The Lindeberg central limit theorem

Jordan Bell

May 29, 2015

1 Convergence in distribution

We denote by $\mathscr{P}(\mathbb{R}^d)$ the collection of Borel probability measures on \mathbb{R}^d . Unless we say otherwise, we use the **narrow topology** on $\mathscr{P}(\mathbb{R}^d)$: the coarsest topology such that for each $f \in C_b(\mathbb{R}^d)$, the map

$$\mu\mapsto \int_{\mathbb{R}^d} f d\mu$$

is continuous $\mathscr{P}(\mathbb{R}^d) \to \mathbb{C}$. Because \mathbb{R}^d is a Polish space it follows that $\mathscr{P}(\mathbb{R}^d)$ is a Polish space.¹ (In fact, its topology is induced by the **Prokhorov metric**.²)

2 Characteristic functions

For $\mu \in \mathscr{P}(\mathbb{R}^d)$, we define its characteristic function $\tilde{\mu} : \mathbb{R}^d \to \mathbb{C}$ by

$$\tilde{\mu}(u) = \int_{\mathbb{R}^d} e^{iu \cdot x} d\mu(x).$$

Theorem 1. If $\mu \in \mathscr{P}(\mathbb{R})$ has finite kth moment, $k \ge 0$, then, writing $\phi = \tilde{\mu}$:

- 1. $\phi \in C^k(\mathbb{R})$.
- 2. $\phi^{(k)}(v) = (i)^k \int_{\mathbb{R}} x^k e^{ivx} d\mu(x).$
- 3. $\phi^{(k)}$ is uniformly continuous.
- 4. $|\phi^k(v)| \leq \int_{\mathbb{R}} |x|^k d\mu(x).$

¹Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/jordanbell/notes/narrow.pdf

²Onno van Gaans, Probability measures on metric spaces, http://www.math.leidenuniv. nl/~vangaans/jancol1.pdf; Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 365, Theorem 25.

Proof. For $0 \leq l \leq k$, define $f_l : \mathbb{R} \to \mathbb{C}$ by

$$f_l(v) = \int_{\mathbb{R}} x^l e^{ivx} d\mu(x).$$

For $h \neq 0$,

$$\left|x^l e^{ivx} \frac{e^{ihx} - 1}{h}\right| \le |x^l \cdot x| = |x|^{l+1},$$

so by the dominated convergence theorem we have for $0 \le l \le k-1$,

$$\lim_{h \to 0} \frac{f_l(v+h) - f_l(v)}{h} = \lim_{h \to 0} \int_{\mathbb{R}} x^l e^{ivx} \frac{e^{ihx} - 1}{h} d\mu(x)$$
$$= \int_{\mathbb{R}} x^l e^{ivx} \left(\lim_{h \to 0} \frac{e^{ihx} - 1}{h} \right) d\mu(x)$$
$$= \int_{\mathbb{R}} ix^{l+1} e^{ivx} d\mu(x).$$

That is,

$$f_l' = i f_{l+1}.$$

And, by the dominated convergence, for $\epsilon>0$ there is some $\delta>0$ such that if $|w|<\delta$ then

$$\int_{\mathbb{R}} |x|^k |e^{iwx} - 1| d\mu(x) < \epsilon,$$

hence if $|v-u|<\delta$ then

$$|f_k(v) - f_k(u)| = \left| \int_{\mathbb{R}} x^k e^{iux} (e^{i(v-u)x} - 1) d\mu(x) \right|$$
$$\leq \int_{\mathbb{R}} |x|^k |e^{i(v-u)x} - 1| d\mu(x)$$
$$< \epsilon,$$

showing that f_k is uniformly continuous. As well,

$$|f_k(v)| \le \int_{\mathbb{R}} |x|^k d\mu(x)$$

But $\phi = f_0$, i.e. $\phi^{(0)} = f_0$, so

$$\phi^{(1)} = f'_0 = if_1, \quad \phi^{(2)} = (if_1)' = (i)^2 f_2, \quad \cdots, \quad \phi^{(k)} = (i)^k f_k.$$

