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1 Convergence in distribution

We denote by P(Rd) the collection of Borel probability measures on Rd. Un-
less we say otherwise, we use the narrow topology on P(Rd): the coarsest
topology such that for each f ∈ Cb(Rd), the map

µ 7→
∫
Rd

fdµ

is continuous P(Rd) → C. Because Rd is a Polish space it follows that P(Rd) is
a Polish space.1 (In fact, its topology is induced by the Prokhorov metric.2)

2 Characteristic functions

For µ ∈ P(Rd), we define its characteristic function µ̃ : Rd → C by

µ̃(u) =

∫
Rd

eiu·xdµ(x).

Theorem 1. If µ ∈ P(R) has finite kth moment, k ≥ 0, then, writing ϕ = µ̃:

1. ϕ ∈ Ck(R).

2. ϕ(k)(v) = (i)k
∫
R x

keivxdµ(x).

3. ϕ(k) is uniformly continuous.

4. |ϕk(v)| ≤
∫
R |x|kdµ(x).

1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A
Hitchhiker’s Guide, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/

jordanbell/notes/narrow.pdf
2Onno van Gaans, Probability measures on metric spaces, http://www.math.leidenuniv.

nl/~vangaans/jancol1.pdf; Bert Fristedt and Lawrence Gray, A Modern Approach to Prob-
ability Theory, p. 365, Theorem 25.
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Proof. For 0 ≤ l ≤ k, define fl : R → C by

fl(v) =

∫
R
xleivxdµ(x).

For h ̸= 0, ∣∣∣∣xleivx eihx − 1

h

∣∣∣∣ ≤ |xl · x| = |x|l+1,

so by the dominated convergence theorem we have for 0 ≤ l ≤ k − 1,

lim
h→0

fl(v + h)− fl(v)

h
= lim

h→0

∫
R
xleivx

eihx − 1

h
dµ(x)

=

∫
R
xleivx

(
lim
h→0

eihx − 1

h

)
dµ(x)

=

∫
R
ixl+1eivxdµ(x).

That is,
f ′l = ifl+1.

And, by the dominated convergence, for ϵ > 0 there is some δ > 0 such that if
|w| < δ then ∫

R
|x|k|eiwx − 1|dµ(x) < ϵ,

hence if |v − u| < δ then

|fk(v)− fk(u)| =
∣∣∣∣∫

R
xkeiux(ei(v−u)x − 1)dµ(x)

∣∣∣∣
≤
∫
R
|x|k|ei(v−u)x − 1|dµ(x)

< ϵ,

showing that fk is uniformly continuous. As well,

|fk(v)| ≤
∫
R
|x|kdµ(x)

But ϕ = f0, i.e. ϕ
(0) = f0, so

ϕ(1) = f ′0 = if1, ϕ(2) = (if1)
′ = (i)2f2, · · · , ϕ(k) = (i)kfk.
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If ϕ ∈ Ck(R), Taylor’s theorem tells us that for each x ∈ R,

ϕ(x) =

k−1∑
l=0

ϕ(l)(0)

l!
xl +

∫ x

0

(x− t)k−1

(k − 1)!
ϕ(k)(t)dt

=

k∑
l=0

ϕ(l)(0)

l!
xl +

∫ x

0

(x− t)k−1

(k − 1)!
(ϕ(k)(t)− ϕ(k)(0))dt

=

k∑
l=0

ϕ(l)(0)

l!
xl +Rk(x),

and Rk(x) satisfies

|Rk(x)| ≤
(

sup
0≤u≤1

|ϕ(k)(ux)− ϕ(k)(0)|
)
· |x|

k

k!
.

Define θk : R → C by θk(0) = 0 and for x ̸= 0

θk(x) =
k!

xk
·Rk(x),

with which, for all x ∈ R,

ϕ(x) =

k∑
l=0

ϕ(l)(0)

l!
xl +

1

k!
θk(x)x

k.

Because Rk is continuous on R, θk is continuous at each x ̸= 0. Moreover,

|θk(x)| ≤ sup
0≤u≤1

|ϕ(k)(ux)− ϕ(k)(0)|,

and as ϕ(k) is continuous it follows that θk is continuous at 0. Thus θk is
continuous on R.

