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1 Convergence in distribution

We denote by Z22(R%) the collection of Borel probability measures on R?. Un-
less we say otherwise, we use the narrow topology on Z(R%): the coarsest
topology such that for each f € Cy(R?), the map

M'—>/ fdu
Rd

is continuous Z(R%) — C. Because R? is a Polish space it follows that Z2(R?) is
a Polish space.! (In fact, its topology is induced by the Prokhorov metric.?)
2 Characteristic functions

For p € Z(R%), we define its characteristic function /i : R¢ — C by

i = [ e duta).
Theorem 1. If y € Z(R) has finite kth moment, k > 0, then, writing ¢ = [
1. ¢ € C*(R).
2. oW (v) = (i) [ 2Fe™ dp(x).
. ¢®) is uniformly continuous.

)] < [g lalfdp(x).
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Hitchhiker’s Guide, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/
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20nno van Gaans, Probability measures on metric spaces, http://www.math.leidenuniv.
nl/~vangaans/jancoll.pdf; Bert Fristedt and Lawrence Gray, A Modern Approach to Prob-
ability Theory, p. 365, Theorem 25.



Proof. For 0 <1 <k, define f; : R — C by

fiw) :/Rxlei”d/i(x).

For h # 0,
) ihx _ 1
ﬂ””;z‘<wwbwwa
so by the dominated convergence theorem we have for 0 <1 <k —1,
. fl(v+h)7fl(v)7 . | _ive ihzi]‘
Y Y S
ihx
_ l ivx . € -1
- (i
— / ixl—&-leivzdu(x).
R
That is,
fl=ifi

And, by the dominated convergence, for ¢ > 0 there is some § > 0 such that if
|w] < § then

[ lalte = tidu(o) < e
R
hence if |v — u| < § then

|nw—nww44ﬁW%%“m—nwm

g/m%“whwwm
R
< €

showing that fi is uniformly continuous. As well,
£:0)] < [ faldta)

But ¢ = fo, i.e. (0 = fy, so

o =fo=ifi, 6@ =GfH) =) f -, ¥ =) S



If ¢ € C*(R), Taylor’s theorem tells us that for each z € R,

O Tz — )kt
o) = 3 e+ [ oo

L p® o (g k1

LI ()
= Z ¢ l'(O) !+ Ry (z),
1=0 ’

and Ry (z) satisfies

xk
| Bi(2)] < < sup |¢) (uz) ¢<k><o>|) iy

0<u<l1 k!

Define 6 : R — C by 6;(0) = 0 and for x # 0

with which, for all x € R,

ul 1
L k
Z :C + k!9k(gc)x
1=0
Because Ry, is continuous on R, 0 is continuous at each x # 0. Moreover,

|0k ()| < sup |p® (uz) — o™ (0)],
0<u<1

and as ¢(®) is continuous it follows that ), is continuous at 0. Thus 6}, is
continuous on R.

Lemma 2. If 4 € Z(R) have finite kth moment, k > 0, and for 0 <1 < k,

M, z/xldu(x),
R

then there is a continuous function 6 : R — C for which

k
-3¢ DML Loy
=

The function 6 satisfies

6@)| < sup [ (uz) — 39 (0)].
0<u<1



Proof. From Theorem 1, i € C*(R) and

70 (0) = (i) / sdp(x) = (i)' M.

R

Thus from what we worked out above with Taylor’s theorem,

for which

10k (2)| < sup @™ (ux) — @ (0)].
0<u<1

For a € R and o > 0, let

1 (t —a)?
2y _
p(t,a,0%) = — exp < 552 , teR.

Let v, 2 be the measure on R whose density with respect to Lebesgue measure
is p(-,a,0%). We call Ya,02 @ Gaussian measure. We calculate that the first
moment of v, ,2 is a and that its second moment is o?. We also calculate that

1
Ya,02(x) = exp (iaa: - 2023:2) )

Lévy’s continuity theorem is the following.?
Theorem 3 (Lévy’s continuity theorem). Let p, be a sequence in Z2(R?).
1. If p € 2(R%) and p,, — p, then for each fi,, converges to ji pointwise.

2. If there is some function ¢ : R* — C to which fi,, converges pointwise and
¢ is continuous at 0, then there is some p € Z(R?) such that ¢ = ji and
such that p, — p.