If $\phi \in C^k(\mathbb{R})$, **Taylor's theorem** tells us that for each $x \in \mathbb{R}$,

$$\begin{split} \phi(x) &= \sum_{l=0}^{k-1} \frac{\phi^{(l)}(0)}{l!} x^l + \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} \phi^{(k)}(t) dt \\ &= \sum_{l=0}^k \frac{\phi^{(l)}(0)}{l!} x^l + \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} (\phi^{(k)}(t) - \phi^{(k)}(0)) dt \\ &= \sum_{l=0}^k \frac{\phi^{(l)}(0)}{l!} x^l + R_k(x), \end{split}$$

and $R_k(x)$ satisfies

$$|R_k(x)| \le \left(\sup_{0\le u\le 1} |\phi^{(k)}(ux) - \phi^{(k)}(0)|\right) \cdot \frac{|x|^k}{k!}.$$

Define $\theta_k : \mathbb{R} \to \mathbb{C}$ by $\theta_k(0) = 0$ and for $x \neq 0$

$$\theta_k(x) = \frac{k!}{x^k} \cdot R_k(x),$$

with which, for all $x \in \mathbb{R}$,

$$\phi(x) = \sum_{l=0}^{k} \frac{\phi^{(l)}(0)}{l!} x^{l} + \frac{1}{k!} \theta_{k}(x) x^{k}$$

Because R_k is continuous on \mathbb{R} , θ_k is continuous at each $x \neq 0$. Moreover,

$$|\theta_k(x)| \le \sup_{0 \le u \le 1} |\phi^{(k)}(ux) - \phi^{(k)}(0)|,$$

and as $\phi^{(k)}$ is continuous it follows that θ_k is continuous at 0. Thus θ_k is continuous on \mathbb{R} .

Lemma 2. If $\mu \in \mathscr{P}(\mathbb{R})$ have finite kth moment, $k \ge 0$, and for $0 \le l \le k$,

$$M_l = \int_{\mathbb{R}} x^l d\mu(x),$$

then there is a continuous function $\theta:\mathbb{R}\to\mathbb{C}$ for which

$$\tilde{\mu}(x) = \sum_{l=0}^{k} \frac{(i)^{l} M_{l}}{l!} x^{l} + \frac{1}{k!} \theta(x) x^{k}.$$

The function θ satisfies

$$|\theta(x)| \le \sup_{0 \le u \le 1} |\tilde{\mu}^{(k)}(ux) - \tilde{\mu}^{(k)}(0)|.$$

Proof. From Theorem 1, $\tilde{\mu} \in C^k(\mathbb{R})$ and

$$\tilde{\mu}^{(l)}(0) = (i)^l \int_{\mathbb{R}} x^l d\mu(x) = (i)^l M_l.$$

Thus from what we worked out above with Taylor's theorem,

$$\tilde{\mu}(x) = \sum_{l=0}^{k} \frac{(i)^{l} M_{l}}{l!} x^{l} + \frac{1}{k!} \theta_{k}(x) x^{k},$$

for which

$$|\theta_k(x)| \le \sup_{0 \le u \le 1} |\tilde{\mu}^{(k)}(ux) - \tilde{\mu}^{(k)}(0)|.$$

For $a \in \mathbb{R}$ and $\sigma > 0$, let

$$p(t, a, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t-a)^2}{2\sigma^2}\right), \qquad t \in \mathbb{R}.$$

Let γ_{a,σ^2} be the measure on \mathbb{R} whose density with respect to Lebesgue measure is $p(\cdot, a, \sigma^2)$. We call γ_{a,σ^2} a **Gaussian measure**. We calculate that the first moment of γ_{a,σ^2} is a and that its second moment is σ^2 . We also calculate that

$$\tilde{\gamma}_{a,\sigma^2}(x) = \exp\left(iax - \frac{1}{2}\sigma^2 x^2\right).$$

Lévy's continuity theorem is the following.³

Theorem 3 (Lévy's continuity theorem). Let μ_n be a sequence in $\mathscr{P}(\mathbb{R}^d)$.

- 1. If $\mu \in \mathscr{P}(\mathbb{R}^d)$ and $\mu_n \to \mu$, then for each $\tilde{\mu}_n$ converges to $\tilde{\mu}$ pointwise.
- 2. If there is some function $\phi : \mathbb{R}^d \to \mathbb{C}$ to which $\tilde{\mu}_n$ converges pointwise and ϕ is continuous at 0, then there is some $\mu \in \mathscr{P}(\mathbb{R}^d)$ such that $\phi = \tilde{\mu}$ and such that $\mu_n \to \mu$.

