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1 Transition kernels

For a measurable space (E,E ), we denote by E+ the set of functions E → [0,∞]
that are E → B[0,∞] measurable. It can be proved that if I : E+ → [0,∞]
is a function such that (i) f = 0 implies that I(f) = 0, (ii) if f, g ∈ E+ and
a, b ≥ 0 then I(af + bg) = aI(f)+ bI(g), and (iii) if fn is a sequence in E+ that
increases pointwise to an element f of E+ then I(fn) increases to I(f), then
there a unique measure µ on E such that I(f) = µf for each f ∈ E+.

1

Let (E,E ) and (F,F ) be a measurable space. A transition kernel is a
function

K : E × F → [0,∞]

such that (i) for each x ∈ E, the function Kx : F → [0,∞] defined by

B 7→ K(x,B)

is a measure on F , and (ii) for each B ∈ F , the map

x 7→ K(x,B)

is measurable E → B[0,∞].
If µ is a measure on E , define

(K∗µ)(B) =

∫
E

K(x,B)dµ(x), B ∈ F .

If Bn are pairwise disjoint elements of F , then using that B 7→ K(x,B) is a

1Erhan Çinlar, Probability and Stochastics, p. 28, Theorem 4.21.
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measure and the monotone convergence theorem,

(K∗µ)

(⋃
n

Bn

)
=

∫
E

K

(
x,
⋃
n

Bn

)
dµ(x)

=

∫
E

∑
n

K(x,Bn)dµ(x)

=
∑
n

∫
E

K(x,Bn)dµ(x)

=
∑
n

(K∗µ)(Bn),

showing that K∗µ is a measure on F .
If f ∈ F+, define K∗f : E → [0,∞] by

(K∗f)(x) =

∫
F

f(y)dKx(y), x ∈ E. (1)

For ϕ =
∑k

j=1 bj1Bj
with bj ≥ 0 and Bj ∈ F , because x 7→ K(x,Bj) is

measurable E → B[0,∞] for each j,

(K∗ϕ)(x) =

∫
F

k∑
j=1

bj1Bj
(y)dKx(y) =

k∑
j=1

bjKx(Bj) =
∑
j=1

bjK(x,Bj),

is measurable E → B[0,∞]. For f ∈ F+, there is a sequence of simple functions
ϕn with 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · that converges pointwise to f ,2 and then by the
monotone convergence theorem, for each x ∈ E we have

(K∗ϕn)(x) =

∫
F

ϕn(y)dKx(y) →
∫
F

f(y)dKx(y) = (K∗f)(x),

showing K∗ϕn converges pointwise to K∗f , and because each K∗ϕn is measur-
able E → B[0,∞], K

∗f is measurable E → B[0,∞].
3 Therefore, if f ∈ F+ then

K∗f ∈ E+. In particular, if K is a transition kernel from (E,E ) to (F,F ),

(K∗1B)(x) =

∫
F

1B(y)dKx(y) = Kx(B) = K(x,B), x ∈ E, B ∈ F . (2)

The following gives conditions under which (2) defines a transition kernel.4

Lemma 1. Suppose that N : F+ → E+ satisfies the following properties:

1. N(0) = 0.

2Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 47, Theorem 2.10.

3Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 45, Proposition 2.7.

4Heinz Bauer, Probability Theory, p. 308, Lemma 36.2.
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2. N(af + bg) = aN(f) + bN(g) for f, g ∈ F+ and a, b ≥ 0.

3. If fn is a sequence in F+ increasing to f ∈ F+, then N(fn) ↑ N(f).

Then
K(x,B) = (N(1B))(x), x ∈ E, B ∈ F ,

is a transition kernel from (E,E ) to (F,F ). K is the unique transition kernel
satisfying

K∗f = N(f), f ∈ F+.

If K is a transition kernel from (E,E ) to (F,F ) and L is a transition kernel
from (F,F ) to (G,G ), the functionK∗◦L∗ : G+ → E+ satisfies (i) (K∗◦L∗)(0) =
K∗(0) = 0, (ii) if f, g ∈ G+ and a, b ≥ 0,

(K∗ ◦ L∗)(af + bg) = K∗(aL∗(f) + bL∗(g))

= aK∗(L∗(f)) +K∗(L∗(g))

= a(K∗ ◦ L∗)(f) + b(K∗ ◦ L∗)(g),

and (iii) if fn ↑ f in G+, then by the monotone convergence theorem, L∗(fn) ↑
L∗(f), and then again applying the monotone convergence theorem,K∗(L∗(fn)) ↑
K∗(L∗(f)), i.e.