3 The Lindeberg condition, the Lyapunov con-
dition, the Feller condition, and asymptotic
negligibility

Let (©,.%, P) be a probability and let X,, n > 1, be independent L? random
variables. We specify when we impose other hypotheses on them; in particular,

Shttp://individual .utoronto.ca/jordanbell/notes/martingaleCLT.pdf, p. 19, Theo-
rem 15.



we specfify if we suppose them to be identically distributed or to belong to LP
for p > 2.
For a random variable X, write

o(X) = VVar(X) = VE(X - E(X)P).

Write
on = 0(Xy),
and, using that the X,, are independent,
1/2

n n

2

Xj = O'j
1 =1

Sp =0
J J

and
M = E(Xn)

For n > 1 and € > 0, define

La(e) = 5 SO E(C = m)l1X; = | = es,)

n =1

1

We say that the sequence X,, satisfies the Lindeberg condition if for
each € > 0,
lim L,(e) = 0.
n—oo
For example, if the sequence X, is identically distributed, then s = no?,
SO

L@ =723 [ (2 — m)?d(X,, P)(x)

noy j=1 |lz—n1|>ent/20q
1
= —5 (ll?*’l’}l)Qd(Xl*P)

2
01 J|z—n|>enl/20¢

But if p is a Borel probability measure on R and f € L'(u) and K, is a sequence
of compact sets that exhaust R, then*

/ |fldp — 0, n — 0.
R

K,

Hence L, (¢) — 0 as n — oo, showing that X, satisfies the Lindeberg condition.

4V. 1. Bogachev, Measure Theory, volume I, p. 125, Proposition 2.6.2.



We say that the sequence X,, satisfies the Lyapunov condition if there
is some & > 0 such that the X,, are L219 and

lim — SZE‘X —n;)**%)y =0.

n—00
Sn j=1

In this case, for € > 0, then |z —n| > €s,, implies |z —n|>* > |z —n|?(es,)° and
hence

n r— 1246
LE<5> [ =l g x; P a)

= &2 5
Sn j=1 |lx—mn;|>€sn (6871)

= 2+6 Z/I > *77j|2+6d(Xj*P)($)
T—Nj|Z€Sn

€Sn
= X; —n;|*T0dp
€S%+6 Z/ X;j—nj|>esn | |
1
ﬁﬁZﬂm‘WM)
— 0.

This is true for each € > 0, showing that if X,, satisfies the Lyapunov condition
then it satisfies the Lindeberg condition.
For example, if X,, are identically distributed and L**7, then

1 < 1
=55 ZE(|XJ' n;710) = WE(\XJ' —n;[**) =0,

showing that X, satisfies the Lyapunov condition.
Another example: Suppose that the sequence X, is bounded by M almost
surely and that s,, = 00. | X,,| < M almost surely implies that

| = |E(X,)| < E(|Xa|) < E(M) = M.

Therefore | X, — n,| < |Xp| + |7n] < 2M almost surely. Let § > 0. Then, as

2 _
Sp = Noy,

QMZEW—MMKQHZEw—mwa

j=1

—~

2M)?°
s,
— 0,

showing that X, satisfies the Lyapunov condition.

[=p}



We say that a sequence of random variables X,, satisfies the Feller condi-
tion when

. gj
lim max - =0,
n—oo 1<j<n S,

where 0; = 0(X;) = y/Var(X;) and

1/2

n
sn=| 2.7
j=1
We prove that if a sequence satisfies the Lindeberg condition then it satisfies

the Feller condition.?

Lemma 4. If a sequence of random variables X,, satisfies the Lindeberg con-
dition, then it satisfies the Feller condition.

Proof. Let € > 0; For n > 1 and 1 < k < n, we calculate
ot = [« = mPd(Xe,P)a)
R

:/_ - (x—ﬁk)Qd(Xk*P)($)+/ (x — mp)?d( Xy, P) ()

|z—nK|>esn

S+ [ @) p)e

j=1 |[x—nj|>esn

= €252 + 52 Ly (e).

