Hamiltonian flows, cotangent lifts, and momentum maps

Jordan Bell

April 3, 2014

1 Symplectic manifolds

Let (M, ω) and (N, η) be symplectic manifolds. A symplectomorphism $F: M \rightarrow$ N is a diffeomorphism such that $\omega=F^{*} \eta$. Recall that for $x \in M$ and $v_{1}, v_{2} \in$ $T_{x} M$,

$$
\left(F^{*} \eta\right)_{x}\left(v_{1}, v_{2}\right)=\eta_{F(x)}\left(\left(T_{x} F\right) v_{1},\left(T_{x} F\right) v_{2}\right)
$$

$T_{x} F: T_{x} M \rightarrow T_{F(x)} N$. (A tangent vector at $x \in M$ is pushed forward to a tangent vector at $F(x) \in N$, while a differential 2-form on N is pulled back to a differential 2-form on M.) In these notes the only symplectomorphisms in which we are interested are those from a symplectic manifold to itself. ${ }^{1}$

2 Symplectic gradient

If (M, ω) is a symplectic manifold and $H \in C^{\infty}(M)$, using the nondegeneracy of the symplectic form ω one can prove that there is a unique vector field $X_{H} \in$ $\Gamma^{\infty}(M)$ such that, for all $x \in M, v \in T_{x} M$,

$$
\omega_{x}\left(X_{H}(x), v\right)=(d H)_{x}(v)
$$

This can also be written as

$$
i_{X_{H}} \omega=d H
$$

where

$$
\left.\left(i_{X} \omega\right)(Y)=(X\lrcorner \omega\right)(Y)=\omega(X, Y)
$$

We call X_{H} the symplectic gradient of H. If $X \in \Gamma^{\infty}(M)$ and $X=X_{H}$ for some $H \in C^{\infty}(M)$, we say that X is a Hamiltonian vector field. ${ }^{2}$

[^0]Let's check that

$$
X_{H}=\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}}-\frac{\partial H}{\partial q_{i}} \frac{\partial}{\partial p_{i}}
$$

We have, because $d q_{i} \frac{\partial}{\partial q_{j}}=\delta_{i j}, d p_{i} \frac{\partial}{\partial p_{j}}=\delta_{i j}, d q_{i} \frac{\partial}{\partial p_{j}}=0$ and $d p_{i} \frac{\partial}{\partial q_{j}}=0$, and because $d q_{j} \wedge d p_{j}=-d p_{j} \wedge d q_{j}$,

$$
\begin{aligned}
i_{X_{H}} \omega & =\sum_{i=1}^{n} d q_{i} \wedge d p_{i} \sum_{j=1}^{n}\left(\frac{\partial H}{\partial p_{j}} \frac{\partial}{\partial q_{j}}-\frac{\partial H}{\partial q_{j}} \frac{\partial}{\partial p_{j}}\right) \\
& =\sum_{i=1}^{n} d q_{i} \wedge d p_{i}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}}-\frac{\partial H}{\partial q_{i}} \frac{\partial}{\partial p_{i}}\right) \\
& =\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}} d p_{i}+\frac{\partial H}{\partial q_{i}} d q_{i} \\
& =d H .
\end{aligned}
$$

3 Flows

Let M be a smooth manifold. Let D be an open subset of $M \times \mathbb{R}$, and for each $x \in M$ suppose that

$$
D^{x}=\{t \in \mathbb{R}:(x, t) \in D\}
$$

is an open interval including 0 . A flow on M is a smooth map $\phi: D \rightarrow M$ such that if $x \in M$ then $\phi_{0}(x)=x$ and such that if $x \in M, s \in D^{x}, t \in D^{\phi_{s}(x)}$ and $s+t \in D^{x}$, then

$$
\phi_{t}\left(\phi_{s}(x)\right)=\phi_{s+t}(x) .
$$

For $x \in M$, define $\phi^{x}: D^{x} \rightarrow M$ by $\phi^{x}(t)=\phi_{t}(x)$. The infinitesimal generator of a flow ϕ is the vector field V on M defined for $x \in M$ by

$$
V_{x}=\left.\frac{d}{d t}\right|_{t=0} \phi^{x}(t) .
$$

It is a fact that every vector field on M is the infinitesimal generator of a flow on M, and furthermore that there is a unique flow whose domain is maximal that has that vector field as its infinitesimal generator, and we thus speak of the flow of a vector field.