Lemma 2. If µ ∈ P(R) have finite kth moment, k ≥ 0, and for 0 ≤ l ≤ k,

Ml =

∫
R
xldµ(x),

then there is a continuous function θ : R → C for which

µ̃(x) =

k∑
l=0

(i)lMl

l!
xl +

1

k!
θ(x)xk.

The function θ satisfies

|θ(x)| ≤ sup
0≤u≤1

|µ̃(k)(ux)− µ̃(k)(0)|.
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Proof. From Theorem 1, µ̃ ∈ Ck(R) and

µ̃(l)(0) = (i)l
∫
R
xldµ(x) = (i)lMl.

Thus from what we worked out above with Taylor’s theorem,

µ̃(x) =

k∑
l=0

(i)lMl

l!
xl +

1

k!
θk(x)x

k,

for which
|θk(x)| ≤ sup

0≤u≤1
|µ̃(k)(ux)− µ̃(k)(0)|.

For a ∈ R and σ > 0, let

p(t, a, σ2) =
1

σ
√
2π

exp

(
− (t− a)2

2σ2

)
, t ∈ R.

Let γa,σ2 be the measure on R whose density with respect to Lebesgue measure
is p(·, a, σ2). We call γa,σ2 a Gaussian measure. We calculate that the first
moment of γa,σ2 is a and that its second moment is σ2. We also calculate that

γ̃a,σ2(x) = exp

(
iax− 1

2
σ2x2

)
.

Lévy’s continuity theorem is the following.3

Theorem 3 (Lévy’s continuity theorem). Let µn be a sequence in P(Rd).

1. If µ ∈ P(Rd) and µn → µ, then for each µ̃n converges to µ̃ pointwise.

2. If there is some function ϕ : Rd → C to which µ̃n converges pointwise and
ϕ is continuous at 0, then there is some µ ∈ P(Rd) such that ϕ = µ̃ and
such that µn → µ.

3 The Lindeberg condition, the Lyapunov con-
dition, the Feller condition, and asymptotic
negligibility

Let (Ω,F , P ) be a probability and let Xn, n ≥ 1, be independent L2 random
variables. We specify when we impose other hypotheses on them; in particular,

3http://individual.utoronto.ca/jordanbell/notes/martingaleCLT.pdf, p. 19, Theo-
rem 15.
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we specfify if we suppose them to be identically distributed or to belong to Lp

for p > 2.
For a random variable X, write

σ(X) =
√
Var(X) =

√
E(|X − E(X)|2).

Write
σn = σ(Xn),

and, using that the Xn are independent,

sn = σ

 n∑
j=1

Xj

 =

 n∑
j=1

σ2
j

1/2

and
ηn = E(Xn).

For n ≥ 1 and ϵ > 0, define

Ln(ϵ) =
1

s2n

n∑
j=1

E((Xj − ηj)
2||Xj − ηj | ≥ ϵsn)

=
1

s2n

n∑
j=1

∫
|x−ηj |≥ϵsn

(x− ηj)
2d(Xj∗P )(x).

We say that the sequence Xn satisfies the Lindeberg condition if for
each ϵ > 0,

lim
n→∞

Ln(ϵ) = 0.

For example, if the sequence Xn is identically distributed, then s2n = nσ2
1 ,

so

Ln(ϵ) =
1

nσ2
1

n∑
j=1

∫
|x−η1|≥ϵn1/2σ1

(x− η1)
2d(X1∗P )(x)

=
1

σ2
1

∫
|x−η1|≥ϵn1/2σ1

(x− η1)
2d(X1∗P ).

But if µ is a Borel probability measure on R and f ∈ L1(µ) and Kn is a sequence
of compact sets that exhaust R, then4∫

R\Kn

|f |dµ→ 0, n→ ∞.

Hence Ln(ϵ) → 0 as n→ ∞, showing that Xn satisfies the Lindeberg condition.