3 The Lindeberg condition, the Lyapunov condition, the Feller condition, and asymptotic negligibility

Let (Ω, \mathscr{F}, P) be a probability and let $X_n, n \ge 1$, be independent L^2 random variables. We specify when we impose other hypotheses on them; in particular,

 $^{^{3} \}texttt{http://individual.utoronto.ca/jordanbell/notes/martingaleCLT.pdf, p. 19, Theorem 15.$

we specify if we suppose them to be identically distributed or to belong to L^p for p > 2.

For a random variable X, write

$$\sigma(X) = \sqrt{\operatorname{Var}(X)} = \sqrt{E(|X - E(X)|^2)}.$$

Write

$$\sigma_n = \sigma(X_n),$$

and, using that the X_n are independent,

$$s_n = \sigma \left(\sum_{j=1}^n X_j\right) = \left(\sum_{j=1}^n \sigma_j^2\right)^{1/2}$$

and

$$\eta_n = E(X_n).$$

For $n \geq 1$ and $\epsilon > 0$, define

$$L_n(\epsilon) = \frac{1}{s_n^2} \sum_{j=1}^n E((X_j - \eta_j)^2 ||X_j - \eta_j| \ge \epsilon s_n)$$

= $\frac{1}{s_n^2} \sum_{j=1}^n \int_{|x - \eta_j| \ge \epsilon s_n} (x - \eta_j)^2 d(X_{j*}P)(x)$

We say that the sequence X_n satisfies the Lindeberg condition if for each $\epsilon > 0$,

$$\lim_{n \to \infty} L_n(\epsilon) = 0.$$

For example, if the sequence X_n is identically distributed, then $s_n^2=n\sigma_1^2,$ so

$$L_n(\epsilon) = \frac{1}{n\sigma_1^2} \sum_{j=1}^n \int_{|x-\eta_1| \ge \epsilon n^{1/2}\sigma_1} (x-\eta_1)^2 d(X_{1*}P)(x)$$
$$= \frac{1}{\sigma_1^2} \int_{|x-\eta_1| \ge \epsilon n^{1/2}\sigma_1} (x-\eta_1)^2 d(X_{1*}P).$$

But if μ is a Borel probability measure on \mathbb{R} and $f \in L^1(\mu)$ and K_n is a sequence of compact sets that exhaust \mathbb{R} , then⁴

$$\int_{\mathbb{R}\setminus K_n} |f| d\mu \to 0, \qquad n \to \infty.$$

Hence $L_n(\epsilon) \to 0$ as $n \to \infty$, showing that X_n satisfies the Lindeberg condition.

⁴V. I. Bogachev, *Measure Theory*, volume I, p. 125, Proposition 2.6.2.

We say that the sequence X_n satisfies the Lyapunov condition if there is some $\delta > 0$ such that the X_n are $L^{2+\delta}$ and

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{j=1}^n E(|X_j - \eta_j|^{2+\delta}) = 0.$$

In this case, for $\epsilon > 0$, then $|x - \eta| \ge \epsilon s_n$ implies $|x - \eta|^{2+\delta} \ge |x - \eta|^2 (\epsilon s_n)^{\delta}$ and hence

$$L_n(\epsilon) \leq \frac{1}{s_n^2} \sum_{j=1}^n \int_{|x-\eta_j| \geq \epsilon s_n} \frac{|x-\eta_j|^{2+\delta}}{(\epsilon s_n)^{\delta}} d(X_{j_*}P)(x)$$

$$= \frac{1}{\epsilon s_n^{2+\delta}} \sum_{j=1}^n \int_{|x-\eta_j| \geq \epsilon s_n} |x-\eta_j|^{2+\delta} d(X_{j_*}P)(x)$$

$$= \frac{1}{\epsilon s_n^{2+\delta}} \sum_{j=1}^n \int_{|X_j-\eta_j| \geq \epsilon s_n} |X_j-\eta_j|^{2+\delta} dP$$

$$\leq \frac{1}{\epsilon s_n^{2+\delta}} \sum_{j=1}^n E(|X_j-\eta_j|^{2+\delta})$$

$$\to 0.$$

This is true for each $\epsilon > 0$, showing that if X_n satisfies the Lyapunov condition then it satisfies the Lindeberg condition.