We say that a vector field is complete if it is the infinitesimal generator of a flow whose domain is $\mathbb{R} \times M$, in other words if it is the infinitesimal generator of a global flow. It is a fact that if V is a vector field on a compact smooth manifold then V is complete.

4 Hamiltonian flows

Let (M, ω) be a symplectic manifold. We say that a vector field X on M is symplectic if

$$
\mathcal{L}_{X} \omega=0
$$

where $\mathcal{L}_{X} \omega$ is the Lie derivative of ω along the flow of X. A Hamiltonian flow is the flow of a Hamiltonian vector field. ${ }^{3}$ If X is a complete symplectic vector field and $\phi: M \times \mathbb{R}$ is the flow of X, then for all $t \in \mathbb{R}$, the map $\phi_{t}: M \rightarrow M$ is a symplectomorphism.

Let $H \in C^{\infty}(M)$, and let ϕ be the flow of the vector field X_{H}. If (x, s) is in the domain of the flow ϕ, we have

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=s} H\left(\phi^{x}(t)\right) & =\left(d_{\phi^{x}(s)} H\right)\left(\left(\phi^{x}\right)^{\prime}(s)\right) \\
& =\left(d_{\phi^{x}(s)} H\right)\left(X_{H}\left(\phi^{x}(s)\right)\right) \\
& =\omega_{\phi^{x}(s)}\left(X_{H}\left(\phi^{x}(s)\right), X_{H}\left(\phi^{x}(s)\right)\right) \\
& =0 .
\end{aligned}
$$

Thus a Hamiltonian vector field is symplectic: H does not change along the flow of X_{H}. We can also write this as

$$
\begin{aligned}
\frac{d}{d t}\left(H \circ \phi_{t}\right) & =\frac{d}{d t}\left(\phi_{t}^{*} H\right) \\
& =\phi_{t}^{*}\left(\mathcal{L}_{X_{H}} H\right) \\
& =\phi_{t}^{*}\left(\left(i_{X_{H}} \omega\right)\left(X_{H}\right)\right) \\
& =\phi_{t}^{*}\left(\omega\left(X_{H}, X_{H}\right)\right) \\
& =\phi_{t}^{*}(0) \\
& =0
\end{aligned}
$$

It is a fact that if $H_{\mathrm{dR}}^{1}(M)=\{0\}$ (i.e. if α is a 1 -form on M and $d \alpha=0$ then there is some $f \in C^{\infty}(M)$ such that $\alpha=d f$) then every symplectic vector field on M is Hamiltonian. In particular, if M is simply connected then $H_{\mathrm{dR}}^{1}(M)=$ $\{0\}$, and hence if M is simply connected then every symplectic vector field on M is Hamiltonian.

5 Poisson bracket

For $f, g \in C^{\infty}(M)$, we define $\{f, g\} \in C^{\infty}(M)$ for $x \in M$ by

$$
\{f, g\}(x)=\omega_{x}\left(X_{f}(x), X_{g}(x)\right)
$$

This is called the Poisson bracket of f and g. We write

$$
\{f, g\}=\omega\left(X_{f}, X_{g}\right)
$$

We have

$$
\{f, g\}=X_{f} g=(d f) X_{g}
$$

We say that f and g Poisson commute if $\{f, g\}=0$. The Poisson bracket of f and g tells us how f changes along the Hamiltonian flow of g. If f and g Poisson commute then f does not change along the flow of X_{g}.