Hence

2
max <0k> <€+ Ly(e),

1<k<n \ S,

and so, because the X, satisfy the Lindeberg condition,

2
. Ok
limsup max ({ — | < 2.
n—oo 1<k<n Sn

This is true for all € > 0, which yields

. Ok
lim max (> =0,
n—oo 1<k<n \ Sp,
namely, that the X, satisfy the Feller condition. O

We do not use the following idea of an asymptotically negligible family of
random variables elsewhere, and merely take this as an excsuse to write out

5Heinz Bauer, Probability Theory, p. 235, Lemma 28.2.



what it means. A family of random variables X,, j, n > 1, 1 < j < ky,, is called
asymptotically negligible® if for each € > 0,

lim max P(|X, ;| >¢€) =0.
n—o00 1<j<ky,

A sequence of random variables X,, converging in probability to 0 is equivalent
to it being asymptotically negligible, with k,, = 1 for each n.

For example, suppose that X, ; are L? random variables each with E (X, i) =
0 and that they satisfy

lim max Var(X, ;) =0.

n—o0 1<j<kn,

For € > 0, by Chebyshev’s inequality,
1 1
P(Xa] 2 ) € 5 B(X0 ) = 5 Var(X,,),
whence

1
li P(X,|>¢ <l — X)) =
W BE, Pl = 9 < e, gy G Vartn) =0
and so the random variables X, ; are asymptotically negligible.
Another example: Suppose that random variables X, ; are identically dis-
tributed, with 4 = X, ; P. For € > 0,

p (|2
n

where A, = {z € R : |z| > ne}. As A, | 0, lim,, o u(A,) = 0. Hence the
random variables % are asymptotic negligible.

The following is a statement about the characteristic functions of an asymp-
totically negligible family of random variables.”

> 6) = P(|Xn’j| > ne) = u(Ar),

Lemma 5. Suppose that a family X, j, n > 1,1 < j <k, of random variables
is asymptotically negligible, and write p, ; = X, ; P and ¢, ; = ji, ;. For each
r €R,

Jm - max [, ;(z) — 1] = 0.

Proof. For any real t, [¢ — 1| < |t|. Forz € R, e>0,n>1,and 1 < j < ky,,

us(@) =11 = | [ (€ =), <y>\

< /| 1 s (0) / €Y — 1] ;(y)
y|<e

ly|>e

< /| e ) + / 2djtn 5 (1)
y|<e

ly|>e
< elz| +2P(| Xy 5] = €).

SHeinz Bauer, Probability Theory, p. 225, §27.2.
"Heinz Bauer, Probability Theory, p. 227, Lemma 27.3.



Hence
— < m > €).
max |fn,j(z) — 1] < €lz] +21Sj«‘%>,§nP(IXn,g| > €)

Using that the family X, ; is asymptotically negligible,

lim sup max |¢nj( ) — 1] < 2€|z.

n—oo 1<

But this is true for all € > 0, so

lim sup max |¢nj( )—1] =0,

n—oo 15J<

proving the claim. O

4 The Lindeberg central limit theorem

We now prove the Lindeberg central limit theorem.®

Theorem 6 (Lindeberg central limit theorem). If X, is a sequence of indepen-
dent L? random variables that satisfy the Lindeberg condition, then

Sn*P — V15

where "
g _iz":(X._ A)_ng(Xj—E(Xj))
"= s PTG 1 X

Proof. The sequence Y,, = X,, — E(X,,) are independent L? random variables
that satisfy the Lindeberg condition and o(Y;,) = 0(X,,). Proving the claim for
the sequence Y,, will prove the claim for the sequence X,,, and thus it suffices
to prove the claim when E(X,) =0, i.e. 7, = 0.

Forn>1and 1 <75 <n,let

X, .
Hn,j = <J> P and Tnj = %

The first moment of p, ; is

[oa((2) P)r= [ Zar- Lo o

and the second moment of i, ; is

X, X\ 2 1 o?
2 J _ J _ 2\ _ T3 _ 2
[ra((52) p)er=[(5) ar=gron = =

8Heinz Bauer, Probability Theory, p. 235, Theorem 28.3.




for which

n

n

9 1
ZTn,j -2 Z
j=1 Sn =1

For ;i € 2(R) with first moment [, zdu(z) = 0 and second moment [;, #*du(z) =
02 < 00, Lemma 2 tells us that
M. 1 2 1
fi(x) = My +iMyz — =22 + ~6y(x)a® =1 — T 224 —0(x)z?
2 2 2 2
with
0(z)| < sup |a"(ux) — 7" (0)].