(K∗ ◦ L∗)(fn) ↑ (K∗ ◦ L∗)(f).

Therefore, from Lemma 1 we get that there is a unique transition kernel from
(E,E ) to (G,G ), denoted KL and called the product of K and L, such that

(KL)∗f = (K∗ ◦ L∗)(f), f ∈ G+.

For f ∈ G+ and x ∈ E,

(KL)∗(f)(x) = (K∗(L∗f))(x)

=

∫
F

(L∗f)(y)dKx(y)

=

∫
F

(∫
G

f(z)dLy(z)

)
dKx(y).

In particular, for C ∈ G ,

(KL)∗(1C)(x) =

∫
F

Ly(C)dKx(y) =

∫
F

L(y, C)dKx(y). (3)

2 Markov kernels

A Markov kernel from (E,E ) to (F,F ) is a transition kernel K such that for
each x ∈ E, Kx is a probability measure on F . The unit kernel from (E,E )
to (E,E ) is

I(x,A) = δx(A). (4)
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It is apparent that the unit kernel is a Markov kernel.
If K is a Markov kernel from (E,E ) to (F,F ) and L is a Markov kernel

from (F,F ) to (G,G ), then for x ∈ E, by (3) we have

(KL)∗(1G)(x) =

∫
F

dKx(y) = Kx(F ) = K(x, F ) = 1,

and thus by (2),
(KL)x(G) = (KL)(x,G) = 1,

showing that for each x ∈ E, (KL)x is a probability measure. Therefore, the
product of two Markov kernels is a Markov kernel.

Let (E,E ) be a measurable space and let

Bb(E )

be the set of bounded functions E → R that are measurable E → BR. Bb(E )
is a Banach space with the uniform norm

∥f∥u = sup
x∈E

|f(x)|.

For K a Markov kernel from (E,E ) to (F,F ) and for f ∈ Bb(F ), define K∗f :
E → R by

(K∗f)(x) =

∫
F

f(y)dKx(y), x ∈ E,

for which

|(K∗f)(x)| ≤
∫
F

|f(y)|dKx(y) ≤ ∥f∥u Kx(F ) = ∥f∥u ,

showing that ∥K∗f∥u ≤ ∥f∥u. Furthermore, there is a sequence of simple
functions ϕn ∈ Bb(F ) that converges to f in the norm ∥·∥u.5 For x ∈ E, by
the dominated convergence theorem we get that

(K∗ϕn)(x) =

∫
F

ϕn(y)dKx(y) →
∫
F

f(y)dKx(y) = (K∗f)(x).

Each K∗ϕn is measurable E → BR, hence K∗f is measurable E → BR and so
belongs to Bb(E ).

3 Markov semigroups

Let (E,E ) be a measurable space and for each t ≥ 0, let Pt be a Markov
kernel from (E,E ) to (E,E ). We say that the family (Pt)t∈R≥0

is a Markov
semigroup if

Ps+t = PsPt, s, t ∈ R≥0.

5V. I. Bogachev, Measure Theory, p. 108, Lemma 2.1.8.
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For x ∈ E and A ∈ E and for s, t ≥ 0, by (2) and (3),

(PsPt)(x,A) = ((PsPt)
∗1A)(x) =

∫
E

Pt(y,A)d(Ps)x(y)

Thus

Ps+t(x,A) =

∫
E

Pt(y,A)d(Ps)x(y), (5)

called the Chapman-Kolmogorov equation.

4 Infinitely divisible distributions

Let P(Rd) be the collection of Borel probability measures on Rd. For µ ∈
P(Rd), its characteristic function µ̃ : Rd → C is defined by

µ̃(x) =

∫
Rd

ei⟨x,y⟩dµ(y).