[^1]We have

$$
\begin{aligned}
\{f, g\} & =\omega\left(X_{f}, X_{g}\right) \\
& =\sum_{i=1}^{n}\left(d q_{i} \wedge d p_{i}\right) \sum_{j=1}^{n}\left(\frac{\partial f}{\partial p_{j}} \frac{\partial}{\partial q_{j}}-\frac{\partial f}{\partial q_{j}} \frac{\partial}{\partial p_{j}}\right) \sum_{k=1}^{n}\left(\frac{\partial g}{\partial p_{k}} \frac{\partial}{\partial q_{k}}-\frac{\partial g}{\partial q_{k}} \frac{\partial}{\partial p_{k}}\right) \\
& =\sum_{i=1}^{n}\left(\frac{\partial f}{\partial p_{i}} d p_{i}+\frac{\partial f}{\partial q_{i}} d q_{i}\right) \sum_{k=1}^{n}\left(\frac{\partial g}{\partial p_{k}} \frac{\partial}{\partial q_{k}}-\frac{\partial g}{\partial q_{k}} \frac{\partial}{\partial p_{k}}\right) \\
& =\sum_{i=1}^{n}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}+\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} .
\end{aligned}
$$

If $x \in M$ and $v \in T_{x} M$, then $v f$ is the directional derivative in the direction v. If $v=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial q_{i}}+b_{i} \frac{\partial}{\partial p_{i}}$ and $f \in C^{\infty}(M)$ then

$$
v f=\sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial q_{i}}+b_{i} \frac{\partial f}{\partial p_{i}}
$$

If X is a vector field on M then $X f \in C^{\infty}(M)$, defined for $x \in M$ by

$$
(X f)(x)=X_{x} f
$$

If τ is a covariant tensor field and X is a vector field, the Lie derivative of τ along the flow of X is defined as follows: if ϕ is the flow of X, then

$$
\left(\mathcal{L}_{X} \tau\right)(x)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} \tau\right)(x)
$$

and so if τ is a function $f \in C^{\infty}(M)$, then

$$
\left(\mathcal{L}_{X} f\right)(x)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} f\right)(x)=\left.\frac{d}{d t}\right|_{t=0} f\left(\phi_{t}(x)\right)=X_{x} f=(X f)(x)
$$

Thus if X is a vector field and $f \in C^{\infty}(M)$, then $\mathcal{L}_{X} f=X f$.
For $f, g \in C^{\infty}(M)$,

$$
\begin{aligned}
\left.X_{\{f, g\}}\right\lrcorner \omega & =d\{f, g\} \\
& =d\left(X_{g} f\right) \\
& =d\left(\mathcal{L}_{X_{g}} f\right) \\
& =\mathcal{L}_{X_{g}}(d f) \\
& \left.=\mathcal{L}_{X_{g}}\left(X_{f}\right\lrcorner \omega\right) \\
& \left.\left.=\left(\mathcal{L}_{X_{g}} X_{f}\right)\right\lrcorner \omega+X_{f}\right\lrcorner \mathcal{L}_{X_{g}} \omega \\
& \left.\left.=\left[X_{g}, X_{f}\right]\right\lrcorner \omega+X_{f}\right\lrcorner 0 \\
& \left.=\left[X_{g}, X_{f}\right]\right\lrcorner \omega \\
& \left.=-\left[X_{f}, X_{g}\right]\right\lrcorner \omega .
\end{aligned}
$$

Since the symplectic form ω is nondegenerate, if $X\lrcorner \omega=Y\lrcorner \omega$ then $X=Y$, so

$$
X_{\{f, g\}}=-\left[X_{f}, X_{g}\right]
$$

It follows that $C^{\infty}(M)$ is a Lie algebra using the Poisson bracket as the Lie bracket.