For example, if X_n are identically distributed and $L^{2+\delta}$, then

$$\frac{1}{s_n^{2+\delta}} \sum_{j=1}^n E(|X_j - \eta_j|^{2+\delta}) = \frac{1}{n^{\delta/2} \sigma_1^{2+\delta}} E(|X_j - \eta_j|^{2+\delta}) \to 0,$$

showing that X_n satisfies the Lyapunov condition.

Another example: Suppose that the sequence X_n is bounded by M almost surely and that $s_n \to \infty$. $|X_n| \le M$ almost surely implies that

$$|\eta_n| = |E(X_n)| \le E(|X_n|) \le E(M) = M.$$

Therefore $|X_n - \eta_n| \le |X_n| + |\eta_n| \le 2M$ almost surely. Let $\delta > 0$. Then, as $s_n^2 = n\sigma_1^2$,

$$\frac{1}{s_n^{2+\delta}} \sum_{j=1}^n E(|X_j - \eta_j|^{2+\delta}) \le \frac{1}{s_n^{2+\delta}} \sum_{j=1}^N E(|X_j - \eta_j|^2) (2M)^{\delta}$$
$$= \frac{(2M)^{\delta}}{s_n^{\delta}}$$
$$\to 0,$$

showing that X_n satisfies the Lyapunov condition.

We say that a sequence of random variables X_n satisfies the **Feller condi**tion when

$$\lim_{n \to \infty} \max_{1 \le j \le n} \frac{\sigma_j}{s_n} = 0,$$

where $\sigma_j = \sigma(X_j) = \sqrt{\operatorname{Var}(X_j)}$ and

$$s_n = \left(\sum_{j=1}^n \sigma_j^2\right)^{1/2}.$$

We prove that if a sequence satisfies the Lindeberg condition then it satisfies the Feller condition. 5

Lemma 4. If a sequence of random variables X_n satisfies the Lindeberg condition, then it satisfies the Feller condition.

Proof. Let $\epsilon > 0$; For $n \ge 1$ and $1 \le k \le n$, we calculate

$$\begin{aligned} \sigma_k^2 &= \int_{\mathbb{R}} (x - \eta_k)^2 d(X_{k*}P)(x) \\ &= \int_{|x - \eta_k| < \epsilon s_n} (x - \eta_k)^2 d(X_{k*}P)(x) + \int_{|x - \eta_k| \ge \epsilon s_n} (x - \eta_k)^2 d(X_{k*}P)(x) \\ &\le (\epsilon s_n)^2 + \sum_{j=1}^n \int_{|x - \eta_j| \ge \epsilon s_n} (x - \eta_j)^2 d(X_{j*}P)(x) \\ &= \epsilon^2 s_n^2 + s_n^2 L_n(\epsilon). \end{aligned}$$

Hence

$$\max_{1 \le k \le n} \left(\frac{\sigma_k}{s_n}\right)^2 \le \epsilon^2 + L_n(\epsilon),$$

and so, because the X_n satisfy the Lindeberg condition,

$$\limsup_{n \to \infty} \max_{1 \le k \le n} \left(\frac{\sigma_k}{s_n}\right)^2 \le \epsilon^2$$

This is true for all $\epsilon > 0$, which yields

$$\lim_{n \to \infty} \max_{1 \le k \le n} \left(\frac{\sigma_k}{s_n}\right)^2 = 0,$$

namely, that the X_n satisfy the Feller condition.

We do not use the following idea of an asymptotically negligible family of random variables elsewhere, and merely take this as an excsuse to write out

⁵Heinz Bauer, *Probability Theory*, p. 235, Lemma 28.2.

what it means. A family of random variables $X_{n,j}$, $n \ge 1$, $1 \le j \le k_n$, is called asymptotically negligible⁶ if for each $\epsilon > 0$,

$$\lim_{n \to \infty} \max_{1 \le j \le k_n} P(|X_{n,j}| \ge \epsilon) = 0$$

A sequence of random variables X_n converging in probability to 0 is equivalent to it being asymptotically negligible, with $k_n = 1$ for each n.

