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1 Symplectic manifolds

Let (M,w) and (N, n) be symplectic manifolds. A symplectomorphism F : M —
N is a diffeomorphism such that w = F*7. Recall that for z € M and vy,v9 €
TCL'M7

(F*n)e(v1,v2) = nF(z)((TwF>U1a (T F)v2);
ToF : TyM — TryN. (A tangent vector at x € M is pushed forward to a
tangent vector at F'(x) € N, while a differential 2-form on N is pulled back to

a differential 2-form on M.) In these notes the only symplectomorphisms in
which we are interested are those from a symplectic manifold to itself.!

2 Symplectic gradient

If (M,w) is a symplectic manifold and H € C°*°(M), using the nondegeneracy
of the symplectic form w one can prove that there is a unique vector field Xp €
I'>°(M) such that, for all x € M,v € T, M,

wz (Xp(7),v) = (dH )z (v).
This can also be written as
iXHw = dH,

where
(ixw)(Y) = (Xw)(Y) =w(X,Y).

We call Xy the symplectic gradient of H. If X € IT'*°(M) and X = Xy for
some H € C>°(M), we say that X is a Hamiltonian vector field.?

1T am interested in flows on a phase space and this phase space is a symplectic manifold.
For some motivation for why we want phase space to be a symplectic manifold, read:

http://research.microsoft.com/en-us/um/people/cohn/thoughts/symplectic.html

20n a Riemannian manifold, a vector field that is the gradient of a smooth function is
called a gradient vector field or a conservative vector field.
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3 Flows

Let M be a smooth manifold. Let D be an open subset of M x R, and for each
x € M suppose that
D* ={teR: (z,t) € D}
is an open interval including 0. A flow on M is a smooth map ¢ : D — M such
that if 2 € M then ¢o(x) = = and such that if z € M, s € D*,t € D%(*) and
s+t e D*, then
D1(¢s(x)) = Pste().
For x € M, define ¢* : D* — M by ¢*(t) = ¢¢(x). The infinitesimal generator
of a flow ¢ is the vector field V on M defined for x € M by
d »
Vo= | 9°(0).
It is a fact that every vector field on M is the infinitesimal generator of a flow
on M, and furthermore that there is a unique flow whose domain is maximal
that has that vector field as its infinitesimal generator, and we thus speak of the
flow of a vector field.

We say that a vector field is complete if it is the infinitesimal generator of a
flow whose domain is R x M, in other words if it is the infinitesimal generator
of a global flow. It is a fact that if V is a vector field on a compact smooth
manifold then V' is complete.

4 Hamiltonian flows

Let (M,w) be a symplectic manifold. We say that a vector field X on M is
symplectic if
,CXw = O7



where Lxw is the Lie derivative of w along the flow of X. A Hamiltonian flow
is the flow of a Hamiltonian vector field.? If X is a complete symplectic vector
field and ¢ : M x R is the flow of X, then for all ¢t € R, the map ¢, : M — M
is a symplectomorphism.

Let H € C*°(M), and let ¢ be the flow of the vector field Xp. If (x, s) is in
the domain of the flow ¢, we have

S| HE @) = M7 )
= (dge(s)H)(Xu (6"(5)))
= e (X (¢7(5)), Xia(¢7(5)))
= 0.

Thus a Hamiltonian vector field is symplectic: H does not change along the
flow of Xg. We can also write this as

d d .
£<H°¢t> %(d)tH)
= ¢;(Lx,H)
= ¢;((ixyw)(Xn))
= ¢;(w(Xu,Xn))
= ¢;(0)
0.

It is a fact that if HJ (M) = {0} (i.e. if a is a 1-form on M and da = 0 then
there is some f € C°°(M) such that a = df) then every symplectic vector field
on M is Hamiltonian. In particular, if M is simply connected then Hjg (M) =
{0}, and hence if M is simply connected then every symplectic vector field on
M is Hamiltonian.