The set $\Gamma^{\infty}(M)$ of vector fields on M are a Lie algebra using the vector field commutator $[\cdot, \cdot]$. The symplectic vector fields are a Lie subalgebra: it is clear that they are a linear subspace of the Lie algebra of vector fields, and one shows that the commutator of two symplectic vector fields is itself a symplectic vector field. One can further show that the set of Hamiltonian vector fields is a Lie subalgebra of the Lie algebra of symplectic vector fields. It is a fact that the vector space quotient of the vector space of symplectic vector fields modulo the vector space of Hamiltonian vector fields is isomorphic to the vector space $H_{\mathrm{dR}}^{1}(M)$; this is why if $H_{\mathrm{dR}}^{1}(M)=\{0\}$ (in particular if M is simply connected) then any symplectic vector field on M is Hamiltonian.

6 Tautological 1-form

Let Q be a smooth manifold and let $\pi: T^{*} Q \rightarrow Q, \pi(q, p)=q$. For $x=(q, p) \in$ $T^{*} Q$, we have

$$
d_{x} \pi: T_{x} T^{*} Q \rightarrow T_{q} Q
$$

Let

$$
\theta_{x}=\left(d_{x} \pi\right)^{*}(p)=p \circ d_{x} \pi: T_{x} T^{*} Q \rightarrow \mathbb{R}
$$

Thus $\theta: T^{*} Q \rightarrow T^{*} T^{*} Q . \theta$ is called the tautological 1-form on $T^{*} Q$.
If $\left(Q_{1}, \ldots, Q_{n}\right)$ are coordinates on an open subset U of $Q, Q_{i}: U \rightarrow \mathbb{R}$, then for each $q \in U$ we have that $d_{q} Q_{i} \in T_{q}^{*} U=T_{q}^{*} Q, 1 \leq i \leq n$, are a basis for $T_{q}^{*} Q$ and $\left.\frac{\partial}{\partial Q_{i}}\right|_{q}, 1 \leq i \leq n$, are a basis for $T_{q} Q$. For each $p \in T_{q}^{*} Q$,

$$
p=\sum_{i=1}^{n} p\left(\left.\frac{\partial}{\partial Q_{i}}\right|_{q}\right) d_{q} Q_{i}
$$

On $T^{*} U$, define coordinates $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ by

$$
q_{i}(q, p)=Q_{i}(q)
$$

and

$$
p_{i}(q, p)=p\left(\left.\frac{\partial}{\partial Q_{i}}\right|_{q}\right) .
$$

On $T^{*} U$ we can write θ using these coordinates: for $x=(q, p) \in T^{*} Q$,

$$
\theta_{x}=p \circ d_{x} \pi=\sum_{i=1}^{n} p_{i}(x) d_{x} q_{i}
$$

Thus, on $T^{*} U$,

$$
\theta=\sum_{i=1}^{n} p_{i} d q_{i}
$$

Let $\omega=-d \theta$. We have, on $T^{*} U$,

$$
\begin{aligned}
\omega & =-d \sum_{i=1}^{n} p_{i} d q_{i} \\
& =-\sum_{i=1}^{n}\left(d p_{i} \wedge d q_{i}+p_{i} d\left(d q_{i}\right)\right) \\
& =-\sum_{i=1}^{n} d p_{i} \wedge d q_{i} \\
& =\sum_{i=1}^{n} d q_{i} \wedge d p_{i}
\end{aligned}
$$

$T^{*} Q$ is a symplectic manifold with the symplectic form ω.

7 Cotangent lifts

Let Q be a smooth manifold and let $F: Q \rightarrow Q$ be a diffeomorphism. Define

$$
F^{\sharp}: T^{*} Q \rightarrow T^{*} Q
$$

for $x=(q, p)$ by

$$
F^{\sharp}(q, p)=\left(F(q),\left(d_{F(q)}\left(F^{-1}\right)\right)^{*}(p)\right) .
$$

We call $F^{\sharp}: T^{*} Q \rightarrow T^{*} Q$ the cotangent lift of $F: Q \rightarrow Q$. It is a fact that it is a diffeomorphism. It is apparent that the following diagram commutes:

The pull-back of θ by F^{\sharp} satisfies, for $x=(q, p) \in T^{*} Q$ and $(\zeta, \eta)=$
$F^{\sharp}(q, p) \in T^{*} Q$,

$$
\begin{aligned}
\left(\left(F^{\sharp}\right)^{*} \theta\right)_{x} & =\left(d_{x} F^{\sharp}\right)^{*}\left(\theta_{F^{\sharp}(x)}\right) \\
& =\left(d_{x} F^{\sharp}\right)^{*}\left(\left(d_{F^{\sharp}}(x) \pi\right)^{*}(\eta)\right) \\
& =\left(d_{x}\left(\pi \circ F^{\sharp}\right)\right)^{*}(\eta) \\
& =\left(d_{x}(F \circ \pi)\right)^{*}(\eta) \\
& =\left(d_{x} \pi\right)^{*}\left(\left(d_{\pi(x)} F\right)^{*}(\eta)\right) \\
& =\left(d_{x} \pi\right)^{*}\left(\left(d_{q} F\right)^{*}(\eta)\right) \\
& =\left(d_{x} \pi\right)^{*}(p) \\
& =\theta_{x} .
\end{aligned}
$$

Thus $(F \sharp)^{*} \theta=\theta$, i.e. F^{\sharp} pulls back θ to θ. The "naturality of the exterior derivative" ${ }^{4}$ is the statement that if G is a smooth map and η is a differential form then $G^{*}(d \eta)=d\left(G^{*} \eta\right)$. Hence, with $\omega=d \theta$,

$$
\left(F^{\sharp}\right)^{*} \omega=\left(F^{\sharp}\right)^{*}(d \theta)=d\left(\left(F^{\sharp}\right)^{*} \theta\right)=d(\theta)=\omega,
$$

so F^{\sharp} pulls back the symplectic form ω to itself. Thus $F^{\sharp}: T^{*} M \rightarrow T^{*} M$ is a symplectomorphism.

Let $\operatorname{Diff}(Q)$ be the set of diffeomorphisms $Q \rightarrow Q . \operatorname{Diff}(Q)$ is a group. Let G be a group and let $\tau: G \rightarrow \operatorname{Diff}(Q)$ be a homomorphism. Define $\tau^{\sharp}: G \rightarrow \operatorname{Diff}\left(T^{*} Q\right)$ by $\left(\tau^{\sharp}\right)_{g}=\left(\tau_{g}\right)^{\sharp}: T^{*} Q \rightarrow T^{*} Q . \quad \tau^{\sharp}: G \rightarrow \operatorname{Diff}\left(T^{*} Q\right)$ is a homomorphism, and for each $g \in G,\left(\tau^{\sharp}\right)_{g}: T^{*} Q \rightarrow T^{*} Q$ is a symplectomorphism. In words, if a group acts by diffeomorphisms on a smooth manifold, then the cotangent lift of the action is an action by symplectomorphisms on the cotangent bundle.

8 Lie groups

Recall that if $F: M \rightarrow N$ then $T F: T M \rightarrow T N$ satisfies, for $X \in \Gamma^{\infty}(M)$ and $f \in C^{\infty}(N),{ }^{5}$

$$
((T F) X)(f)=X(f \circ F)
$$

i.e. for $x \in M$ and $v \in T_{x} M$,

$$
\left(\left(T_{x} F\right) v\right)(f)=v(f \circ F)
$$

the directional derivative of $f \circ F \in C^{\infty}(M)$ in the direction of the tangent vector v.

Let G be a Lie group and for $g \in G$ define $L_{g}: G \rightarrow G$ by $L_{g} h=g h$. If X is a vector field on G, we say that X is left-invariant if

$$
\left(T_{h} L_{g}\right)\left(X_{h}\right)=X_{g h}
$$

[^2]for all $g, h \in G$. That is, X is left-invariant if
$$
\left(T L_{g}\right)(X)=X
$$
for all $g \in G$.
If X and Y are left-invariant vector fields on G then so is $[X, Y]$. This is because, for $F: G \rightarrow G$,
$$
(T F)[X, Y]=[(T F) X,(T F) Y] .
$$

Thus the set of left-invariant vector fields on G is a Lie subalgebra of the Lie algebra of vector fields on G.