For example, suppose that $X_{n,j}$ are L^2 random variables each with $E(X_{n,j}) =$ 0 and that they satisfy

$$\lim_{n \to \infty} \max_{1 \le j \le k_n} \operatorname{Var}(X_{n,j}) = 0.$$

For $\epsilon > 0$, by Chebyshev's inequality,

$$P(|X_{n,j}| \ge \epsilon) \le \frac{1}{\epsilon^2} E(|X_{n,j}|^2) = \frac{1}{\epsilon^2} \operatorname{Var}(X_{n,j}),$$

whence

$$\lim_{n \to \infty} \max_{1 \le j \le k_n} P(|X_{n,j}| \ge \epsilon) \le \limsup_{n \to \infty} \max_{1 \le j \le k_n} \frac{1}{\epsilon^2} \operatorname{Var}(X_{n,j}) = 0$$

and so the random variables $X_{n,j}$ are asymptotically negligible.

Another example: Suppose that random variables $X_{n,j}$ are identically distributed, with $\mu = X_{n,j*}P$. For $\epsilon > 0$,

$$P\left(\left|\frac{X_{n,j}}{n}\right| \ge \epsilon\right) = P(|X_{n,j}| \ge n\epsilon) = \mu(A_n),$$

where $A_n = \{x \in \mathbb{R} : |x| \ge n\epsilon\}$. As $A_n \downarrow \emptyset$, $\lim_{n \to \infty} \mu(A_n) = 0$. Hence the random variables $\frac{X_{n,j}}{n}$ are asymptotic negligible. The following is a statement about the characteristic functions of an asymp-

totically negligible family of random variables.⁷

Lemma 5. Suppose that a family $X_{n,j}$, $n \ge 1$, $1 \le j \le k_n$, of random variables is asymptotically negligible, and write $\mu_{n,j} = X_{n,j*}P$ and $\phi_{n,j} = \tilde{\mu}_{n,j}$. For each $x \in \mathbb{R},$

$$\lim_{n \to \infty} \max_{1 \le j \le k_n} |\phi_{n,j}(x) - 1| = 0$$

Proof. For any real t, $|e^{it} - 1| \le |t|$. For $x \in \mathbb{R}$, $\epsilon > 0$, $n \ge 1$, and $1 \le j \le k_n$,

$$\begin{aligned} |\phi_{n,j}(x) - 1| &= \left| \int_{\mathbb{R}} (e^{ixy} - 1) d\mu_{n,j}(y) \right| \\ &\leq \int_{|y| < \epsilon} |e^{ixy} - 1| d\mu_{n,j}(y) + \int_{|y| \ge \epsilon} |e^{ixy} - 1| d\mu_{n,j}(y) \\ &\leq \int_{|y| < \epsilon} |xy| d\mu_{n,j}(y) + \int_{|y| \ge \epsilon} 2d\mu_{n,j}(y) \\ &\leq \epsilon |x| + 2P(|X_{n,j}| \ge \epsilon). \end{aligned}$$

⁶Heinz Bauer, *Probability Theory*, p. 225, §27.2.

⁷Heinz Bauer, *Probability Theory*, p. 227, Lemma 27.3.

Hence

$$\max_{1 \le j \le k_n} |\phi_{n,j}(x) - 1| \le \epsilon |x| + 2 \max_{1 \le j \le k_n} P(|X_{n,j}| \ge \epsilon).$$

Using that the family $X_{n,j}$ is asymptotically negligible,

$$\limsup_{n \to \infty} \max_{1 \le j \le k_n} |\phi_{n,j}(x) - 1| \le 2\epsilon |x|$$

But this is true for all $\epsilon > 0$, so

$$\limsup_{n \to \infty} \max_{1 \le j \le k_n} |\phi_{n,j}(x) - 1| = 0,$$

proving the claim.