4V. I. Bogachev, Measure Theory, volume I, p. 125, Proposition 2.6.2.
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We say that the sequence Xn satisfies the Lyapunov condition if there
is some δ > 0 such that the Xn are L2+δ and

lim
n→∞

1

s2+δ
n

n∑
j=1

E(|Xj − ηj |2+δ) = 0.

In this case, for ϵ > 0, then |x− η| ≥ ϵsn implies |x− η|2+δ ≥ |x− η|2(ϵsn)δ and
hence

Ln(ϵ) ≤
1

s2n

n∑
j=1

∫
|x−ηj |≥ϵsn

|x− ηj |2+δ

(ϵsn)δ
d(Xj∗P )(x)

=
1

ϵs2+δ
n

n∑
j=1

∫
|x−ηj |≥ϵsn

|x− ηj |2+δd(Xj∗P )(x)

=
1

ϵs2+δ
n

n∑
j=1

∫
|Xj−ηj |≥ϵsn

|Xj − ηj |2+δdP

≤ 1

ϵs2+δ
n

n∑
j=1

E(|Xj − ηj |2+δ)

→ 0.

This is true for each ϵ > 0, showing that if Xn satisfies the Lyapunov condition
then it satisfies the Lindeberg condition.

For example, if Xn are identically distributed and L2+δ, then

1

s2+δ
n

n∑
j=1

E(|Xj − ηj |2+δ) =
1

nδ/2σ2+δ
1

E(|Xj − ηj |2+δ) → 0,

showing that Xn satisfies the Lyapunov condition.
Another example: Suppose that the sequence Xn is bounded by M almost

surely and that sn → ∞. |Xn| ≤M almost surely implies that

|ηn| = |E(Xn)| ≤ E(|Xn|) ≤ E(M) =M.

Therefore |Xn − ηn| ≤ |Xn| + |ηn| ≤ 2M almost surely. Let δ > 0. Then, as
s2n = nσ2

1 ,

1

s2+δ
n

n∑
j=1

E(|Xj − ηj |2+δ) ≤ 1

s2+δ
n

N∑
j=1

E(|Xj − ηj |2)(2M)δ

=
(2M)δ

sδn
→ 0,

showing that Xn satisfies the Lyapunov condition.
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We say that a sequence of random variables Xn satisfies the Feller condi-
tion when

lim
n→∞

max
1≤j≤n

σj
sn

= 0,

where σj = σ(Xj) =
√
Var(Xj) and

sn =

 n∑
j=1

σ2
j

1/2

.

We prove that if a sequence satisfies the Lindeberg condition then it satisfies
the Feller condition.5

Lemma 4. If a sequence of random variables Xn satisfies the Lindeberg con-
dition, then it satisfies the Feller condition.

Proof. Let ϵ > 0¿ For n ≥ 1 and 1 ≤ k ≤ n, we calculate

σ2
k =

∫
R
(x− ηk)

2d(Xk∗P )(x)

=

∫
|x−ηk|<ϵsn

(x− ηk)
2d(Xk∗P )(x) +

∫
|x−ηk|≥ϵsn

(x− ηk)
2d(Xk∗P )(x)

≤ (ϵsn)
2 +

n∑
j=1

∫
|x−ηj |≥ϵsn

(x− ηj)
2d(Xj∗P )(x)

= ϵ2s2n + s2nLn(ϵ).

Hence

max
1≤k≤n

(
σk
sn

)2

≤ ϵ2 + Ln(ϵ),

and so, because the Xn satisfy the Lindeberg condition,

lim sup
n→∞

max
1≤k≤n

(
σk
sn

)2

≤ ϵ2.

This is true for all ϵ > 0, which yields

lim
n→∞

max
1≤k≤n

(
σk
sn

)2

= 0,

namely, that the Xn satisfy the Feller condition.

We do not use the following idea of an asymptotically negligible family of
random variables elsewhere, and merely take this as an excsuse to write out

5Heinz Bauer, Probability Theory, p. 235, Lemma 28.2.
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what it means. A family of random variables Xn,j , n ≥ 1, 1 ≤ j ≤ kn, is called
asymptotically negligible6 if for each ϵ > 0,

lim
n→∞

max
1≤j≤kn

P (|Xn,j | ≥ ϵ) = 0.