Define $\epsilon: \operatorname{Lie}(G) \rightarrow T_{e} G$ by $\epsilon(X)=X_{e}$, where $e \in G$ is the identity element. It can be shown that this is a linear isomorphism. Hence, if $v \in T_{e} G$ then there is a unique left-invariant vector field X on G such that, for all $g \in G$,

$$
V_{g}=\left(T_{e} L_{g}\right)(v)
$$

It is a fact that every left-invariant vector field on a Lie group G is complete, i.e. that its flow has domain $G \times \mathbb{R}$. For $X \in \operatorname{Lie}(G)$, we call the unique integral curve of X that passes through e the one-parameter subgroup generated by X. Thus, for any $v \in T_{e} G$ there is a unique one-parameter subgroup $\gamma: \mathbb{R} \rightarrow G$ such that

$$
\gamma(0)=e, \quad \gamma^{\prime}(0)=v
$$

We define exp : Lie $(G) \rightarrow G$ by $\exp (X)=\gamma(1)$, where γ is the one-parameter subgroup generated by X. This is called the exponential map. Thus $t \mapsto$ $\exp (t X)$ is the one-parameter subgroup generated by X.

Fact: If $(T F) X=Y$ and X has flow ϕ and Y has flow η, then

$$
\eta_{t} \circ F=F \circ \phi_{t}
$$

for all t in the domain of ϕ. Hence

$$
L_{g} \circ \phi_{t}=\phi_{t} \circ L_{g} .
$$

Hence the flow ϕ of a left-invariant vector field X satisfies

$$
\begin{aligned}
g \exp (t X) & =L_{g} \exp (t X) \\
& =L_{g}\left(\phi_{t} e\right) \\
& =\phi_{t}\left(L_{g} e\right) \\
& =\phi_{t}(g)
\end{aligned}
$$

9 Coadjoint action

First we'll define the adjoint action of G on $\mathfrak{g}=T_{\mathrm{id}_{G}} G$. For $g \in G$, define $\Psi_{g}: G \rightarrow G$ by $\Psi_{g}(h)=g h g^{-1} ; \Psi_{g}$ is an automorphism of Lie groups. Define

$$
\operatorname{Ad}_{g}: \mathfrak{g} \rightarrow \mathfrak{g}
$$

by

$$
\operatorname{Ad}_{g}=T_{\mathrm{id}_{G}} \Psi_{g}
$$

since Ψ_{g} is an automorphism of Lie groups, it follows that Ad_{g} is an automorphism of Lie algebras. We can also write Ad_{g} as

$$
\operatorname{Ad}_{g}(\xi)=\left.\frac{d}{d t}\right|_{t=0}\left(g \exp (t \xi) g^{-1}\right)
$$

The adjoint action of G on \mathfrak{g} is

$$
g \cdot \xi=\operatorname{Ad}_{g}(\xi)
$$

For each $g \in G$, one proves that there is a unique map $\operatorname{Ad}_{g}^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ such that for all $l \in \mathfrak{g}^{*}, \xi \in \mathfrak{g}$,

$$
\left(\operatorname{Ad}_{g}^{*} l\right)(\xi)=l\left(\operatorname{Ad}_{g}(\xi)\right)
$$

The coadjoint action of G on \mathfrak{g}^{*} is

$$
g \cdot l=\operatorname{Ad}_{g^{-1}}^{*}(l)
$$

10 Momentum map

Let (M, ω) be a symplectic manifold, let G be a Lie group, and let $\sigma: G \rightarrow$ $\operatorname{Diff}(M)$ be a homomorphism such that for each g in G, σ_{g} is a symplectomorphism.