µ̃ is uniformly continuous on Rd and |µ̃(x)| ≤ µ̃(0) = 1 for all x ∈ Rd.6 For
µ1, . . . , µn ∈ P(Rd), let µ be their convolution:

µ = µ1 ∗ · · · ∗ µn,

which for A a Borel set in Rd is defined by

µ(A) =

∫
(Rd)n

1A(x1 + · · ·+ xn)d(µ1 × · · · × µn)(x1, . . . , xn).

One computes that7

µ̃ = µ̃1 · · · µ̃n.

An element µ of P(Rd) is called infinitely divisible if for each n ≥ 1,
there is some µn ∈ P(Rd) such that

µ = µn ∗ · · · ∗ µn︸ ︷︷ ︸
n

. (6)

Thus,
µ̃ = (µ̃n)

n. (7)

On the other hand, if µn ∈ P(Rd) is such that (7) is true, then because the
characteristic function of µn ∗ · · · ∗ µn is (µ̃n)

n and the characteristic function
of µ is µ̃ and these are equal, it follows that µn ∗ · · · ∗ µn and µ are equal.

The following theorem is useful for doing calculations with the characteristic
function of an infinitely divisible distribution.8

6Heinz Bauer, Probability Theory, p. 183, Theorem 22.3.
7Heinz Bauer, Probability Theory, p. 184, Theorem 22.4.
8Heinz Bauer, Probability Theory, p. 246, Theorem 29.2.
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Theorem 2. Suppose that µ is an infinitely divisible distribution on Rd. First,

µ̃(x) ̸= 0, x ∈ Rd.

Second, there is a unqiue continuous function ϕ : Rd → R satisfying ϕ(0) = 0
and

µ̃ = |µ̃|eiϕ.
Third, for each n ≥ 1, there is a unique µn ∈ P(Rd) for which µ = µn ∗ · · · ∗µn.
The characteristic function of this unique µn is

µ̃n = |µ̃| 1
n ei

ϕ
n .

A convolution semigroup is a family (µt)t∈R≥0
of elements of P(Rd) such

that for s, t ∈ R≥0,
µs+t = µs ∗ µt.

The convolution semigroup is called continuous when t 7→ µt is continuous
R≥0 → P(Rd), where P(Rd) has the narrow topology.

The following theorem connects convolution semigroups and infinitely divis-
ible distributions.9

Theorem 3. If (µt)t∈R≥0
is a convolution semigroup on BRd , then for each t,

the measure µt is infinitely divisible.
If µ ∈ P(Rd) is infinitely divisible and t0 > 0, then there is a unique

continuous convolution semigroup (µt)t∈R≥0
such that µt0 = µ.

It follows from the above theorem that for a convolution semigroup (µt)t∈R≥0

on BRd , µ1 is infinitely divisible and therefore by Theorem 2, µ̃1(x) ̸= 0 for all
x. But µ0 ∗µ1 = µ1, so µ̃0µ̃1 = µ̃1, and µ̃0(x) = 1 for each x. But δ̃0(x) = 1 for
all x, so

µ0 = δ0. (8)

5 Translation-invariant semigroups

Let (Pt)t∈R≥0
be a Markov semigroup on (Rd,BRd). We say that (Pt)t∈R is

translation-invariant if for all x, y ∈ Rd, A ∈ BRd , and t ∈ R≥0,

Pt(x,A) = Pt(x+ y,A+ y).

In this case, for t ≥ 0 and for A ∈ BRd , define

µt(A) = Pt(0, A).

Each µt is a probability measure on BRd , and

µt(A− x) = Pt(0, A− x) = Pt(x, (A− x) + x) = Pt(x,A).

9Heinz Bauer, Probability Theory, p. 248, Theorem 29.6.
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Using that the Chapman-Kolmogorov equation (5) and as (Ps)0(B) = Ps(0, B) =
µs(B),

µs+t(A) = Ps+t(0, A)

=

∫
Rd

Pt(y,A)d(Ps)0(y)

=

∫
Rd

µt(A− y)dµs(y)

= (µt ∗ µs)(A),

showing that (µt)t∈R≥0
is a convolution semigroup on BRd .

On the other hand, if (µt)t∈R≥0
is a convolution semigroup of probability

measures on BRd , for t ≥ 0, x ∈ Rd, and A ∈ BRd define

Pt(x,A) = µt(A− x).

