to (G,9), denoted KL and called the product of K and L, such that

(KL)"f = (K" o L*)(f),  [fe%.
For fe ¥, andz € E,
(KL)"(f)(x) = (K*(L"f))(x)

- [ nwiK.)
= [ ([ ser,e)) ar
In particular, for C € &,
(KL (1e)a) = [ LK) = [ L OO (y). 3)

2 Markov kernels

A Markov kernel from (E, &) to (F,.%#) is a transition kernel K such that for
each © € E, K, is a probability measure on .. The unit kernel from (E, &)
to (E,&) is

I(x, A) = 0,(A). (4)



It is apparent that the unit kernel is a Markov kernel.
If K is a Markov kernel from (E, &) to (F,.%) and L is a Markov kernel
from (F, %) to (G,¥), then for x € E, by (3) we have

(KL)*(1e)(x) = /F Ao (y) = Ko(F) = K (2, F) = 1,
and thus by (2),

(KL)4(G) = (KL)(z,G) =1,

showing that for each € E, (K L), is a probability measure. Therefore, the
product of two Markov kernels is a Markov kernel.
Let (E, &) be a measurable space and let

By(&)

be the set of bounded functions £ — R that are measurable & — Br. By(&)
is a Banach space with the uniform norm

£l = sup [f(@)]-
rek

For K a Markov kernel from (E, &) to (F,.%#) and for f € By(.%), define K* f :
E — R by

z) = /F fW)dK.(y), c€E,

for which
(K™ f)(@)| < /F PO @) < £l Ke(F) = 1]

showing that ||[K*f|, < |/ fll,- Furthermore, there is a sequence of simple
functions ¢,, € B,(F) that converges to f in the norm ||-||,.° For z € E, by
the dominated convergence theorem we get that

(K*¢n)(x /¢n VK, ( —>/f VAK,(y) = (K*f)(x).

Each K*¢, is measurable & — %y, hence K* f is measurable & — % and so
belongs to By(&).

3 Markov semigroups

Let (E,&) be a measurable space and for each ¢t > 0, let P; be a Markov
kernel from (E, &) to (E,&). We say that the family (Pt)teR>0 is a Markov
semigroup if -

P5+t P.Pt, S,tGRzo.

5V. I. Bogachev, Measure Theory, p. 108, Lemma 2.1.8.



For z € E and A € & and for s,t > 0, by (2) and (3),

(aamunzwuwmmmz/B@Awau@

E
Thus
FM@MZAMWW@M% (5)

called the Chapman-Kolmogorov equation.

4 Infinitely divisible distributions

Let Z(R?) be the collection of Borel probability measures on R?. For u €
P(RY), its characteristic function ji : R? — C is defined by

@)= [ ity

fi is uniformly continuous on R? and |fi(z)| < ji(0) = 1 for all x € R4S For
Uiy pin € P(RY), let u be their convolution:

[h= fuy %k L,
which for A a Borel set in R? is defined by
w(A) :/ . la(xy + -+ xp)d(pr X - X pp)(T1, ..., Tn).
(RA)™
One computes that?
o= fi1 - fin.

An element g of Z(RY) is called infinitely divisible if for each n > 1,
there is some p, € Z(R9) such that

L= fn % Y (6)
—_——
Thus,
fi = (fn)". (7)

On the other hand, if u,, € Z(R?) is such that (7) is true, then because the
characteristic function of p, * -« - * p, is (fi,)"™ and the characteristic function
of w is {1 and these are equal, it follows that i, * - - - * u, and p are equal.

The following theorem is useful for doing calculations with the characteristic
function of an infinitely divisible distribution.®

SHeinz Bauer, Probability Theory, p. 183, Theorem 22.3.
"Heinz Bauer, Probability Theory, p. 184, Theorem 22.4.
8Heinz Bauer, Probability Theory, p. 246, Theorem 29.2.