5 Poisson bracket
For f,g € C™(M), we define {f,g} € C>*°(M) for x € M by

{f,9}(2) = we (X (), Xy(2)).
This is called the Poisson bracket of f and g. We write

{fv g} = W(Xf’Xg)'

We have
{f.9} = Xyg = (df) X,
We say that f and g Poisson commute if {f, g} = 0. The Poisson bracket of f

and g tells us how f changes along the Hamiltonian flow of g. If f and g Poisson
commute then f does not change along the flow of X,.

3cf. gradient flow.
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Ifzx € M and v E T, M, then vf is the directional derivative in the direction
v. fo=31" 1azaq —|—b28 and f € C°(M) then
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If X is a vector field on M then X f € C°°(M), defined for x € M by
(X)(z) = Xo f.

If 7 is a covariant tensor field and X is a vector field, the Lie derivative of 7
along the flow of X is defined as follows: if ¢ is the flow of X, then

(Cxr)(@) = L

_ @),

and so if 7 is a function f € C°°(M), then

d

(Ex D) = 5| @i = 5| _ i) = x5 = X )

Thus if X is a vector field and f € C*°(M), then Lxf = X f.
For f,g € C™(M),

Xpgpw = dif,9}

d(Xgf)

d(Lx, f)

Lx, (df)

ﬁxg(Xwa)
(ﬁXng)JU)‘i’XfJEng
[Xg, X7]ow + X720

= [Xg, X¢]ow

= X5 Xg]w



Since the symplectic form w is nondegenerate, if X .w =Y _w then X =Y, so
Xirgy = —[Xp Xl

It follows that C*°(M) is a Lie algebra using the Poisson bracket as the Lie
bracket.

The set I'*°(M) of vector fields on M are a Lie algebra using the vector
field commutator [-,-]. The symplectic vector fields are a Lie subalgebra: it is
clear that they are a linear subspace of the Lie algebra of vector fields, and one
shows that the commutator of two symplectic vector fields is itself a symplectic
vector field. One can further show that the set of Hamiltonian vector fields is
a Lie subalgebra of the Lie algebra of symplectic vector fields. It is a fact that
the vector space quotient of the vector space of symplectic vector fields modulo
the vector space of Hamiltonian vector fields is isomorphic to the vector space
Hjp (M); this is why if Hjg (M) = {0} (in particular if M is simply connected)
then any symplectic vector field on M is Hamiltonian.

6 Tautological 1-form

Let @ be a smooth manifold and let 7 : T*Q — Q, w(q,p) = q. For x = (¢q,p) €
T*Q, we have
dem : T,T7Q — T,Q.

Let
0, = (dym)*(p) =pod,m: T, T°Q — R.

Thus 6 : T*Q — T*T*Q. 0 is called the tautological 1-form on T*Q.
If (@Q1,...,Qn) are coordinates on an open subset U of @, @Q; : U — R, then
for each ¢ € U we have that d,Q; € T;U =T;Q, 1 < i <n, are a basis for T;'Q

and 6%21-’(1’ 1 <4 < n, are a basis for 7;,Q. For each p € T;Q,

- 0]
p= E p(,’ >dqu.
i=1 an q
On T*U, define coordinates (g1, ..,Gn,P1;--.,Pn) by

2i(q,p) = Qi(q),
0

Qi q) '

On T*U we can write 6 using these coordinates: for z = (¢,p) € T*Q,

and

pi(q,p) —p(

0, =pod,m= sz(x)dx%
1=1
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Thus, on T*U,
0= Zpid(h‘~
i=1

Let w = —df. We have, on T*U,

w = —d i pidg;
i—1

= =) (dpi Adg; + pid(dg;))

i=1

= - z": dp; N\ dg;
i=1

= En: dg; N dp;.
i—1

T*@ is a symplectic manifold with the symplectic form w.

7 Cotangent lifts
Let @ be a smooth manifold and let F': Q — @ be a diffeomorphism. Define
F' T Q —» T*Q

for z = (q,p) by
F¥q,p) = (F(q), (dpg)(F~))*(p)).