Let t ≥ 0. For x ∈ Rd, the map A 7→ Pt(x,A) = µt(A − x) is a probability
measure on BRd . The map (x, y) 7→ x+ y is continuous Rd ×Rd → Rd, and for
A ∈ BRd , the map 1A : Rd → R is measurable BRd → BR. Hence, as BRd×Rd =
BRd ⊗BRd , the map (x, y) 7→ 1A(x+ y) is measurable BRd ⊗BRd → BR. Thus
by Fubini’s theorem,

x 7→
∫
Rd

1A(x+ y)dµt(y) =

∫
Rd

1A−x(y)dµt(y) = µt(A− x)

is measurable BRd → BR. Hence Pt is a Markov kernel, and thus (Pt)t∈R≥0
is

a translation-invariant Markov semigroup.
Define S : Rd → Rd by S(x) = −x. For µ, ν ∈ P(Rd),

S∗(µ ∗ ν)(A) = (µ ∗ ν)(−A)

=

∫
Rd

µ(−A− y)dν(y)

=

∫
Rd

µ(−A+ y)dν(y)

=

∫
Rd

µ(A− y)dν(y)

= (µ ∗ ν)(A),

thus
S∗(µ ∗ ν) = (S∗µ) ∗ (S∗ν). (9)

For µ ∈ P(Rd), write
µ = S∗µ ∈ P(Rd),

i.e.,
µ(A) = µ(S−1(A)) = µ(S(A)) = µ(−A).
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We calculate

(P ∗
t 1A)(x) = Pt(x,A) = µt(A− x) =

∫
Rd

1A(x+ y)dµt(y).

Then if f is a simple function, f =
∑

k ak1Ak
,

(P ∗
t f)(x) =

∑
k

ak

∫
Rd

1Ak
(x+ y)dµt(y) =

∫
Rd

f(x+ y)dµt(y).

For f ∈ Bb(BRd), there is a sequence of simple functions fn that converge to f
in the uniform norm, and then by the dominated convergence theorem we get

(P ∗
t f)(x) =

∫
Rd

f(x+ y)dµt(y).

But ∫
Rd

f(x+ y)dµt(y) =

∫
Rd

f(x+ S(S(y)))dµt(y)

=

∫
Rd

f(x+ S(y))d(S∗µt)(y)

=

∫
Rd

f(x− y)dµt(y)

= (f ∗ µt)(x).

Therefore for t ≥ 0 and f ∈ Bb(BRd),

P ∗
t f = f ∗ µt. (10)

For s, t ≥ 0 and f ∈ Bb(BRd), by (10), the fact that (µt)t∈R≥0
is a convolution

semigroup, and (9), we get

P ∗
s+tf = f ∗ (S∗µs+t)

= f ∗ (S∗(µs ∗ µt))

= f ∗ ((S∗µs) ∗ (S∗µt))

= (f ∗ (S∗µs)) ∗ (S∗µt)

= (P ∗
s f) ∗ (S∗µt)

= P ∗
t (P

∗
s f).

This shows that (Pt)t∈R≥0
is a Markov semigroup. Moreover, by (8) it holds

that µ0 = δ0, and hence

P0(x,A) = µ0(A− x) = δ0(A− x) = δx(A).

Namely, P0 is the unit kernel (4).
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If (µt)t∈R≥0
is a convolution semigroup and some µt has density qt with

respect to Lebesgue measure λd on Rd,

µt = qtλd,

then writing qt(x) = qt(−x), for f ∈ Bb(BRd) by (10) we have

(P ∗
t f)(x) = (f ∗ µt)(x) =

∫
Rd

f(x− y)dµt(y) =

∫
Rd

f(x+ y)qt(y)dλd(y)

so
Pt ∗ f = f ∗ qt. (11)

6 The Brownian semigroup

For a ∈ R and σ > 0, let γa,σ2 be the Gaussian measure on R, the probability
measure on R whose density with respect to Lebesgue measure is

p(x, a, σ2) =
1√
2πσ2

exp

(
− (x− a)2

2σ2

)
.

For σ = 0, let
γa,0 = δa.

Define for t ∈ R≥0,

µt =

d∏
k=1

γ0,t,

which is an element of P(Rd). For s, t ∈ R≥0, we calculate

µs ∗ µt =

(
d∏

k=1

γ0,s

)
∗

(
d∏

k=1

γ0,t

)
=

d∏
k=1

(γ0,s ∗ γ0,t) =
d∏

k=1

γ0,s+t = µs+t.