Theorem 2. Suppose that y is an infinitely divisible distribution on R?. First,
f(z) #0,  xeRY

Second, there is a unqiue continuous function ¢ : R¢ — R satisfying ¢(0) = 0
and A

fi = |file™.
Third, for each n > 1, there is a unique y,, € Z2(R%) for which g1 = i, % - - - fi,.
The characteristic function of this unique pu,, is

1 .9
neln,

fin = |1

A convolution semigroup is a family (p¢)ter-, of elements of #(R%) such
that for s, t e Rzo, -
Hst+t = Hs * [it-
The convolution semigroup is called continuous when ¢ — pu; is continuous
Rs>g — Z(RY), where 2(R?) has the narrow topology.
The following theorem connects convolution semigroups and infinitely divis-
ible distributions.’

Theorem 3. If (u4)ier., is a convolution semigroup on Hra, then for each ¢,
the measure y; is infinitely divisible.

If p € Z(R?) is infinitely divisible and ¢y > 0, then there is a unique
continuous convolution semigroup (g4 )iecr., such that py, = pu.

It follows from the above theorem that for a convolution semigroup (j1¢)ter-,
on PBra, w1 is infinitely divisible and therefore by Theorem 2, fiy (z) # 0 for all

x. But pg* p1 = pi, 80 fioftn = fir, and fig(z) = 1 for each x. But dp(x) = 1 for
all z, so
fo = do- (8)

5 Translation-invariant semigroups

Let (P;)ters, be a Markov semigroup on (RY, Bra). We say that (Pi)ser is
translation-invariant if for all z,y € R%, A € Bga, and t € R>q,

Pi(x,A) = P(z +y,A+vy).
In this case, for t > 0 and for A € Ppa, define
ut(A) = Pi(0, A).
Each pu; is a probability measure on $Bra, and

pr(A—x)=P(0,A—z) = Py(z,(A— )+ ) = Pz, A).

9Heinz Bauer, Probability Theory, p. 248, Theorem 29.6.



Using that the Chapman-Kolmogorov equation (5) and as (Ps)o(B) = Ps(0, B) =
1s(B),

pasi(A) = P (0, A)
= /Rd Pi(y, A)d(Ps)o(y)

= /Rd (A —y)dps(y)
= (pt * ps)(A),

showing that (f¢)er., is a convolution semigroup on Hpa.
On the other hand, if (yit)ser., is a convolution semigroup of probability
measures on HBga, for t >0, z € R?, and A € Bga define

Pz, A) = (A —z).

Let t > 0. For € RY, the map A ~ Pi(x,A) = u;(A — z) is a probability
measure on HBra. The map (z,y) — x +y is continuous R? x R — RY, and for
A € Bga, the map 14 : R? — R is measurable %Bra — %Br. Hence, as Bra g =
Pra @ Bra, the map (z,y) — 1a(z+y) is measurable Bra @ Bra — PBr. Thus
by Fubini’s theorem,

- / g+ )dply) = / ae(dply) = (A~ 2)

is measurable $Bra — PBr. Hence P; is a Markov kernel, and thus (Pt)teRzo is
a translation-invariant Markov semigroup.
Define S : R* — R? by S(z) = —x. For pu,v € 2(R%),

Si(p*v)(A) = (p*xv)(—A)
:/ w(—A —y)dv(y)
Rd

:/ w(—A+y)dv(y)
Rd

= /Rd A(A —y)dv(y)
= (a*7)(A),

thus
Se(pxv) = (Ssp) * (Suv). 9)

For € 2(RY), write
n=5p¢€ Q(Rd)v

ie.,



We calculate
(PF14)(x) = Pu(, A) = (A — ) = / a4 )dp(y).