We call F¥: T*Q — T*Q the cotangent lift of F : Q — Q. Tt is a fact that it is
a diffeomorphism. It is apparent that the following diagram commutes:
The pull-back of 6 by F* satisfies, for x = (¢,p) € T*Q and ((,n) =



(da F#)* (O (2)
(daF*)*((dps ym)" ()
(da(m 0 F#))* ()

= (de(Fom))"(n)
(dam)” ((dr (@) )" (1))
(dem)*((dg F)" (1))
(d

Thus (F#)*0 = 0, i.e. F* pulls back § to #. The “naturality of the exterior
derivative”? is the statement that if G is a smooth map and 7 is a differential
form then G*(dn) = d(G*n). Hence, with w = d#f,

(F1)'w = (F%)* (d6) = d((F*)"6) = d(6) = w,

so F* pulls back the symplectic form w to itself. Thus F : T*M — T*M is a
symplectomorphism.

Let Diff(Q) be the set of diffeomorphisms @ — Q. Diff(Q) is a group.
Let G be a group and let 7 : G — Diff(Q) be a homomorphism. Define
™ . G — DIff(T*Q) by (%), = (1,)* : T*Q — T*Q. 7% : G — Diff(T*Q)
is a homomorphism, and for each g € G, (Tn)g : T*Q — T*Q is a symplecto-
morphism. In words, if a group acts by diffeomorphisms on a smooth manifold,
then the cotangent lift of the action is an action by symplectomorphisms on the
cotangent bundle.

8 Lie groups
Recall that if F': M — N then TF : TM — TN satisfies, for X € I'*°(M) and
feC=(N)?
(TE)X)(f) = X(f o F),
ie. forxr e M andv e T, M,

(TeF)o)(f) = v(f o F),

the directional derivative of f o F € C*(M) in the direction of the tangent
vector v.

Let G be a Lie group and for g € G define Ly : G — G by Lgh = gh. If X
is a vector field on G, we say that X is left-invariant if

(ThLg)(Xn) = Xgn

4For each k, QF is a contravariant functor, and if f : M — N, then the functor QF sends
fto f*: QF(N) — QF(M). d is a natural transformation from the contravariant functor Q%
to the contravariant functor QF+1,

5In words: T'F pushes forward a vector field on M to a vector field on N.



for all g,h € G. That is, X is left-invariant if
(TLy)(X) =X

for all g € G.
If X and Y are left-invariant vector fields on G then so is [X,Y]. This is
because, for F : G — G,

(TH)X,Y]=[(TF)X,(TF)Y].

Thus the set of left-invariant vector fields on G is a Lie subalgebra of the Lie
algebra of vector fields on G.

Define € : Lie(G) — T.G by €(X) = X, where e € G is the identity element.
It can be shown that this is a linear isomorphism. Hence, if v € T.G then there
is a unique left-invariant vector field X on G such that, for all g € G,

Vg = (TeLg)(v).

It is a fact that every left-invariant vector field on a Lie group G is complete,
i.e. that its flow has domain G x R. For X € Lie(G), we call the unique integral
curve of X that passes through e the one-parameter subgroup generated by X.
Thus, for any v € T.G there is a unique one-parameter subgroup v : R — G
such that

~v(0) = e, 7 (0) = v.
We define exp : Lie(G) — G by exp(X) = (1), where v is the one-parameter
subgroup generated by X. This is called the exponential map. Thus t —

exp(tX) is the one-parameter subgroup generated by X.
Fact: If (TF)X =Y and X has flow ¢ and Y has flow 7, then

moF =Fog

for all ¢ in the domain of ¢. Hence

Lg0¢t :d)tOLg.
Hence the flow ¢ of a left-invariant vector field X satisfies

gexp(tX) = Lgexp(tX)

Ly(¢re)
= ¢u(Lge)
= ¢(9).