Lévy’s continuity theorem states that if νn is a sequence in P(Rd) and there
is some ϕ : Rd → C that is continuous at 0 and to which ν̃n converges pointwise,
then there is some ν ∈ P(Rd) such that ϕ = ν̃ and such that νn → ν narrowly.
But for t ∈ R≥0 and x ∈ Rd, we calculate

µ̃t(x) =

∫
Rd

ei⟨x,y⟩dµt(y) = exp

(
− t|x|2

2

)
. (12)

Let ϕ(x) = 1 for all x, for which δ̃0 = ϕ. For tn ∈ R≥0 tending to 0, let
νn = µtn . Then by (12), ν̃n converges pointwise to ϕ, so by Lévy’s continuity
theorem, νn converges narrowly to δ0. Moreover, because Rd is a Polish space,
P(Rd) is a Polish space, and in particular is metrizable. It thus follows that
µt converges narrowly to δ0 as t → 0. It then follows that t 7→ µt is continuous
R≥0 → P(Rd). Summarizing, (µt)t∈R≥0

is a continuous convolution semigroup.
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For t > 0, µt has density

gt(x) =

d∏
j=1

(2πt)−1/2e−
x2
j

2t = (2πt)−d/2e−
|x|2
2t

with respect to Lebesgue measure λd on Rd. For t ≥ 0, let

Pt(x,A) = µt(A− x).

We have established that (Pt)t∈R≥0
is a translation-invariant Markov semigroup

for which P0(x,A) = δx(A). We call (Pt)t∈R≥0
the Brownian semigroup. For

t > 0 and f ∈ Bb(BRd), because gt = gt we have by (11),

(Ptf)(x) = (f ∗ gt)(x) = (2πt)−d/2

∫
Rd

f(x− y)e−
|y|2
2t dλd(y).

7 Projective families

For a nonempty set I, let K (I) denote the family of finite nonempty subsets of
I. We speak in this section about projective families of probability measures.

The following theorem shows how to construct a projective family from a
Markov semigroup on a measurable space and a probability measure on this
measurable space.10

Theorem 4. Let I = R≥0, let (E,E ) be a measurable space, let (Pt)t∈I be
a Markov semigroup on E , and let µ be a probability measure on E . For
J ∈ K (I), with elements t1 < · · · < tn, and for A ∈ E J , let

PJ(A) =

∫
E

∫
E

· · ·
∫
E︸ ︷︷ ︸

n+1

1A(x1, . . . , xn)d(Ptn−tn−1
)xn−1

(xn) · · · d(Pt1)x0
(x1)dµ(x0).

Then (PJ)J∈K (I) is a projective family of probability measures.

Proof. Let Ak be pairwise disjoint elements of E J , and call their union A. Then
1A =

∑
k 1Ak

, and applying the monotone convergence theorem n+ 1 times,∫
E

∫
E

· · ·
∫
E︸ ︷︷ ︸

n+1

1A(x1, . . . , xn)d(Ptn−tn−1
)xn−1

(xn) · · · d(Pt1)x0
(x1)dµ(x0)

=
∑
k

∫
E

∫
E

· · ·
∫
E︸ ︷︷ ︸

n+1

1Ak
(x1, . . . , xn)d(Ptn−tn−1

)xn−1
(xn) · · · d(Pt1)x0

(x1)dµ(x0),

i.e.
PJ(A) =

∑
k

PJ(Ak).

10Heinz Bauer, Probability Theory, p. 314, Theorem 36.4.
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Furthermore, because (Pt)x is a probability measure for each t and for each x
and µ is a probability measure, we calculate that

PJ(E
J) = 1.