4 The Lindeberg central limit theorem

We now prove the Lindeberg central limit theorem.⁸

Theorem 6 (Lindeberg central limit theorem). If X_n is a sequence of independent L^2 random variables that satisfy the Lindeberg condition, then

$$S_{n*}P \to \gamma_1,$$

where

$$S_n = \frac{1}{s_n} \sum_{j=1}^n (X_j - \eta_j) = \frac{\sum_{j=1}^n (X_j - E(X_j))}{\sigma(X_1 + \dots + X_n)}.$$

Proof. The sequence $Y_n = X_n - E(X_n)$ are independent L^2 random variables that satisfy the Lindeberg condition and $\sigma(Y_n) = \sigma(X_n)$. Proving the claim for the sequence Y_n will prove the claim for the sequence X_n , and thus it suffices to prove the claim when $E(X_n) = 0$, i.e. $\eta_n = 0$.

For $n \ge 1$ and $1 \le j \le n$, let

$$\mu_{n,j} = \left(\frac{X_j}{s_n}\right)_* P$$
 and $\tau_{n,j} = \frac{\sigma_j}{s_n}$.

The first moment of $\mu_{n,j}$ is

$$\int_{\mathbb{R}} xd\left(\left(\frac{X_j}{s_n}\right)_* P\right)(x) = \int_{\Omega} \frac{X_j}{s_n} dP = \frac{1}{s_n} E(X_j) = 0,$$

and the second moment of $\mu_{n,j}$ is

$$\int_{\mathbb{R}} x^2 d\left(\left(\frac{X_j}{s_n}\right)_* P\right)(x) = \int_{\Omega} \left(\frac{X_j}{s_n}\right)^2 dP = \frac{1}{s_n^2} E(X_j^2) = \frac{\sigma_j^2}{s_n^2} = \tau_{n,j}^2,$$

⁸Heinz Bauer, *Probability Theory*, p. 235, Theorem 28.3.

for which

$$\sum_{j=1}^{n} \tau_{n,j}^{2} = \frac{1}{s_{n}^{2}} \sum_{j=1}^{n} \sigma_{j}^{2} = 1.$$

For $\mu \in \mathscr{P}(\mathbb{R})$ with first moment $\int_{\mathbb{R}} x d\mu(x) = 0$ and second moment $\int_{\mathbb{R}} x^2 d\mu(x) = \sigma^2 < \infty$, Lemma 2 tells us that

$$\tilde{\mu}(x) = M_0 + iM_1x - \frac{M_2}{2}x^2 + \frac{1}{2}\theta_2(x)x^2 = 1 - \frac{\sigma^2}{2}x^2 + \frac{1}{2}\theta(x)x^2,$$

with

$$|\theta(x)| \le \sup_{0 \le u \le 1} |\tilde{\mu}''(ux) - \tilde{\mu}''(0)|.$$

But by Lemma 1,

$$\tilde{\mu}''(ux) = -\int_{\mathbb{R}} y^2 e^{iuxy} d\mu(y),$$

 \mathbf{SO}

$$\begin{split} \theta(x) &| \leq \sup_{0 \leq u \leq 1} \left| \int_{\mathbb{R}} y^2 (-e^{iuxy} + 1) d\mu(y) \right| \\ &\leq \sup_{0 \leq u \leq 1} \int_{\mathbb{R}} y^2 |e^{iuxy} - 1| d\mu(y). \end{split}$$

For $0 \le u \le 1$, $|e^{iuxy} - 1| \le |uxy| \le |xy|$, so for $x \in \mathbb{R}$ and $\epsilon > 0$, with $\delta = \min\left\{\epsilon, \frac{\epsilon}{|x|}\right\}$, when $|y| < \delta$ and $0 \le u \le 1$ we have $|e^{iuxy} - 1| < \epsilon$. Thus

$$\begin{split} |\theta(x)| &\leq \sup_{0 \leq u \leq 1} \int_{|y| < \delta} y^2 |e^{iuxy} - 1| d\mu(y) + \sup_{0 \leq u \leq 1} \int_{|y| \geq \delta} y^2 |e^{iuxy} - 1| d\mu(y) \\ &\leq \epsilon \int_{|y| < \delta} y^2 d\mu(y) + 2 \int_{|y| \geq \delta} y^2 d\mu(y) \\ &\leq \epsilon \sigma^2 + 2 \int_{|y| \geq \delta} y^2 d\mu(y). \end{split}$$