A sequence of random variables Xn converging in probability to 0 is equivalent
to it being asymptotically negligible, with kn = 1 for each n.

For example, suppose thatXn,j are L
2 random variables each with E(Xn,j) =

0 and that they satisfy

lim
n→∞

max
1≤j≤kn

Var(Xn,j) = 0.

For ϵ > 0, by Chebyshev’s inequality,

P (|Xn,j | ≥ ϵ) ≤ 1

ϵ2
E(|Xn,j |2) =

1

ϵ2
Var(Xn,j),

whence

lim
n→∞

max
1≤j≤kn

P (|Xn,j | ≥ ϵ) ≤ lim sup
n→∞

max
1≤j≤kn

1

ϵ2
Var(Xn,j) = 0,

and so the random variables Xn,j are asymptotically negligible.
Another example: Suppose that random variables Xn,j are identically dis-

tributed, with µ = Xn,j∗P . For ϵ > 0,

P

(∣∣∣∣Xn,j

n

∣∣∣∣ ≥ ϵ

)
= P (|Xn,j | ≥ nϵ) = µ(An),

where An = {x ∈ R : |x| ≥ nϵ}. As An ↓ ∅, limn→∞ µ(An) = 0. Hence the

random variables
Xn,j

n are asymptotic negligible.
The following is a statement about the characteristic functions of an asymp-

totically negligible family of random variables.7

Lemma 5. Suppose that a family Xn,j , n ≥ 1, 1 ≤ j ≤ kn, of random variables
is asymptotically negligible, and write µn,j = Xn,j∗P and ϕn,j = µ̃n,j . For each
x ∈ R,

lim
n→∞

max
1≤j≤kn

|ϕn,j(x)− 1| = 0.

Proof. For any real t, |eit − 1| ≤ |t|. For x ∈ R, ϵ > 0, n ≥ 1, and 1 ≤ j ≤ kn,

|ϕn,j(x)− 1| =
∣∣∣∣∫

R
(eixy − 1)dµn,j(y)

∣∣∣∣
≤
∫
|y|<ϵ

|eixy − 1|dµn,j(y) +

∫
|y|≥ϵ

|eixy − 1|dµn,j(y)

≤
∫
|y|<ϵ

|xy|dµn,j(y) +

∫
|y|≥ϵ

2dµn,j(y)

≤ ϵ|x|+ 2P (|Xn,j | ≥ ϵ).

6Heinz Bauer, Probability Theory, p. 225, §27.2.
7Heinz Bauer, Probability Theory, p. 227, Lemma 27.3.
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Hence
max

1≤j≤kn

|ϕn,j(x)− 1| ≤ ϵ|x|+ 2 max
1≤j≤kn

P (|Xn,j | ≥ ϵ).

Using that the family Xn,j is asymptotically negligible,

lim sup
n→∞

max
1≤j≤kn

|ϕn,j(x)− 1| ≤ 2ϵ|x|.

But this is true for all ϵ > 0, so

lim sup
n→∞

max
1≤j≤kn

|ϕn,j(x)− 1| = 0,

proving the claim.

4 The Lindeberg central limit theorem

We now prove the Lindeberg central limit theorem.8

Theorem 6 (Lindeberg central limit theorem). If Xn is a sequence of indepen-
dent L2 random variables that satisfy the Lindeberg condition, then

Sn∗P → γ1,

where

Sn =
1

sn

n∑
j=1

(Xj − ηj) =

∑n
j=1(Xj − E(Xj))

σ(X1 + · · ·+Xn)
.

Proof. The sequence Yn = Xn − E(Xn) are independent L2 random variables
that satisfy the Lindeberg condition and σ(Yn) = σ(Xn). Proving the claim for
the sequence Yn will prove the claim for the sequence Xn, and thus it suffices
to prove the claim when E(Xn) = 0, i.e. ηn = 0.

For n ≥ 1 and 1 ≤ j ≤ n, let

µn,j =

(
Xj

sn

)
∗
P and τn,j =

σj
sn
.