Let $\mathfrak{g}=T_{\mathrm{id}_{G}} G$, and define $\rho: \mathfrak{g} \rightarrow \Gamma^{\infty}(M)$ by

$$
\rho(\xi)(x)=\left.\frac{d}{d t}\right|_{t=0} \sigma_{\exp (t \xi)}(x) \in T_{x} M, \quad \xi \in \mathfrak{g}, x \in M
$$

$t \mapsto \sigma_{\exp (t \xi)}(x)$ is $\mathbb{R} \rightarrow M$ and at $t=0$ the curve passes through x, so indeed $\rho(\xi)(x) \in T_{x}(M) . \rho$ is called the infinitesimal action of \mathfrak{g} on M. Each element of G acts on M as a symplectomorphism, each element of \mathfrak{g} acts on M as a vector field.

A momentum map for the action of G on (M, ω) is a map $\mu: M \rightarrow \mathfrak{g}^{*}$ such that, for $x \in M, v \in T_{x} M$ and $\xi \in \mathfrak{g}$,

$$
\begin{equation*}
\left(\left(T_{x} \mu\right) v\right) \xi=\omega_{x}(\rho(\xi)(x), v) \tag{1}
\end{equation*}
$$

where

$$
T_{x} \mu: T_{x} M \rightarrow T_{\mu(x)} \mathfrak{g}^{*}=\mathfrak{g}^{*},
$$

and such that if $g \in G$ and $x \in M$ then

$$
\begin{equation*}
\mu\left(\sigma_{g}(x)\right)=g \cdot \mu(x) \tag{2}
\end{equation*}
$$

where $g \cdot \mu(x)$ is the coadjoint action of G on \mathfrak{g}^{*}, defined in section $\S 9$; we say that μ is equivariant with respect to the coadjoint action of G on \mathfrak{g}^{*}.

11 Angular momentum

Let $G=\mathrm{SO}(3)=\left\{A \in \mathbb{R}^{3 \times 3}: A^{T} A=I, \operatorname{det}(A)=1\right\}$. The Lie algebra of $\mathrm{SO}(3)$ is

$$
\mathfrak{g}=\mathfrak{s o}(3)=\left\{a \in \mathbb{R}^{3 \times 3}: a+a^{T}=0\right\} .
$$

Let $Q=\mathbb{R}^{3}$, and define $\tau: G \rightarrow \operatorname{Diff}(Q)$ by $\tau_{g}(q)=g q$.
Let θ be the tautological 1-form on $T^{*} Q$ and let $\omega=-d \theta .\left(T^{*} Q, \omega\right)$ is a symplectic manifold and $\tau^{\sharp}: G \rightarrow \operatorname{Diff}\left(T^{*} Q\right)$ is a homomorphism such that for each $g \in G,\left(\tau^{\sharp}\right)_{g}$ is a symplectomorphism. For $g \in G,(q, p) \in T^{*} Q$,

$$
\begin{aligned}
\left(\tau^{\sharp}\right)_{g}(q, p) & =\left(\tau_{g}\right)^{\sharp}(q, p) \\
& =\left(\tau_{g} q,\left(d_{\tau_{g} q}\left(\tau_{g}^{-1}\right)\right)^{*} p\right) \\
& =\left(\tau_{g} q,\left(d_{\tau_{g} q}\left(\tau_{g^{-1}}\right)\right)^{*} p\right) \\
& =\left(\tau_{g} q, p \circ\left(d_{\tau_{g} q} \tau_{g-1}\right)\right) \\
& =\left(\tau_{g} q, p \circ \tau_{g^{-1}}\right) \\
& =\left(g q, p g^{-1}\right) \\
& =\left(g q, p g^{T}\right) .
\end{aligned}
$$

Hence for $\xi \in \mathfrak{g}$ and $(q, p) \in T^{*} Q$,

$$
\begin{aligned}
\rho(\xi)(q, p) & =\left.\frac{d}{d t}\right|_{t=0}\left(\tau^{\sharp}\right)_{\exp (t \xi)}(q, p) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\exp (t \xi) q, p \exp \left(t \xi^{T}\right)\right) \\
& =\left(\xi q, p \xi^{T}\right) \\
& =(\xi q,-p \xi) .
\end{aligned}
$$