Let $x \in \mathbb{R}$ and $\epsilon > 0$, and take $\delta = \min\left\{\epsilon, \frac{\epsilon}{|x|}\right\}$. On the one hand, for $n \ge 1$ and $1 \le j \le n$, because the first moment of $\mu_{n,j}$ is 0 and its second moment is $\tau_{n,j}^2$,

$$\tilde{\mu}_{n,j}(x) = 1 - \frac{\tau_{n,j}^2}{2}x^2 + \frac{1}{2}\theta_{n,j}(x)x^2,$$

with, from the above,

$$|\theta_{n,j}(x)| \le \epsilon \tau_{n,j}^2 + 2 \int_{|y| \ge \delta} y^2 d\mu_{n,j}(y).$$

On the other hand, the first moment of the Gaussian measure $\gamma_{0,\tau^2_{n,j}}$ is 0 and its second moment is $\tau^2_{n,j}$. Its characteristic function is

$$\tilde{\gamma}_{0,\tau_{n,j}^2}(x) = \exp\left(-\frac{\tau_{n,j}^2}{2}x^2\right) = 1 - \frac{\tau_{n,j}^2}{2}x^2 + \frac{1}{2}\psi_{n,j}(x)x^2,$$

with, from the above,

$$|\psi_{n,j}(x)| \le \epsilon \tau_{n,j}^2 + 2 \int_{|y| \ge \delta} y^2 d\gamma_{0,\tau_{n,j}^2}(x).$$

In particular, for all $x \in \mathbb{R}$,

$$\tilde{\mu}_{n,j}(x) - \tilde{\gamma}_{0,\tau_{n,j}^2}(x) = \frac{x^2}{2} \left(\theta_{n,j}(x) - \psi_{n,j}(x) \right).$$

For $k \geq 1$ and for $a_l, b_l \in \mathbb{C}, 1 \leq l \leq k$,

$$\prod_{l=1}^{k} a_{l} - \prod_{l=1}^{k} b_{l} = \sum_{l=1}^{k} b_{1} \cdots b_{l-1} (a_{l} - b_{l}) a_{l+1} \cdots a_{k}.$$

If further $|a_l| \leq 1$, $|b_l| \leq 1$, then

$$\left| \prod_{l=1}^{k} a_{l} - \prod_{l=1}^{k} b_{l} \right| \leq \sum_{l=1}^{k} |a_{l} - b_{l}|.$$
(1)

Because the ${\cal X}_n$ are independent, the distribution of

$$S_n = \sum_{j=1}^n \frac{X_j}{s_n}$$

is the convolution of the distributions of the summands:

$$\mu_{n,1}*\cdots*\mu_{n,n},$$

whose characteristic function is

$$\phi_n = \prod_{j=1}^n \tilde{\mu}_{n,j},$$

since the characteristic function of a convolution of measures is the product of the characteristic functions of the measures. Using $\sum_{j=1}^{n} \tau_{n,j}^2 = 1$ and (1), for $x \in \mathbb{R}$ we have

$$\begin{aligned} |\phi_n(x) - e^{-\frac{x^2}{2}}| &= \left| \prod_{j=1}^n \tilde{\mu}_{n,j}(x) - \prod_{j=1}^n e^{-\frac{1}{2}\tau_{n,j}^2 x^2} \right| \\ &\leq \sum_{j=1}^n \left| \tilde{\mu}_{n,j}(x) - e^{-\frac{1}{2}\tau_{n,j}^2 x^2} \right| \\ &= \sum_{j=1}^n \left| \tilde{\mu}_{n,j}(x) - \tilde{\gamma}_{0,\tau_{n,j}^2}(x) \right| \\ &= \frac{x^2}{2} \sum_{j=1}^n \left| \theta_{n,j}(x) - \psi_{n,j}(x) \right|. \end{aligned}$$

Therefore, for $x \in \mathbb{R}$, $\epsilon > 0$, and $\delta = \min\left\{\epsilon, \frac{\epsilon}{|x|}\right\}$,

$$\begin{split} &|\phi_n(x) - e^{-\frac{x^2}{2}}|\\ &\leq & \frac{x^2}{2} \sum_{j=1}^n \left(\epsilon \tau_{n,j}^2 + 2 \int_{|y| \ge \delta} y^2 d\mu_{n,j}(y) + \epsilon \tau_{n,j}^2 + 2 \int_{|y| \ge \delta} y^2 d\gamma_{0,\tau_{n,j}^2}(y) \right) \\ &= & \epsilon x^2 + x^2 \sum_{j=1}^n \int_{|y| \ge \delta} y^2 d\mu_{n,j}(y) + x^2 \sum_{j=1}^n \int_{|y| \ge \delta} y^2 d\gamma_{0,\tau_{n,j}^2}(y). \end{split}$$