Then if f is a simple function, f =", arla,,

Zak/ Lay (& + y)du(y /f +y)dp(y)-

For f € By(%Bpa), there is a sequence of simple functions f, that converge to f
in the uniform norm, and then by the dominated convergence theorem we get

:/ flz+y)du(y).
]Rd

But
[ 5+t = [ 5o+ S(56)duts
o+ S)d(S. ) 1)

Rd
= | fl@—y)dp(y)
Rd
= (f 1) (@).
Therefore for t > 0 and f € By(Bga),
Pif=fT (10)

For s,t > 0 and f € By(%ga), by (10), the fact that (u¢)ier., is a convolution
semigroup, and (9), we get

Pief

I * (Setsyt)
= f* (S (ps * 1))
T ((Sipts) * (Sipie))
= (f * (Sspts)) * (Sipue)
= (P f) * (Sapt)
= P/ (P f).

This shows that (P;)ier., is a Markov semigroup. Moreover, by (8) it holds
that poy = dp, and hence

Po(a, A) = jio(A — 2) = 5o(A — ) = 5, (A).

Namely, Py is the unit kernel (4).



If (pt)iers, is a convolution semigroup and some p; has density ¢ with
respect to Lebesgue measure \q on R?,

M = qtAd,

then writing g,(x) = q:(—x), for f € By(Pra) by (10) we have

(P D) = (= )@) = [ fe =i = [ e+ patira)
Py f = f*q,. (11)
6 The Brownian semigroup

For a € R and o > 0, let 7, ,2 be the Gaussian measure on R, the probability
measure on R whose density with respect to Lebesgue measure is

2 1 (z —a)®
p(x,a,a):\/ﬁexp ooz )

For 0 =0, let
Ya,0 = 6(1'

Define for ¢ € R>,
d
Mt = H Y0,t5
k=1

which is an element of Z(R%). For s,t € R, we calculate

d d d d
s * pie = (H vo,s> * <H 'YO,t) = [T Go.s*70.0) = [T 0,540 = psse-
k=1 k=1 k=1

k=1

Lévy’s continuity theorem states that if v, is a sequence in Z(R%) and there
is some ¢ : R? — C that is continuous at 0 and to which 7, converges pointwise,
then there is some v € Z(R?) such that ¢ = 7 and such that v,, — v narrowly.
But for t € R>p and x € R4, we calculate

o) = [ eyt = exp (157, (12

Let ¢(z) = 1 for all z, for which 6y = ¢. For t, € Rsq tending to 0, let
Vp = pg,. Then by (12), 7, converges pointwise to ¢, so by Lévy’s continuity
theorem, v, converges narrowly to dy. Moreover, because R? is a Polish space,
Z(R?) is a Polish space, and in particular is metrizable. It thus follows that
1 converges narrowly to g as ¢ — 0. It then follows that ¢ — p; is continuous
R>o — Z(RY). Summarizing, (1;)ier-, is a continuous convolution semigroup.



For t > 0, u; has density

d 2
gi(r) = H(me)*l/%*z% — (27#)7(1/267

J=1

|z|2
2t

with respect to Lebesgue measure Aq on RZ. For ¢ > 0, let
Pz, A) = (A — x).

We have established that (P):er., is a translation-invariant Markov semigroup
for which Py(z, A) = d.(A). We call (P;);er., the Brownian semigroup. For
t >0 and f € By(%pa), because g, = g+ we have by (11),

_ w2

(Pef)(@) = (f % ge) () = (2mt) /2 g flz —y)e” = dAa(y).

7 Projective families

For a nonempty set I, let 2 (I) denote the family of finite nonempty subsets of
I. We speak in this section about projective families of probability measures.

The following theorem shows how to construct a projective family from a
Markov semigroup on a measurable space and a probability measure on this
measurable space.?

Theorem 4. Let I = Rxg, let (E,&) be a measurable space, let (P)ier be
a Markov semigroup on &, and let p be a probability measure on &. For
J € X (I), with elements t; < --- < t,, and for A € &7, let

Py(4) = /E /E [E La(Er, o 2n)d(Pry—sy e () -~ d(Pry Yo (1) (o).
—_—

n+1
Then (Py)jex (1) is a projective family of probability measures.