0<u<1

But by Lemma 1,

i (ux) = — /R y2e" " Vdpu(y),

S0
Bl < sup | [ (e 4 Dduty)
o<u<1|Jr
< sup [yl - 1duty)
o<u<1JRr
For 0 < u < 1, |e®® — 1| < |ury| < |zy|, so for z € R and € > 0, with

4 = min {e, Iw\} when |y| < 6 and 0 < u < 1 we have |e?“®¥ — 1| < e. Thus

6(z)| < sup / y2le" Y — 1du(y) + sup / ¥ 1€ — 1dp(y)
ly|<é ly| >4

0<u<1

< e/ deu(y)Jr?/ y2du(y)
lyl<s ly|>6

<eo®+ 2/ y*du(y).
ly|>6
Let x € R and € > 0, and take § = min {e, ﬁ} On the one hand, for n > 1
and 1 < j < n, because the first moment of 1, ; is 0 and its second moment is
2
-

7,57
2

Th. i 1
finj(x) =1 — 7’]932 + 50n (z)a?,

with, from the above,
Ors@l < eriy 42 [ gl
ly|>6

On the other hand, the first moment of the Gaussian measure v, ;2 is 0 and
T2

its second moment is Tij. Its characteristic function is

T2 2 1
o, () = exp |~ 2L ) =1— o 4 Sy (@)a?,

10



with, from the above,
i@l e +2 [ P @
ly|>8 ’

In particular, for all z € R,

.’172

lan,j (LL') - ’?07737]. (‘T) = ? (971,] ((E) - wn,j (SL’)) .

For k> 1 and for a;,b; € C, 1 <1 < k,

k k
[Ha-1]b= Zbl b1 (ar — b)agsy - - ag.
=1 =1

If further |a;| <1, |b;] < 1, then

Haz Hbz <Z|al_bl (1)
=1

Because the X, are independent, the distribution of

S
j=1""

is the convolution of the distributions of the summands:

M1 % sk by

whose characteristic function is
n
= H Hngs
Jj=1

since the characteristic function of a convolution of measures is the product of
the characteristic functions of the measures. Using Y =1 and (1), for
x € R we have

Jan

o) — % | =[] ins @) = [[e#70""

Jj=1 Jj=1
n
<3t
j=1
n
= |fins(@) = Fo.-2,@)]
j=1
$2 -
= 7 Z |9n,j (CC) ’(/}n,j (J})‘
j=1



Therefore, for x € R, ¢ > 0, and § = mln{ €, m },

|pn(z) —e™ 7|

:U2 n

<y 675j+2/ y2dun,j<y)+evﬁj+2/ o)
j=1 ly|>d ly|>d

~
3
—~
S
=
|

S / y2d(X;, P)(y)

Sh j=1 [y|>dsn

X7dP
52 Z/X [>8sn
S [ () ar
=1 | SHze \ o

-2 (). 7)o

:Z/ Y2 dpin,j (y)-
i—17yl=0

Jj=1

Hence, the fact that the X, satisfy the Lindeberg condition yields

limsup | (z) — e 2 | < ex? + 2 lim supZ/ yzd%,ﬁj (v). (2)

n—00 n—00 =1 \y\zg
Write
g
Op = MaX Tp ; = IMax —
1<5<n 1<j<n S,

We calculate

yidy, = / Yy ———=cxp | —z5 | dy
Z=:/|y>(S o J Z y\>5 TngV 2T ( 27%])

/ u2d7071(u)
[u[>6/Tn,;

I

<

U
3
=
S~—



Because the sequence X,, satisfies the Lindeberg condition, by Lemma 4 it
satisfies the Feller condition, which means that a,, — 0 as n — oco. Because
a, — 0asn — 00, d/a, — 00 as n — 00, hence

/ u2d7071(u) —0
|u|25/an

as n — oo. Thus we get

n

Z/ Yooz (y) =0
ly|=6 '

j=1
as n — oco. Using this with (2) yields
limsup ¢, () —e™ 7| < ex”.
n—oo

This is true for all € > 0, so

22
Jim [ (2) —e” T =0,

N

x

namely, ¢, (the characteristic function of Sy, P) converges pointwise to e~z .

‘1)2 . . . 7—'2 ~
Moreover, e~z is indeed continuous at 0, and e~z = 4g1(z). Therefore,
Lévy’s continuity theorem (Theorem 3) tells us that S,,, P converges narrowly
to 70,1, which is the claim. O

13