Thus, PJ is a probability measure on E J .
To prove that (PJ)J∈K (I) is a projective family, it suffices to prove that

when J,K ∈ K (I), J ⊂ K, and K \ J is a singleton, then (πK,J)∗PK = PJ .
Moreover, because (i) the product σ-algebra E J is generated by the collection of
cylinder sets, i.e. sets of the form

∏
t∈J At for At ∈ E , and (ii) the intersection

of finitely many cylinder sets is a cylinder sets, it is proved using the monotone
class theorem that if two probability measures on E J coincide on the cylinder
sets, then they are equal.11 Let t1 < · · · < tn be the elements of J . To prove that
(πK,J)∗PK and PJ are equal, it suffices to prove that for any A1, . . . , An ∈ E ,

(πK,J)∗PK

 n∏
j=1

Aj

 = PJ

 n∏
j=1

Aj

 .

Moreover, for A =
∏n

j=1 Aj ,

1A = 1A1
⊗ · · · ⊗ 1An

,

thus

PJ

 n∏
j=1

Aj


=

∫
E

∫
E

· · ·
∫
E︸ ︷︷ ︸

n+1

1A1
(x1) · · · 1An

(xn)d(Ptn−tn−1
)xn−1

(xn) · · · d(Pt1)x0
(x1)dµ(x0)

=

∫
E

∫
A1

· · ·
∫
An

d(Ptn−tn−1
)xn−1

(xn) · · · d(Pt1)x0
(x1)dµ(x0).

Let K \ J = {t′}. Either t′ < t1, or t
′ > tn, or there is some 1 ≤ j ≤ n − 1

for which tj < t′ < tj+1. Take the case t′ < t1. Then

π−1
K,J

 n∏
j=1

Aj

 =

n∏
k=0

Bk,

11V. I. Bogachev, Measure Theory, volume I, p. 35, Lemma 1.9.4.
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where B0 = E and Bj = Aj for 1 ≤ j ≤ n. Then

(πK,J)∗PK

 n∏
j=1

Aj


=PK

(
n∏

k=0

Bk

)

=

∫
E

∫
E

∫
A1

· · ·
∫
An

d(Ptn−tn−1)xn−1(xn) · · · d(Pt1−t′)x′(x1)d(Pt′)x0(x
′)dµ(x0)

=

∫
E

∫
E

∫
A1

f(x1)d(Pt1−t′)x′(x1)d(Pt′)x0(x
′)dµ(x0),

for

f(x1) =

∫
A2

· · ·
∫
An

d(Ptn−tn−1)xn−1(xn) · · · d(Pt2−t1)x1(x2).

By (1) and because (Pt)t∈I is a Markov semigroup,∫
E

∫
A1

f(x1)d(Pt1−t′)x′(x1)d(Pt′)x0
(x′)

=

∫
E

∫
E

f(x1)1A1
(x1)d(Pt1−t′)x′(x1)d(Pt′)x0

(x′)

=

∫
E

P ∗
t1−t′(f1A1

)(x′)d(Pt′)x0
(x′)

=P ∗
t′(P

∗
t1−t′(f1A1

))(x0)

=Pt1(f1A1
)(x0)

=

∫
E

f(x1)1A1
(x1)d(Pt1)x0

(x1)

=

∫
A1

f(x1)d(Pt1)x0(x1)

=

∫
A1

∫
A2

· · ·
∫
An

d(Ptn−tn−1)xn−1(xn) · · · d(Pt2−t1)x1(x2)d(Pt1)x0(x1).

Thus

(πK,J)∗PK

 n∏
j=1

Aj


=

∫
E

∫
A1

∫
A2

· · ·
∫
An

d(Ptn−tn−1
)xn−1

(xn) · · · d(Pt2−t1)x1
(x2)d(Pt1)x0

(x1)dµ(x0)

=PJ

 n∏
j=1

Aj

 .

This shows that the claim is true in the case t′ < t1.
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Thus, if E is a Polish space with Borel σ-algebra E , let I = R≥0, let (Pt)t∈I

be a Markov semigroup on E , and let µ be a probability measure on E . The
above theorem tells us that (PJ)K (I) is a projective family, and then the Kol-
mogorov extension theorem tells us that there is a probability measure12

Pµ on E I such that for any J ∈ K (I), πJ∗P
µ = Pµ

J . This implies that there is
a stochastic process (Xt)t∈I whose finite-dimensional distributions are equal to
the probability measures PJ defined in Theorem 4 using the Markov semigroup
(Pt)t∈I and the probability measure µ.

12We write Pµ to indicate that this measure involves µ; it also involves the Markov semi-
group, which we do not indicate.
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