The first moment of µn,j is∫
R
xd

((
Xj

sn

)
∗
P

)
(x) =

∫
Ω

Xj

sn
dP =

1

sn
E(Xj) = 0,

and the second moment of µn,j is∫
R
x2d

((
Xj

sn

)
∗
P

)
(x) =

∫
Ω

(
Xj

sn

)2

dP =
1

s2n
E(X2

j ) =
σ2
j

s2n
= τ2n,j ,

8Heinz Bauer, Probability Theory, p. 235, Theorem 28.3.
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for which
n∑

j=1

τ2n,j =
1

s2n

n∑
j=1

σ2
j = 1.

For µ ∈ P(R) with first moment
∫
R xdµ(x) = 0 and second moment

∫
R x

2dµ(x) =
σ2 <∞, Lemma 2 tells us that

µ̃(x) =M0 + iM1x− M2

2
x2 +

1

2
θ2(x)x

2 = 1− σ2

2
x2 +

1

2
θ(x)x2,

with
|θ(x)| ≤ sup

0≤u≤1
|µ̃′′(ux)− µ̃′′(0)|.

But by Lemma 1,

µ̃′′(ux) = −
∫
R
y2eiuxydµ(y),

so

|θ(x)| ≤ sup
0≤u≤1

∣∣∣∣∫
R
y2(−eiuxy + 1)dµ(y)

∣∣∣∣
≤ sup

0≤u≤1

∫
R
y2|eiuxy − 1|dµ(y).

For 0 ≤ u ≤ 1, |eiuxy − 1| ≤ |uxy| ≤ |xy|, so for x ∈ R and ϵ > 0, with

δ = min
{
ϵ, ϵ

|x|

}
, when |y| < δ and 0 ≤ u ≤ 1 we have |eiuxy − 1| < ϵ. Thus

|θ(x)| ≤ sup
0≤u≤1

∫
|y|<δ

y2|eiuxy − 1|dµ(y) + sup
0≤u≤1

∫
|y|≥δ

y2|eiuxy − 1|dµ(y)

≤ ϵ

∫
|y|<δ

y2dµ(y) + 2

∫
|y|≥δ

y2dµ(y)

≤ ϵσ2 + 2

∫
|y|≥δ

y2dµ(y).

Let x ∈ R and ϵ > 0, and take δ = min
{
ϵ, ϵ

|x|

}
. On the one hand, for n ≥ 1

and 1 ≤ j ≤ n, because the first moment of µn,j is 0 and its second moment is
τ2n,j ,

µ̃n,j(x) = 1−
τ2n,j
2
x2 +

1

2
θn,j(x)x

2,

with, from the above,

|θn,j(x)| ≤ ϵτ2n,j + 2

∫
|y|≥δ

y2dµn,j(y).

On the other hand, the first moment of the Gaussian measure γ0,τ2
n,j

is 0 and

its second moment is τ2n,j . Its characteristic function is

γ̃0,τ2
n,j

(x) = exp

(
−
τ2n,j
2
x2

)
= 1−

τ2n,j
2
x2 +

1

2
ψn,j(x)x

2,
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with, from the above,

|ψn,j(x)| ≤ ϵτ2n,j + 2

∫
|y|≥δ

y2dγ0,τ2
n,j

(x).

In particular, for all x ∈ R,

µ̃n,j(x)− γ̃0,τ2
n,j

(x) =
x2

2
(θn,j(x)− ψn,j(x)) .

For k ≥ 1 and for al, bl ∈ C, 1 ≤ l ≤ k,

k∏
l=1

al −
k∏

l=1

bl =

k∑
l=1

b1 · · · bl−1(al − bl)al+1 · · · ak.