Define $V: \mathfrak{g} \rightarrow \mathbb{R}^{3}$ by

$$
V\left(\begin{array}{ccc}
0 & -\xi_{3} & \xi_{2} \\
\xi_{3} & 0 & -\xi_{1} \\
-\xi_{2} & \xi_{1} & 0
\end{array}\right)=\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)
$$

One checks that $\xi q=V(\xi) \times q$ and $p \xi=p^{T} \times V(\xi)$.
For $(q, p) \in T^{*} Q,(v, w) \in T_{(p, q)} T^{*} Q$, and $\xi \in \mathfrak{g}$, we have

$$
\begin{aligned}
\omega_{(q, p)}(\rho(\xi)(q, p),(v, w)) & =\omega_{(q, p)}((\xi q,-p \xi),(v, w)) \\
& =\sum_{j=1}^{3} d q_{j} \wedge d p_{j}((\xi q,-p \xi),(v, w)) \\
& =\sum_{j=1}^{3}\left((\xi q)_{j} d p_{j}+(p \xi)_{j} d q_{j}\right)(v, w) \\
& =\sum_{j=1}^{3} w_{j}(\xi q)_{j}+v_{j}(p \xi)_{j} \\
& =w \cdot(V(\xi) \times q)+v \cdot\left(p^{T} \times V(\xi)\right)
\end{aligned}
$$

Define $\mu: T^{*} Q \rightarrow \mathfrak{g}^{*}$ by $\mu(q, p)(\xi)=\left(q \times p^{T}\right) \cdot V(\xi)$. I claim that μ satisfies (1) and (2). We have just calculated the right-hand side of (1), so it remains to calculate the left-hand side. I find the left-hand side unwieldly to calculate in a clean and precise way, so I will merely claim that it is equal to the right-hand side. I have convinced myself that it is true by symbol pushing.

For $g \in G$ and $\xi \in \mathfrak{g}, \operatorname{Ad}_{g} \xi=g \xi g^{-1}$, and hence, for $(q, p) \in T^{*} Q$,

$$
\begin{aligned}
(g \cdot \mu(q, p)) \xi & =\left(\operatorname{Ad}_{g^{-1}}^{*} \mu(q, p)\right) \xi \\
& =\mu(q, p)\left(\operatorname{Ad}_{g^{-1}} \xi\right) \\
& =\mu(q, p)\left(g^{-1} \xi g\right) \\
& =\left(q \times p^{T}\right) \cdot V\left(g^{-1} \xi g\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\mu\left(\left(\tau^{\sharp}\right)_{g}(q, p)\right) \xi & =\mu\left(g q, p g^{T}\right) \xi \\
& =\left((g q) \times\left(p g^{T}\right)^{T}\right) \cdot V(\xi) \\
& =\left((g q) \times\left(g p^{T}\right)\right) \cdot V(\xi) \\
& =\left(g\left(q \times p^{T}\right)\right) \cdot V(\xi) \\
& =\left(q \times p^{T}\right) \cdot\left(g^{T} V(\xi)\right) \\
& =\left(q \times p^{T}\right) \cdot\left(g^{-1} V(\xi)\right) .
\end{aligned}
$$

[^0]: ${ }^{1} \mathrm{I}$ am interested in flows on a phase space and this phase space is a symplectic manifold. For some motivation for why we want phase space to be a symplectic manifold, read: http://research.microsoft.com/en-us/um/people/cohn/thoughts/symplectic.html
 ${ }^{2} \mathrm{On}$ a Riemannian manifold, a vector field that is the gradient of a smooth function is called a gradient vector field or a conservative vector field.

[^1]: ${ }^{3}$ cf. gradient flow.

[^2]: ${ }^{4}$ For each k, Ω^{k} is a contravariant functor, and if $f: M \rightarrow N$, then the functor Ω^{k} sends f to $f^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)$. d is a natural transformation from the contravariant functor Ω^{k} to the contravariant functor Ω^{k+1}.
 ${ }^{5}$ In words: $T F$ pushes forward a vector field on M to a vector field on N.