Proof. Let Ay, be pairwise disjoint elements of &7, and call their union A. Then
1a =), 14,, and applying the monotone convergence theorem n + 1 times,

/E/E.../E1A(x1,...,:Cn)d(Ptn_tn_l)xn_l(xn)...d(ptl)%(xl)dlu(xo)

n+1
-3 [E [E /E Va1, 2)d(Poy b Vo (@) - d(Pry Yo (1) dpa(0),

—_—
n+1

i.e.

Py(A) =" Ps(4).
k

10Heinz Bauer, Probability Theory, p. 314, Theorem 36.4.
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Furthermore, because (F;), is a probability measure for each ¢ and for each x
and p is a probability measure, we calculate that

P;(E7)=1.

Thus, P; is a probability measure on &.

To prove that (Py)jeu(r) is a projective family, it suffices to prove that
when J, K € J(I), J C K, and K \ J is a singleton, then (7x j)«Px = Pj.
Moreover, because (i) the product o-algebra & is generated by the collection of
cylinder sets, i.e. sets of the form [],. ; A; for A; € &, and (ii) the intersection
of finitely many cylinder sets is a cylinder sets, it is proved using the monotone
class theorem that if two probability measures on &7 coincide on the cylinder
sets, then they are equal.'’ Let t; < --- < t,, be the elements of .J. To prove that
(7k,s)+Px and P; are equal, it suffices to prove that for any A;,..., 4, € &,

n n
(re)« P [ [TA | =P [ ][] A
j=1 j=1

Moreover, for A = H;-Lzl A,

1A:1A1®"‘®1An,

- / / / L (@1) - L @) d(Pry s () = d(Poy Vo (1) dpa(0)
EJE E

nt1
:/E/A1 “./An AP, —t, 1 )wn_s (@n) - d(Pry)zo (1) dp(x0).

Let K\ J = {t'}. Either ¢/ < ty, or t’ > t,, or there is some 1 < j <n—1
for which ¢; < ' < ¢;11. Take the case t’ < ¢;. Then

n n
—1 o
TK,J H 45 ) = H By,
j=1 k=0

11V, 1. Bogachev, Measure Theory, volume I, p. 35, Lemma 1.9.4.
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where By = E and B; = A; for 1 < j <n. Then

i)
///A1 / d(Py,—t, )y (Tn) - d(Pyy—pr)wr (21)d(Pyr ) o (") dpa (o)

/ / | F@)d(Py ) (@0)d(Pr)y (&) Ap(z0)

fa) = / / A(Por 1 Vons () -+~ APty ) (2).
As A,

By (1) and because (P;)¢er is a Markov semigroup,
[ L R T ANED
Ay
= [ [ £@ta @i )P )
= [ P e () @) )

=Py (P}, _y(f1a,))(z0)
=P, (f14,)(70)

- /E F(@1) L as (@1)d(Pr o (1)

= [ F@)d(Pr,)ao (1)
Ay

_ / / / d(Pr 0 Yoy (@) d(Priy s (@2)d(Pry g (1).
Ay J Ay A,

Thus

(7r,7)+Prc (ﬁ AJ)
//A1 /A2 /An d(Pi,—t, a1 (@n)  d(Pry—t, ) oy (€2)d( Py, )z (21)d (o)

=P, (H Aj) .

This shows that the claim is true in the case t' < t;. O

12



Thus, if E is a Polish space with Borel o-algebra &, let I = Rxq, let (P})er
be a Markov semigroup on &, and let u be a probability measure on &. The
above theorem tells us that (Py)_ (s is a projective family, and then the Kol-
mogorov extension theorem tells us that there is a probability measure!?
Pron &' such that for any J € # (1), m;, P* = P%. This implies that there is
a stochastic process (X;)ic; whose finite-dimensional distributions are equal to
the probability measures P; defined in Theorem 4 using the Markov semigroup
(P:)ter and the probability measure p.

12We write P* to indicate that this measure involves y; it also involves the Markov semi-
group, which we do not indicate.
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