If further |al| ≤ 1, |bl| ≤ 1, then∣∣∣∣∣
k∏

l=1

al −
k∏

l=1

bl

∣∣∣∣∣ ≤
k∑

l=1

|al − bl|. (1)

Because the Xn are independent, the distribution of

Sn =

n∑
j=1

Xj

sn

is the convolution of the distributions of the summands:

µn,1 ∗ · · · ∗ µn,n,

whose characteristic function is

ϕn =

n∏
j=1

µ̃n,j ,

since the characteristic function of a convolution of measures is the product of
the characteristic functions of the measures. Using

∑n
j=1 τ

2
n,j = 1 and (1), for

x ∈ R we have

|ϕn(x)− e−
x2

2 | =

∣∣∣∣∣∣
n∏

j=1

µ̃n,j(x)−
n∏

j=1

e−
1
2 τ

2
n,jx

2

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣µ̃n,j(x)− e−
1
2 τ

2
n,jx

2
∣∣∣

=

n∑
j=1

∣∣∣µ̃n,j(x)− γ̃0,τ2
n,j

(x)
∣∣∣

=
x2

2

n∑
j=1

|θn,j(x)− ψn,j(x)| .
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Therefore, for x ∈ R, ϵ > 0, and δ = min
{
ϵ, ϵ

|x|

}
,

|ϕn(x)− e−
x2

2 |

≤x
2

2

n∑
j=1

(
ϵτ2n,j + 2

∫
|y|≥δ

y2dµn,j(y) + ϵτ2n,j + 2

∫
|y|≥δ

y2dγ0,τ2
n,j

(y)

)

=ϵx2 + x2
n∑

j=1

∫
|y|≥δ

y2dµn,j(y) + x2
n∑

j=1

∫
|y|≥δ

y2dγ0,τ2
n,j

(y).

We calculate

Ln(δ) =
1

s2n

n∑
j=1

∫
|y|≥δsn

y2d(Xj∗P )(y)

=
1

s2n

n∑
j=1

∫
|Xj |≥δsn

X2
j dP

=

n∑
j=1

∫
∣∣∣Xj
sn

∣∣∣≥δ

(
Xj

sn

)2

dP

=

n∑
j=1

∫
|y|≥δ

y2d

((
Xj

sn

)
∗
P

)
(y)

=

n∑
j=1

∫
|y|≥δ

y2dµn,j(y).

Hence, the fact that the Xn satisfy the Lindeberg condition yields

lim sup
n→∞

|ϕn(x)− e−
x2

2 | ≤ ϵx2 + x2 lim sup
n→∞

n∑
j=1

∫
|y|≥δ

y2dγ0,τ2
n,j

(y). (2)

Write
αn = max

1≤j≤n
τn,j = max

1≤j≤n

σj
sn
.

We calculate

n∑
j=1

∫
|y|≥δ

y2dγ0,τ2
n,j

(y) =

n∑
j=1

∫
|y|≥δ

y2
1

τn,j
√
2π

exp

(
− y2

2τ2n,j

)
dy

=

n∑
j=1

τ2n,j

∫
|u|≥δ/τn,j

u2dγ0,1(u)

≤
n∑

j=1

τ2n,j

∫
|u|≥δ/αn

u2dγ0,1(u)

=

∫
|u|≥δ/αn

u2dγ0,1(u).
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Because the sequence Xn satisfies the Lindeberg condition, by Lemma 4 it
satisfies the Feller condition, which means that αn → 0 as n → ∞. Because
αn → 0 as n→ ∞, δ/αn → ∞ as n→ ∞, hence∫

|u|≥δ/αn

u2dγ0,1(u) → 0

as n→ ∞. Thus we get

n∑
j=1

∫
|y|≥δ

y2dγ0,τ2
n,j

(y) → 0

as n→ ∞. Using this with (2) yields

lim sup
n→∞

|ϕn(x)− e−
x2

2 | ≤ ϵx2.

This is true for all ϵ > 0, so

lim
n→∞

|ϕn(x)− e−
x2

2 | = 0,

namely, ϕn (the characteristic function of Sn∗P ) converges pointwise to e−
x2

2 .

Moreover, e−
x2

2 is indeed continuous at 0, and e−
x2

2 = γ̃0,1(x). Therefore,
Lévy’s continuity theorem (Theorem 3) tells us that Sn∗P converges narrowly
to γ0,1, which is the claim.

13