We calculate

$$L_n(\delta) = \frac{1}{s_n^2} \sum_{j=1}^n \int_{|y| \ge \delta s_n} y^2 d(X_{j_*}P)(y)$$

$$= \frac{1}{s_n^2} \sum_{j=1}^n \int_{|X_j| \ge \delta s_n} X_j^2 dP$$

$$= \sum_{j=1}^n \int_{\left|\frac{X_j}{s_n}\right| \ge \delta} \left(\frac{X_j}{s_n}\right)^2 dP$$

$$= \sum_{j=1}^n \int_{|y| \ge \delta} y^2 d\left(\left(\frac{X_j}{s_n}\right)_* P\right)(y)$$

$$= \sum_{j=1}^n \int_{|y| \ge \delta} y^2 d\mu_{n,j}(y).$$

Hence, the fact that the ${\cal X}_n$ satisfy the Lindeberg condition yields

$$\limsup_{n \to \infty} |\phi_n(x) - e^{-\frac{x^2}{2}}| \le \epsilon x^2 + x^2 \limsup_{n \to \infty} \sum_{j=1}^n \int_{|y| \ge \delta} y^2 d\gamma_{0,\tau_{n,j}^2}(y).$$
(2)

Write

$$\alpha_n = \max_{1 \le j \le n} \tau_{n,j} = \max_{1 \le j \le n} \frac{\sigma_j}{s_n}.$$

We calculate

$$\sum_{j=1}^{n} \int_{|y| \ge \delta} y^2 d\gamma_{0,\tau_{n,j}^2}(y) = \sum_{j=1}^{n} \int_{|y| \ge \delta} y^2 \frac{1}{\tau_{n,j}\sqrt{2\pi}} \exp\left(-\frac{y^2}{2\tau_{n,j}^2}\right) dy$$
$$= \sum_{j=1}^{n} \tau_{n,j}^2 \int_{|u| \ge \delta/\tau_{n,j}} u^2 d\gamma_{0,1}(u)$$
$$\leq \sum_{j=1}^{n} \tau_{n,j}^2 \int_{|u| \ge \delta/\alpha_n} u^2 d\gamma_{0,1}(u)$$
$$= \int_{|u| \ge \delta/\alpha_n} u^2 d\gamma_{0,1}(u).$$

Because the sequence X_n satisfies the Lindeberg condition, by Lemma 4 it satisfies the Feller condition, which means that $\alpha_n \to 0$ as $n \to \infty$. Because $\alpha_n \to 0$ as $n \to \infty$, $\delta/\alpha_n \to \infty$ as $n \to \infty$, hence

$$\int_{|u| \ge \delta/\alpha_n} u^2 d\gamma_{0,1}(u) \to 0$$

as $n \to \infty$. Thus we get

$$\sum_{j=1}^n \int_{|y|\geq \delta} y^2 d\gamma_{0,\tau^2_{n,j}}(y) \to 0$$

as $n \to \infty$. Using this with (2) yields

$$\limsup_{n \to \infty} |\phi_n(x) - e^{-\frac{x^2}{2}}| \le \epsilon x^2.$$

This is true for all $\epsilon > 0$, so

$$\lim_{n \to \infty} |\phi_n(x) - e^{-\frac{x^2}{2}}| = 0,$$

namely, ϕ_n (the characteristic function of $S_{n*}P$) converges pointwise to $e^{-\frac{x^2}{2}}$. Moreover, $e^{-\frac{x^2}{2}}$ is indeed continuous at 0, and $e^{-\frac{x^2}{2}} = \tilde{\gamma}_{0,1}(x)$. Therefore, Lévy's continuity theorem (Theorem 3) tells us that $S_{n*}P$ converges narrowly to $\gamma_{0,1}$, which is the claim.