9 Coadjoint action

First we’ll define the adjoint action of G on g = Tiq,G. For g € G, define
U, :G— Gby ¥,(h) =ghg™'; U, is an automorphism of Lie groups. Define

Adg:g—yg



by
Adg = ﬂdc \1197

since ¥, is an automorphism of Lie groups, it follows that Ad, is an automor-
phism of Lie algebras. We can also write Ad, as

d -1
Ady(§) = | (gexp(té)g™).
The adjoint action of G on g is

g-&= Adg(ﬁ)‘

For each g € GG, one proves that there is a unique map Ad; 1 g* — ¢g* such
that for all [ € g*, € € g,

(Adgl)(&) = U(Ady(£))-
The coadjoint action of G on g* is

g-1=Ad:- (D).

10 Momentum map

Let (M,w) be a symplectic manifold, let G be a Lie group, and let o : G —
Diff(M) be a homomorphism such that for each g in G, o4 is a symplectomor-
phism.

Let g = Tia, G, and define p : g — I'>°(M) by

d

pE)() = |

Uexp(tf)(x) €T, M, 5 €g,x € M;

t > Oexpee)(z) is R — M and at t = 0 the curve passes through x, so indeed
p(&)(z) € Tp(M). p is called the infinitesimal action of g on M. Each element
of G acts on M as a symplectomorphism, each element of g acts on M as a
vector field.

A momentum map for the action of G on (M,w) is a map pu: M — g* such
that, for x € M, v € T,M and € € g,

((TZL’/’[’)U)f = ww(p(g)(l‘% U)a (1)

where
Top: TeM — Tyry9" = g7,

and such that if g € G and x € M then
plog(x)) = g - (), (2)

where g - u(z) is the coadjoint action of G on g*, defined in section §9; we say
that p is equivariant with respect to the coadjoint action of G on g*.



11  Angular momentum
Let G = SO(3) = {A € R3*3: AT A = [, det(A) = 1}. The Lie algebra of SO(3)
is

g=s50(3)={aeR¥>3:a+a’ =0}

Let @ = R?, and define 7 : G — Diff(Q) by 7,(¢) = gq.

Let 6 be the tautological 1-form on 7T*@ and let w = —df. (T*Q,w) is a
symplectic manifold and 7% : G — Diff(7*Q) is a homomorphism such that for
each g € G, (7%), is a symplectomorphism. For g € G, (¢,p) € T*Q,

(g(ap) = (19)%(a:p)
= (194, (dryq(1,1)) D)
Tgd, (drgq('rgfl ))*p)

(
(
(
= (T9q,po7y-1)
(
(

Hence for £ € g and (¢,p) € T*Q,
p&)ap) = | (Plepue(ap)

d

%’tzo(exp(ti)q,pexp(th))
= (¢g,p€")

Define V : g — R3 by

0 =& & &1
VI & 0 =& =(&].
& & 0 &3

One checks that £¢ = V(§) x ¢ and pé = pT" x V(€).
For (q,p) € T*Q, (v,w) € T(pT*Q, and & € g, we have

w(q,p)( ( )( ap)?( ) = w(q’p)((gq, —pf),(v,w))
3
= > dg; Adp;((£q, —p€), (v, w))

j=1
3

= > ((6a)sdp; + (p9);dgy) (v,w)

j=1
= ij(fq)J +'Uj(pf)j
j=1
— W (VO xq) o (T x VI(E).

10



Define p: T*Q — g* by u(q,p)(€) = (¢ x pT) - V(€). I claim that pu satisfies
(1) and (2). We have just calculated the right-hand side of (1), so it remains to
calculate the left-hand side. I find the left-hand side unwieldly to calculate in a
clean and precise way, so I will merely claim that it is equal to the right-hand
side. I have convinced myself that it is true by symbol pushing.

For g € G and ¢ € g, Ady € = g€g~?, and hence, for (¢,p) € T*Q,

(9-ulg,p)¢ = (Adj-iplg,p)) €
= (g, p)(Adg-1§)
= (g, p)(g~'¢g)
= (gxp") V(g '¢y).

On the other hand,

1(g(a,p)é = n(gq,pg")é

(
(
= (g(gxp"))-V(©
(
(
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